1
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
2
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
3
|
Lu Q, Liu P, Huo JH, Wang YN, Ma AQ, Yuan ZY, Du XJ, Bai L. Cardiac rupture complicating acute myocardial infarction: the clinical features from an observational study and animal experiment. BMC Cardiovasc Disord 2020; 20:409. [PMID: 32912149 PMCID: PMC7488297 DOI: 10.1186/s12872-020-01683-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a fatal complication of ST-elevation myocardial infarction (STEMI) with its incidence markedly declined in the recent decades. However, clinical features of CR patients now and the effect of reperfusion therapy to CR remain unclear. We investigated the clinical features of CR in STEMI patients and the effect of reperfusion therapy to CR in mice. METHODS Two studies were conducted. In clinical study, data of 1456 STEMI patients admitted to the First Hospital, Xi'an Jiaotong University during 2015.12. ~ 2018.12. were analyzed. In experimental study, 83 male C57BL/6 mice were operated to induce MI. Of them, 39 mice were permanent MI (group-1), and remaining mice received reperfusion after 1 h ischemia (21 mice, group-2) or 4 h ischemia (23 mice, group-3). All operated mice were monitored up to day-10. Animals were inspected three times daily for the incidence of death and autopsy was done for all mice found died to determine the cause of death. RESULTS CR was diagnosed in 40 patients: free-wall rupture in 17, ventricular septal rupture in 20, and combined locations in 3 cases. CR presented in 19 patients at admission and diagnosed in another 21 patients during 1 ~ 14 days post-STEMI, giving an in-hospital incidence of 1.4%. The mortality of CR patients was high during hospitalization accounting for 39% of total in-hospital death. By multivariate logistic regression analysis, older age, peak CK-MB and peak hs-CRP were independent predictors of CR post-STEMI. In mice with non-reperfused MI, 17 animals (43.6%) died of CR that occurred during 3-6 days post-MI. In MI mice received early or delayed reperfusion, all mice survived to the end of experiment except one mouse died of acute heart failure. CONCLUSION CR remains as a major cause of in-hospital death in STEMI patients. CR patients are characterized of being elderly, having larger infarct and more server inflammation. Experimentally, reperfusion post-MI prevented CR.
Collapse
Affiliation(s)
- Qun Lu
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China.
| | - Ping Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jian-Hua Huo
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yan-Ni Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ai-Qun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Zu-Yi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Xiao-Jun Du
- Experimental Cardiology Lab, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia. .,College of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, P.R. China.
| | - Ling Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, P.R. China
| |
Collapse
|
4
|
Macrophage migration inhibitory factor plays an essential role in ischemic preconditioning-mediated cardioprotection. Clin Sci (Lond) 2019; 133:665-680. [PMID: 30804219 DOI: 10.1042/cs20181013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022]
Abstract
Ischemic preconditioning (IPC) is an endogenous protection strategy against myocardial ischemia-reperfusion (I/R) injury. Macrophage migration inhibitory factor (MIF) released from the myocardium subjected to brief periods of ischemia confers cardioprotection. We hypothesized that MIF plays an essential role in IPC-induced cardioprotection. I/R was induced either ex vivo or in vivo in male wild-type (WT) and MIF knockout (MIFKO) mice with or without proceeding IPC (three cycles of 5-min ischemia and 5-min reperfusion). Indices of myocardial injury, regional inflammation and cardiac function were determined to evaluate the extent of I/R injury. Activations of the reperfusion injury salvage kinase (RISK) pathway, AMP-activated protein kinase (AMPK) and their downstream components were investigated to explore the underlying mechanisms. IPC conferred prominent protection in WT hearts evidenced by reduced infarct size (by 33-35%), myocyte apoptosis and enzymatic markers of tissue injury, ROS production, inflammatory cell infiltration and MCP1/CCR2 expression (all P<0.05). IPC also ameliorated cardiac dysfunction both ex vivo and in vivo These protective effects were abolished in MIFKO hearts. Notably, IPC mediated further activations of RISK pathway, AMPK and the membrane translocation of GLUT4 in WT hearts. Deletion of MIF blunted these changes in response to IPC, which is the likely basis for the absence of protective effects of IPC against I/R injury. In conclusion, MIF plays a critical role in IPC-mediated cardioprotection under ischemic stress by activating RISK signaling pathway and AMPK. These results provide an insight for developing a novel therapeutic strategy that target MIF to protect ischemic hearts.
Collapse
|
5
|
Endogenous Annexin-A1 Regulates Haematopoietic Stem Cell Mobilisation and Inflammatory Response Post Myocardial Infarction in Mice In Vivo. Sci Rep 2017; 7:16615. [PMID: 29192208 PMCID: PMC5709412 DOI: 10.1038/s41598-017-16317-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022] Open
Abstract
Endogenous anti-inflammatory annexin-A1 (ANX-A1) plays an important role in preserving left ventricular (LV) viability and function after ischaemic insults in vitro, but its long-term cardioprotective actions in vivo are largely unknown. We tested the hypothesis that ANX-A1-deficiency exaggerates inflammation, haematopoietic stem progenitor cell (HSPC) activity and LV remodelling in response to myocardial ischaemia in vivo. Adult ANX-A1−/− mice subjected to coronary artery occlusion exhibited increased infarct size and LV macrophage content after 24–48 h reperfusion compared with wildtype (WT) counterparts. In addition, ANX-A1−/− mice exhibited greater expansion of HSPCs and altered pattern of HSPC mobilisation 8 days post-myocardial infarction, with increased circulating neutrophils and platelets, consistent with increased cardiac inflammation as a result of increased myeloid invading injured myocardium in response to MI. Furthermore, ANX-A1−/− mice exhibited significantly increased expression of LV pro-inflammatory and pro-fibrotic genes and collagen deposition after MI compared to WT counterparts. ANX-A1-deficiency increased cardiac necrosis, inflammation, hypertrophy and fibrosis following MI, accompanied by exaggerated HSPC activity and impaired macrophage phenotype. These findings suggest that endogenous ANX-A1 regulates mobilisation and differentiation of HSPCs. Limiting excessive monocyte/neutrophil production may limit LV damage in vivo. Our findings support further development of novel ANX-A1-based therapies to improve cardiac outcomes after MI.
Collapse
|
6
|
Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat Commun 2017; 8:14232. [PMID: 28169296 PMCID: PMC5309721 DOI: 10.1038/ncomms14232] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI. G Protein-Coupled Receptors (GPCRs) can adopt different conformations, each linked to distinct cellular outcomes. Here the authors show that compound 17b, a novel agonist of the GPCR family member FPR, robustly activates cardioprotective but not detrimental FPR signalling, showing beneficial therapeutic effect in a mouse model of cardiac infarction.
Collapse
|
7
|
Gao L, Chen L, Lu ZZ, Gao H, Wu L, Chen YX, Zhang CM, Jiang YK, Jing Q, Zhang YY, Yang HT. Activation of α1B-adrenoceptors contributes to intermittent hypobaric hypoxia-improved postischemic myocardial performance via inhibiting MMP-2 activation. Am J Physiol Heart Circ Physiol 2014; 306:H1569-81. [PMID: 24705558 DOI: 10.1152/ajpheart.00772.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of matrix metalloproteinases-2 (MMP-2) activation renders cardioprotection from ischemia/reperfusion (I/R) injury; however, the signaling pathways involved have not been fully understood. Intermittent hypobaric hypoxia (IHH) has been shown to enhance myocardial tolerance to I/R injury via triggering intrinsic adaptive responses. Here we investigated whether IHH protects the heart against I/R injury via the regulation of MMP-2 and how the MMP-2 is regulated. IHH (Po2 = 84 mmHg, 4-h/day, 4 wk) improved postischemic myocardial contractile performance, lactate dehydrogenase (LDH) release, and infarct size in isolated perfused rat hearts. Moreover, IHH reversed I/R-induced MMP-2 activation and release, disorders in the levels of MMP-2 regulators, peroxynitrite (ONOO(-)) and tissue inhibitor of metalloproteinase-4 (TIMP-4), and loss of the MMP-2 targets α-actinin and troponin I. This protection was mimicked, but not augmented, by a MMP inhibitor doxycycline and lost by the α1-adrenoceptor (AR) antagonist prazosin. Furthermore, IHH increased myocardial α1A-AR and α1B-AR density but not α1D-AR after I/R. Concomitantly, IHH further enhanced the translocation of PKC epsilon (PKCε) and decreased the release of mitochondrial cytochrome c due to I/R via the activation of α1B-AR but not α1A-AR or α1D-AR. IHH-conferred cardioprotection in the postischemic contractile function, LDH release, MMP-2 activation, and nitrotyrosine as well as TIMP-4 contents were mimicked but not additive by α1-AR stimulation with phenylephrine and were abolished by an α1B-AR antagonist chloroethylclonidine and a PKCε inhibitor PKCε V1-2. These findings demonstrate that IHH exerts cardioprotection through attenuating excess ONOO(-) biosynthesis and TIMP-4 loss and sequential MMP-2 activation via the activation of α1B-AR/PKCε pathway.
Collapse
Affiliation(s)
- Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Le Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Zhi-Zhen Lu
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Hong Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Lan Wu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yi-Xiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Cai-Mei Zhang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yu-Kun Jiang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Qing Jing
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - You-Yi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| |
Collapse
|
8
|
O'Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 2013; 66:308-33. [PMID: 24368739 DOI: 10.1124/pr.112.007203] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.
Collapse
Affiliation(s)
- Timothy D O'Connell
- VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA 94121. ; or Dr. Timothy D. O'Connell, E-mail:
| | | | | | | |
Collapse
|
9
|
Chan W, White DA, Wang XY, Bai RF, Liu Y, Yu HY, Zhang YY, Fan F, Schneider HG, Duffy SJ, Taylor AJ, Du XJ, Gao W, Gao XM, Dart AM. Macrophage migration inhibitory factor for the early prediction of infarct size. J Am Heart Assoc 2013; 2:e000226. [PMID: 24096574 PMCID: PMC3835222 DOI: 10.1161/jaha.113.000226] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Early diagnosis and knowledge of infarct size is critical for the management of acute myocardial infarction (MI). We evaluated whether early elevated plasma level of macrophage migration inhibitory factor (MIF) is useful for these purposes in patients with ST-elevation MI (STEMI). METHODS AND RESULTS We first studied MIF level in plasma and the myocardium in mice and determined infarct size. MI for 15 or 60 minutes resulted in 2.5-fold increase over control values in plasma MIF levels while MIF content in the ischemic myocardium reduced by 50% and plasma MIF levels correlated with myocardium-at-risk and infarct size at both time-points (P < 0.01). In patients with STEMI, we obtained admission plasma samples and measured MIF, conventional troponins (TnI, TnT), high sensitive TnI (hsTnI), creatine kinase (CK), CK-MB, and myoglobin. Infarct size was assessed by cardiac magnetic resonance (CMR) imaging. Patients with chronic stable angina and healthy volunteers were studied as controls. Of 374 STEMI patients, 68% had elevated admission MIF levels above the highest value in healthy controls (> 41.6 ng/mL), a proportion similar to hsTnI (75%) and TnI (50%), but greater than other biomarkers studied (20% to 31%, all P < 0.05 versus MIF). Only admission MIF levels correlated with CMR-derived infarct size, ventricular volumes and ejection fraction (n = 42, r = 0.46 to 0.77, all P < 0.01) at 3 day and 3 months post-MI. CONCLUSION Plasma MIF levels are elevated in a high proportion of STEMI patients at the first obtainable sample and these levels are predictive of final infarct size and the extent of cardiac remodeling.
Collapse
Affiliation(s)
- William Chan
- Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhao X, Park J, Ho D, Gao S, Yan L, Ge H, Iismaa S, Lin L, Tian B, Vatner DE, Graham RM, Vatner SF. Cardiomyocyte overexpression of the α1A-adrenergic receptor in the rat phenocopies second but not first window preconditioning. Am J Physiol Heart Circ Physiol 2012; 302:H1614-24. [PMID: 22307672 DOI: 10.1152/ajpheart.01072.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined α(1A)-adrenergic receptor (AR) mediation of preconditioning in a novel α(1A)-AR cardiac transgenic (TG) rat model (α(1A)-TG). Compared with nontransgenic littermates (NTLs), in conscious α(1A)-TG rats, heart rate was reduced, contractility [left ventricle (LV) +dP/dt, ejection fraction, end-systolic elastance] was significantly enhanced, and triple product (LV systolic wall stress × LV +dP/dt × heart rate) was unchanged. However, infarct size (IS)/area at risk (AAR) in response to ischemia-reperfusion (30 min coronary occlusion/3 h reperfusion) was reduced to 35 ± 4.6% in α(1A)-TGs vs. 52 ± 2.2% in NTLs (P < 0.05). Second window preconditioning reduced IS/AAR in NTLs to 29 ± 2.7% but did not afford further protection in α(1A)-TGs. In contrast, with first window preconditioning, IS/AAR was reduced to similar levels in both α(1A)-TGs (12 ± 1.4%) and NTLs (10 ± 1.1%). In untreated α(1A)-TGs, cardioprotection was associated with enhanced myocardial phosphorylated (p)-mitogen/extracellular signal-regulated kinase (MEK), p-extracellular signal-regulated kinase (ERK), and inducible nitric oxide synthase (iNOS) at the protein level, along with a 1.3-fold increase in total nitric oxide synthase activity like in second window preconditioning. Affymetrix microarrays revealed that few genes (4.6% of 3,172 upregulated; 8.8% of 3,498 downregulated) showed directionally similar changes in α(1A)-TGs vs. NTLs subjected to second window preconditioning. Thus, second, but not first, window cardioprotection is evident in α(1A)-TGs in the absence of ischemic preconditioning and is mediated by iNOS activation associated with MEK/ERK phosphorylation. Transcriptionally, however, second window preconditioning is considerably more complex than α(1A)-TG preconditioning, with the alteration of thousands of additional genes affording no further protection than that already available in α(1A)-TG rats.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gao XM, Liu Y, White D, Su Y, Drew BG, Bruce CR, Kiriazis H, Xu Q, Jennings N, Bobik A, Febbraio MA, Kingwell BA, Bucala R, Fingerle-Rowson G, Dart AM, Morand EF, Du XJ. Deletion of macrophage migration inhibitory factor protects the heart from severe ischemia–reperfusion injury: A predominant role of anti-inflammation. J Mol Cell Cardiol 2011; 50:991-9. [DOI: 10.1016/j.yjmcc.2010.12.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/10/2010] [Accepted: 12/28/2010] [Indexed: 11/25/2022]
|
12
|
Perez DM, Doze VA. Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res 2011; 31:98-110. [PMID: 21338248 DOI: 10.3109/10799893.2010.550008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathetic nervous system regulation by the α(1)-adrenergic receptor (AR) subtypes (α(1A), α(1B), α(1D)) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α(1)-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.
Collapse
Affiliation(s)
- Dianne M Perez
- Department of Molecular Cardiology, NB50, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
13
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2010; 51:518-28. [PMID: 21118696 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Division, VA Medical Center, San Francisco, CA, USA.
| | | | | |
Collapse
|
14
|
Taliyan R, Singh M, Sharma PL, Yadav HN, Sidhu KS. Possible involvement of α1-adrenergic receptor and K(ATP) channels in cardioprotective effect of remote aortic preconditioning in isolated rat heart. J Cardiovasc Dis Res 2010; 1:145-51. [PMID: 21187869 PMCID: PMC2982203 DOI: 10.4103/0975-3583.70917] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Remote preconditioning is a phenomenon in which brief episodes of ischemia and reperfusion to remote organs protect the target organ against sustained ischemia/reperfusion (I/R)-induced injury. Protective effects of remote aortic preconditioning (RAPC) are well established in the heart, but their mechanisms still remain to be elucidated. OBJECTIVE This study has been designed to investigate the possible involvement of α-1-adrenergic receptor (AR) and K(ATP) channels in cardio-protective effect of RAPC in isolated rat heart. MATERIALS AND METHODS Four episodes of ischemia and reperfusion, each comprising of 5 min occlusion and 5 min reperfusion, were used to produce RAPC. Isolated perfused rat heart was subjected to global ischemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analyzed for LDH and CK-MB release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. RESULTS Phenylephrine (20 μ/kg i.p.), as α-1-AR agonist, was noted to produce RAPC-like cardio-protection. However, administration of glibenclamide concomitantly or prior to phenylephrine abolished cardioprotection. Moreover, prazocin (1 mg/kg. i.p), as α-1-AR antagonist and glibenclamide (1 mg/kg i.p), a K(ATP) channel blocker, abolished the cardioprotective effect of RAPC. CONCLUSION These data provide the evidence that α-1-AR activation involved in cardioprotective effect of RAPC-mediated trough opening of K(ATP) channels.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Department of Pharmacology., I.S.F College of Pharmacy, Moga, Punjab – 142 001, India
| | - Manjeet Singh
- Department of Pharmacology., I.S.F College of Pharmacy, Moga, Punjab – 142 001, India
| | - Pyare Lal Sharma
- Department of Pharmacology., I.S.F College of Pharmacy, Moga, Punjab – 142 001, India
| | | | - Kulwinder Singh Sidhu
- Department of Pharmacology., I.S.F College of Pharmacy, Moga, Punjab – 142 001, India
| |
Collapse
|
15
|
Barreto F, Rezende D, Scaramello C, Silva C, Cunha V, Caricati-Neto A, Jurkiewicz A, Noël F, Quintas L. Lack of evidence for regulation of cardiac P-type ATPases and MAP kinases in transgenic mice with cardiac-specific overexpression of constitutively active α1B-adrenoceptors. Braz J Med Biol Res 2010; 43:500-5. [DOI: 10.1590/s0100-879x2010007500028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 04/01/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- F. Barreto
- Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | - F. Noël
- Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
16
|
Ziolkowski N, Grover AK. Functional linkage as a direction for studies in oxidative stress: α-adrenergic receptorsThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:220-32. [PMID: 20393587 DOI: 10.1139/y10-013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The α-adrenergic receptors (adrenoceptors) are activated by the endogenous agonists epinephrine and norepinephrine. They are G protein-coupled receptors that may be broadly classified into α1 (subclasses α1A, α1B, α1D) and α2 (subclasses α2A, α2B, α2C). The α1-adrenoceptors act by binding to Gαq subunits of the G proteins, causing activation of phospholipase C (PLC). PLC converts phosphatidylinositol 4,5-bisphosphate into inositol trisphosphate (IP3) and diacylglycerol (DAG), which have downstream effects on cytosolic Ca2+ concentration. The α2-adrenoceptors bind to Gαi thus inhibiting adenylyl cyclase and decreasing cAMP levels. DAG alters protein kinase C activity and cAMP activates protein kinase A. The downstream pathways of the two receptors may also interact. Activation of α1- and α2-adrenoceptors in vascular smooth muscle results in vasoconstriction. However, the densities of individual receptor subclasses vary between vessel beds or between vessels of various sizes within the same bed. In vasculature, the densities of adrenoceptor subclasses differ between conduit arteries and arterioles. These differences, along with differences in coupling mechanisms, allow for fine regulation of arterial blood flow. This diversity is enhanced by interactions resulting from homo- and heterodimer formation of the receptors, metabolic pathways, and kinases. Reactive oxygen species generated in pathologies may alter α1- and α2-adrenoceptor cascades, change vascular contractility, or cause remodeling of blood vessels. This review emphasizes the need for understanding the functional linkage between α-adrenoceptor subtypes, coupling, cross talk, and oxidative stress in cardiovascular pathologies.
Collapse
Affiliation(s)
- Natalia Ziolkowski
- Departments of Medicine and Biology, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Ashok K. Grover
- Departments of Medicine and Biology, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
17
|
Du XJ. DISTINCT ROLE OF ADRENOCEPTOR SUBTYPES IN CARDIAC ADAPTATION TO CHRONIC PRESSURE OVERLOAD. Clin Exp Pharmacol Physiol 2008; 35:355-60. [DOI: 10.1111/j.1440-1681.2007.04871.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Woodcock EA. Roles of alpha1A- and alpha1B-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 2007; 34:884-8. [PMID: 17645635 DOI: 10.1111/j.1440-1681.2007.04707.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. Several mouse strains have been prepared in which different subtypes of the alpha1-adrenoceptor (AR) are overexpressed or deleted. The phenotypes of the animals generated vary depending on whether the receptors are expressed specifically in heart or generally throughout the animal, but some overall conclusions can be drawn. 2. Heightened activity of alpha1B-AR by overexpressing the receptors leads to depressed contractile responses to beta-AR activation, which may be related to activation of the inhibitory G-protein Gi. In contrast, alpha1A-AR cause substantially heightened contractility when overexpressed in heart. 3. Overexpressed alpha1B-AR predispose hearts to hypertrophy and worsen heart failure caused by pressure overload, whereas increased alpha1A-AR expression does not influence hypertrophic responses and, furthermore, improves outcomes after pressure overload or myocardial infarction. 4. Alpha1A-adrenoceptors mediate a preconditioning action to improve functional recovery after acute ischaemic insult, whereas alpha1B-AR are ineffective. Both subtypes appear to protect from inositol 1,4,5-trisphosphate generation and arrhythmogenesis in early postischaemic reperfusion. 5. Although some of the protective effects of heightened alpha1A-AR drive may be related to the enhanced contractility, it is also possible that alpha1A-AR protect from cardiomyocyte apoptotic responses.
Collapse
Affiliation(s)
- Elizabeth A Woodcock
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Lanzafame AA, Turnbull L, Amiramahdi F, Arthur JF, Huynh H, Woodcock EA. Inositol phospholipids localized to caveolae in rat heart are regulated by alpha1-adrenergic receptors and by ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2005; 290:H2059-65. [PMID: 16373581 DOI: 10.1152/ajpheart.01210.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postischemic reperfusion of rat or mouse hearts causes generation of inositol (1,4,5)trisphosphate [Ins(1,4,5)P3] and the initiation of arrhythmias. In the current study we investigated the possibility that the enhanced Ins(1,4,5)P3 generation in postischemic reperfusion was associated with an increased availability of the precursor lipid phosphatidylinositol(4,5)bisphosphate (PIP2) for alpha1-adrenergic receptor-activated phospholipase C (PLC). Isolated-perfused rat hearts were labeled with [3H]inositol and subjected to ischemia-reperfusion or stimulation with norepinephrine under normoxic conditions. Caveolar fractions were prepared by buoyant density sucrose gradient centrifugation. [3H]PIP2 was concentrated in caveolae, along with Galphaq and PLCbeta1b. Caveolae contained only 27.3 +/- 6.9% (means +/- SE, n = 6) of the total alpha1-adrenergic receptor complement of the heart. These did not migrate to PIP2-containing caveolar fractions with norepinephrine stimulation under normoxic conditions, even though caveolar PIP2 was depleted. In contrast, [3H]PIP2 in caveolae increased during 2 min of reperfusion, independently of norepinephrine release and thus of alpha1-adrenergic receptor activation. The increased PIP2 in the caveolar fractions where signaling proteins are concentrated may be critical for the heightened generation of Ins(1,4,5)P3 in early reperfusion.
Collapse
Affiliation(s)
- Alfred A Lanzafame
- Cellular Biochemistry Laboratory, Baker Heart Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Tejero-Taldo MI, Gursoy E, Zhao TC, Kukreja RC. Alpha-adrenergic receptor stimulation produces late preconditioning through inducible nitric oxide synthase in mouse heart. J Mol Cell Cardiol 2002; 34:185-95. [PMID: 11851358 DOI: 10.1006/jmcc.2001.1500] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inducible nitric oxide synthase (iNOS) mediates late preconditioning (PC) induced by ischemia and pharmacological agents. Since alpha -adrenoceptor (alpha -AR) stimulation is one of the key triggers of PC, we hypothesized that activation of this receptor may induce delayed cardioprotective effect via iNOS-sensitive mechanisms. Adult male ICR mice were treated i.p. with either vehicle/inhibitors or phenylephrine (10 mg/kg) and subjected to 30 min of global ischemia and 30 min reperfusion in Langendorff mode 24 h later. 5-Methyl-urapidil (3 mg/kg) and chloroethylclonidine (3 mg/kg) were injected 15 min prior to phenylephrine to block alpha -AR(1A) and alpha -AR(1B) receptors respectively. S-Methylisothiourea (3 mg/kg), an iNOS inhibitor, was given 60 min prior to ischemia in phenylephrine-pretreated mice. Preischemic NO(x) was measured using a chemoluminescence reaction. Phenylephrine treatment reduced infarct size from 31.10 +/- 0.79% (vehicle) to 14.24 +/- 0.84% (P<0.001). Chloroethylclonidine blocked the effect of phenylephrine (infarct size 31.31 +/- 1.69%) but 5-methyl-urapidil (17.72 +/- 1.25%) did not. Phenylephrine-induced delayed cardioprotection was abolished by S-methylisothiourea and absent in iNOS knockout mice. Baseline NO(x) content was significantly increased in phenylephrine and 5-methyl-urapidil+phenylephrine treated hearts, but remained at baseline levels in hearts treated with chloroethylclonidine, 5-methyl-urapidil or S-methylisothiourea. Western blot analysis revealed a 1.8-fold increase in iNOS with phenylephrine, which was inhibited by chloroethylclonidine but not by 5-methyl-urapidil. We conclude that phenylephrine-induced delayed PC is mediated by selective activation of alpha-AR(1B). Enhanced iNOS expression concomitant with increased NO synthesis, as well as pharmacological blockade and absence of cardioprotection in iNOS knockout mice suggests an essential role of NO in phenylephrine triggered late PC.
Collapse
Affiliation(s)
- M Isabel Tejero-Taldo
- Division of Cardiology, Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|