1
|
Faber JE. Genetic determinants of insufficiency of the collateral circulation. J Cereb Blood Flow Metab 2025:271678X251317880. [PMID: 39901795 DOI: 10.1177/0271678x251317880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
It has been estimated that approximately two million neurons, sixteen billion synapses and twelve kilometers of axons are lost each minute following anterior large-vessel stroke. The level of collateral blood flow has become recognized as a primary determinant of the pace of this loss and an important factor in clinical decision-making. Many of the topics in this review cover recent developments that have not been reviewed elsewhere. These include that: the number and diameter of collaterals and collateral blood flow vary greatly in the brain and other tissues of healthy individuals; a large percentage of individuals are deficient in collaterals; the underlying mechanism arises primarily from naturally occurring polymorphisms in genes/genetic loci within the pathway that drives collateral formation during development; evidence indicates collateral abundance does not exhibit sexual dimorphism; and that collaterals-besides their function as endogenous bypass vessels-may have a physiological role in optimizing oxygen delivery. Animal and human studies in brain and other tissues, where available, are reviewed. Details of many of the studies are provided so that the strength of the findings and conclusions can be assessed without consulting the original literature. Key questions that remain unanswered and strategies to address them are also discussed.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, Curriculum in Neuroscience, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Vakili S, Cao K. Angiopoietin-2: A Therapeutic Target for Vascular Protection in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2024; 25:13537. [PMID: 39769300 PMCID: PMC11676795 DOI: 10.3390/ijms252413537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of subcutaneous fat, abnormal skin, alopecia, osteoporosis, and progressive joint contractures. Death primarily occurs as the result of complications from progressive atherosclerosis, especially from cardiac disease, such as myocardial infarction or heart failure, or cerebrovascular disease like stroke. Despite the availability of lonafarnib, the only US Food and Drug Administration-approved treatment for HGPS, cardiovascular complications remain the leading cause of morbidity and mortality in affected patients. Defective angiogenesis-the process of forming new blood vessels from existing ones-plays a crucial role in the development of cardiovascular disease. A recent study suggests that Angiopoietin-2 (Ang2), a pro-angiogenic growth factor that regulates angiogenesis and vascular stability, may offer therapeutic potential for the treatment of HGPS. In this review, we describe the clinical features and key cellular processes impacted by progerin and discuss the therapeutic potential of Ang2 in addressing these challenges.
Collapse
Affiliation(s)
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
3
|
Hattori Y, Yamada H, Mori H, Oba S, Yokota K, Omi M, Yamamoto Y, Toyama K, Ohnaka M, Takahashi K, Imai H. The effect of fibroblast growth factor 2 on neovascular vessels depends on the stage of angiogenesis. Heliyon 2024; 10:e39843. [PMID: 39553576 PMCID: PMC11566843 DOI: 10.1016/j.heliyon.2024.e39843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Objective The exact relationship between fibroblast growth factor 2 (FGF2) and choroidal neovascularization (CNV) remains unclear. In this study, using optical coherence tomography angiography (OCTA) and FGF2-tg mice which are transgenic mice with a rhodopsin promoter/FGF2 gene fusion, we aimed to investigate the dynamics of FGF2's role in angiogenesis over time. Methods We developed laser-induced CNV models of FGF2-tg and wild-type (WT) mice and then separated them into two groups using different laser photocoagulation (PC) conditions. The first group received 3 intense PC shots (1st PC) altogether (one-time PC group), while the other group received 3 intense PC shots (1st PC) followed by 6 additional weak PC shots (2 nd PC) on the 7th day after 1st PC (two-times PC group). Results Using OCTA to observe vessel changes within the same individual over time, there was no difference in the timing of vessel transition from the CNV development phase to the CNV regression phase between FGF2-tg and WT mice in the one-time PC group. In contrast, the neovascular vessels in the two-times PC group of FGF2-tg mice were maintained at least 28 days post-2nd PC without regression. In addition, mature vessels surrounded by PDGFRβ positive pericytes and α-SMA positive smooth muscle cells were observed. Real-time qPCR showed a substantial increase in apelin mRNA expression in the one-time PC group of FGF2-tg, rather than VEGF-A (p < 0.05, n = 5 or 6). Moreover, the expression levels of PDGFRβ, apelin, and Ang1 were significantly higher in FGF2-tg mice of two-times PC group than in WT mice (p < 0.05, n = 5 or 6). Conclusions FGF2 not only promotes neovascularization via the apelin/APJ system, which is independent of VEGF signaling pathway, but also helps maintain and stabilize pre-existing neovascular vessels by stimulating PDGFRβ and Ang1. The effect of FGF2 on the neovascular vessels depends on the stage of angiogenesis.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | | | - Hidetsugu Mori
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Shinpei Oba
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Kaito Yokota
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Masatoshi Omi
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Yuichi Yamamoto
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Keiko Toyama
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Masayuki Ohnaka
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Kanji Takahashi
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| | - Hisanori Imai
- Department of Ophthalmology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
4
|
Falero-Diaz G, Barboza CDA, Kaiser K, Tallman KA, Montoya C, Patel SB, Hutcheson JD, Lassance-Soares RM. The Systemic Effect of Ischemia Training and Its Impact on Bone Marrow-Derived Monocytes. Cells 2024; 13:1602. [PMID: 39404366 PMCID: PMC11475150 DOI: 10.3390/cells13191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Monocytes are innate immune cells that play a central role in inflammation, an essential component during neovascularization. Our recent publication demonstrated that ischemia training by 24 h unilateral occlusion of the femoral artery (FA) can modify bone marrow-derived monocytes (BM-Mono), allowing them to improve collateral remodeling in a mouse model of hindlimb ischemia. Here, we expand on our previous findings, investigating a potential systemic effect of ischemia training and how this training can impact BM-Mono. METHODS AND RESULTS BM-Mono from mice exposed to ischemia training (24 h) or Sham (same surgical procedure without femoral artery occlusion-ischemia training) procedures were used as donors in adoptive transfer experiments where recipients were subjected to hindlimb ischemia. Donor cells were divided corresponding to the limb from which they were isolated (left-limb previously subjected to 24 h ischemia and right-contralateral limb). Recipients who received 24 h ischemic-trained monocytes isolated from either limb had remarkable blood flow recovery compared to recipients with Sham monocytes (monocytes isolated from Sham group-no ischemia training). Since these data suggested a systemic effect of ischemic training, circulating extracellular vesicles (EVs) were investigated as potential players. EVs were isolated from both groups, 24 h-trained and Sham, and the former showed increased expression of histone deacetylase 1 (HDAC1), which is known to downregulate 24-dehydrocholesterol reductase (Dhcr24) gene expression. Since we previously revealed that ischemia training downregulates Dhcr24 in BM-Mono, we incubated EVs from 24 h-trained and Sham groups with wild-type (WT) BM-Mono and demonstrated that WT BM-Mono incubated with 24 h-trained EVs had lower gene expression of Dhcr24 and an HDAC1 inhibitor blunted this effect. Next, we repeated the adoptive transfer experiment using Dhcr24 KO mice as donors of BM-Mono for WT mice subjected to hindlimb ischemia. Recipients who received Dhcr24 KO BM-Mono had greater limb perfusion than those who received WT BM-Mono. Further, we focused on the 24 h-trained monocytes (which previously showed downregulation of Dhcr24 gene expression and higher desmosterol) to test the expression of a few genes downstream of the desmosterol pathway, confirm the Dhcr24 protein level and assess its differentiation in M2-like macrophage phenotype. We found that 24 h-trained BM-Mono had greater expression of key genes in the desmosterol pathway, such as liver X receptors (LXRs) and ATP-binding cassette transporter (ABCA1), and we confirmed low protein expression of Dhcr24. Further, we demonstrated that ischemic-trained BM-Mono polarized towards an anti-inflammatory M2 macrophage phenotype. Finally, we demonstrated that 24 h-trained monocytes adhere less to endothelial cells, and the same pattern was shown by WT BM-Mono treated with Dhcr24 inhibitor. CONCLUSIONS Ischemia training leads to a systemic effect that, at least in part, involves circulating EVs and potential epigenetic modification in BM-Mono. These ischemic-trained BM-Mono demonstrated an anti-inflammatory phenotype towards M2 macrophage differentiation and less ability to adhere to endothelial cells, which is associated with the downregulation of Dhcr24 in those cells. These data together suggest that Dhcr24 might be an important target within monocytes to improve the outcomes of hindlimb ischemia.
Collapse
Affiliation(s)
- Gustavo Falero-Diaz
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Catarina de A. Barboza
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
| | - Christopher Montoya
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Shailendra B. Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| |
Collapse
|
5
|
Li K, Dai M, Sacirovic M, Pagonas N, Ritter O, Kah J, Lauxmann MA, Bramlage P, Bondke Persson A, Buschmann I, Hillmeister P. Association of endothelial function and lower extremity perfusion in peripheral artery disease. VASA 2024; 53:333-340. [PMID: 38979892 DOI: 10.1024/0301-1526/a001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background: The current study aims to investigate the association between endothelial function and lower extremity perfusion in patients with peripheral artery disease (PAD). Patients and methods: In total 229 patients with PAD (Rutherford stage 0-3) were enrolled in the current study. Endothelial function was assessed by measuring flow-mediated dilation (FMD) and endothelial cell proliferation capacity (ECPC). Lower extremity perfusion was assessed by measuring oscillometry-based ankle brachial index (oABI) and pulse wave index (PWI). In addition, carotid intima-media-thickness (cIMT) was also measured as a surrogate marker for atherosclerosis. Correlations between FMD, ECPC, oABI, PWI, and cIMT were analysed using Pearson correlation coefficient. The relationship between the above variables and the severity of PAD was investigated using ordinal logistic regression analysis. Results: Correlation analysis showed that FMD negatively associated with PWI (r = -0.183, p = 0.005), ECPC positively associated with oABI (r = 0.162, p = 0.014), and oABI negatively associated with PWI (r = -0.264, p < 0.001). Ordinal logistic regression analysis showed that ECPC (β = -0.009, p = 0.048), oABI (β = -5.290, p < 0.001), and age (β = -0.058, p = 0.002) negatively associated with the PAD Rutherford stages. In addition, PWI (β = 0.006, p < 0.001), cIMT (β = 18.363, p = 0.043) positively associated with the PAD Rutherford stages. Conclusions: Endothelial function significantly associates with lower extremity perfusion in patients with PAD, and both are related to the severity of PAD.
Collapse
Affiliation(s)
- Kangbo Li
- Department of Angiology, Center for Internal Medicine I, Deutsches Angiologie-Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mengjun Dai
- Department of Angiology, Center for Internal Medicine I, Deutsches Angiologie-Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mesud Sacirovic
- Department of Angiology, Center for Internal Medicine I, Deutsches Angiologie-Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Nikolaos Pagonas
- Department of Cardiology, Center for Internal Medicine I, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| | - Oliver Ritter
- Department of Cardiology, Center for Internal Medicine I, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| | - Janine Kah
- Department of Gastroenterology, Center for Internal Medicine II, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Martin A Lauxmann
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Anja Bondke Persson
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Buschmann
- Department of Angiology, Center for Internal Medicine I, Deutsches Angiologie-Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| | - Philipp Hillmeister
- Department of Angiology, Center for Internal Medicine I, Deutsches Angiologie-Zentrum Brandenburg - Berlin, University Clinic Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Faculty of Health Sciences Brandenburg, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane, University of Potsdam, Brandenburg an der Havel, Germany
| |
Collapse
|
6
|
Zhu A, Baur C, Götz P, Elbs K, Lasch M, Faro A, Preissner KT, Deindl E. The Complement System Is Essential for Arteriogenesis by Enhancing Sterile Inflammation as a Relevant Step in Collateral Artery Growth. Cells 2024; 13:1405. [PMID: 39272977 PMCID: PMC11394660 DOI: 10.3390/cells13171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Arteriogenesis is an inflammatory driven mechanism, describing the growth of a natural bypass from pre-existing collateral arteries to compensate for an occluded artery. The complement system component C3 is a potent natural inflammatory activator. Here, we investigated its impact on the process of collateral artery growth using C3-deficient (C3 -/-) and wildtype control mice in a murine hindlimb model of arteriogenesis. Induction of arteriogenesis by unilateral femoral artery ligation resulted in decreased perfusion recovery in C3 -/- mice on day 7 as shown by Laser Doppler imaging. Immunofluorescence staining revealed a reduced vascular cell proliferation in C3 -/- mice. Gene expression analysis displayed a significant reduction in monocyte chemoattractant protein-1 (MCP-1) expression in C3 -/- mice. Interestingly, 3 days after induction of arteriogenesis, the number of macrophages (CD68+) recruited to growing collaterals was not affected by C3 deficiency. However, a significant reduction in inflammatory M1-like polarized macrophages (CD68+/MRC1-) was noted. Forced mast cell activation by Compound 48/80 as well as exogenous MCP-1 application rescued the number of M1-like polarized macrophages along with perfusion recovery in C3 -/- mice. In summary, this study demonstrates that complement C3 influences arteriogenesis by mediating MCP-1 expression, which is essential for the induction and enhancement of sterile inflammation.
Collapse
Affiliation(s)
- Amanda Zhu
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Carolin Baur
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Philipp Götz
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Katharina Elbs
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Manuel Lasch
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anna Faro
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Klaus T. Preissner
- Department of Cardiology, Kerckhoff-Heart Research Institute, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Elisabeth Deindl
- Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (A.Z.); (C.B.); (P.G.); (K.E.); (M.L.); (A.F.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Gurgoglione FL, Pitocco D, Montone RA, Rinaldi R, Bonadonna RC, Magnani G, Calvieri C, Solinas E, Rizzi A, Tartaglione L, Flex A, Viti L, Trani C, Ardissino D, Crea F, Niccoli G. Microvascular Complications Are Associated With Coronary Collateralization in Type 2 Diabetes and Chronic Occlusion. J Clin Endocrinol Metab 2023; 109:237-244. [PMID: 37417706 DOI: 10.1210/clinem/dgad396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
CONTEXT Coronary collateral (CC) vessel development appears to be protective with regard to adverse cardiovascular events and survival in patients with coronary chronic total occlusion (CTO). The influence of type 2 diabetes mellitus (T2DM) on CC growth has been controversial. In particular, the role of diabetic microvascular complications (DMC) in determining coronary collateralization has not been elucidated. OBJECTIVE To investigate whether patients with DMC presented differences in CC vessel presence and grading as compared with patients without DMC. METHODS We conducted a single-center observational study, including consecutive T2DM patients, without previous cardiovascular history, undergoing a clinically indicated coronary angiography for chronic coronary syndrome (CCS) and angiographic evidence of at least one CTO. Patients were subdivided into 2 study groups according to the presence/absence of at least one DMC (neuropathy, nephropathy, or retinopathy). The presence and grading of angiographically visible CC development from the patent vessels to the occluded artery were assessed using the Rentrop classification. RESULTS We enrolled 157 patients (mean age 68.6 ± 9.8 years; 120 [76.4%] men). Patients with DMC (75 [47.8%]) had a higher prevalence of CC (69 [92.0%] vs 62 [75.6%], P = .006) and high-grade CC (55 [73.3%] vs 39 [47.6%], P = .001) compared with those without, and we found a positive association between the number of DMC in each patient and the prevalence of high-grade CC. CONCLUSION Among T2DM patients with coronary CTO, the presence of DMC was associated with a high CC development.
Collapse
Affiliation(s)
- Filippo Luca Gurgoglione
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Dario Pitocco
- Diabetology Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Riccardo Rinaldi
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Riccardo C Bonadonna
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Division of Endocrinology and Metabolic Diseases, University of Parma, 43126 Parma, Italy
| | - Giulia Magnani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Calvieri
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, La Sapienza University, 00185 Rome, Italy
| | - Emilia Solinas
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Alessandro Rizzi
- Diabetology Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Linda Tartaglione
- Diabetology Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Flex
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luca Viti
- Diabetology Care Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Carlo Trani
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Diego Ardissino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giampaolo Niccoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
8
|
Nording H, Baron L, Sauter M, Lübken A, Rawish E, Szepanowski R, von Esebeck J, Sun Y, Emami H, Meusel M, Saraei R, Schanze N, Gorantla SP, von Bubnoff N, Geisler T, von Hundelshausen P, Stellos K, Marquardt J, Sadik CD, Köhl J, Duerschmied D, Kleinschnitz C, Langer HF. Platelets regulate ischemia-induced revascularization and angiogenesis by secretion of growth factor-modulating factors. Blood Adv 2023; 7:6411-6427. [PMID: 37257194 PMCID: PMC10598500 DOI: 10.1182/bloodadvances.2021006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/02/2023] Open
Abstract
In ischemic tissue, platelets can modulate angiogenesis. The specific factors influencing this function, however, are poorly understood. Here, we characterized the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) expressed on platelets as a potent regulator of ischemia-driven revascularization. We assessed the relevance of the anaphylatoxin receptor C5aR1 on platelets in patients with coronary artery disease as well as those with peripheral artery disease and used genetic mouse models to characterize its significance for ischemia and growth factor-driven revascularization. The presence of C5aR1-expressing platelets was increased in the hindlimb ischemia model. Ischemia-driven angiogenesis was significantly improved in C5aR1-/- mice but not in C5-/- mice, suggesting a specific role of C5aR1. Experiments using the supernatant of C5a-stimulated platelets suggested a paracrine mechanism of angiogenesis inhibition by platelets by means of antiangiogenic CXC chemokine ligand 4 (CXCL4, PF4). Lineage-specific C5aR1 deletion verified that the secretion of CXCL4 depends on C5aR1 ligation on platelets. Using C5aR1-/-CXCL4-/- mice, we observed no additional effect in the revascularization response, underscoring a strong dependence of CXCL4 secretion on the C5a-C5aR1-axis. We identified a novel mechanism for inhibition of neovascularization via platelet C5aR1, which was mediated by the release of antiangiogenic CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Rebecca Szepanowski
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Saraei
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Tobias Geisler
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Marquardt
- First Department of Medicine, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Schleswig-Holstein, Lübeck, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Chinchalongporn W, Chruewkamlow N, Sermsathanasawadi N, Vorateera K, Jintaworn S, Wongwanit C, Ruangsetakit C. The quality and quantity media-cultured mononuclear cell transplantation is safe and effective in ischemic hindlimb mouse model. JVS Vasc Sci 2023; 4:100129. [PMID: 37953747 PMCID: PMC10632110 DOI: 10.1016/j.jvssci.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023] Open
Abstract
Objective This study was conducted to investigate in vitro proangiogenic and anti-inflammatory phenotypes and functions and the in vivo efficacy and safety of quality and quantity (QQ) media-cultured mononuclear cells (MNCs) compared with standard cultured MNCs from the peripheral blood of patients with chronic limb-threatening ischemia (CLTI) with atherosclerotic risk factors. Methods Peripheral blood MNCs (PBMNCs) from patients with CLTI were cultured in QQ culture media or standard culture media. Phenotypic analysis of progenitor cells (CD34+CD133+), M2 macrophages (CD206+), and inactivated T regulatory cells (CD4+CD25+CD127+), colony-forming assay, and tube formation assay of QQ media-cultured MNCs (QQMNCs) and PBMNCs, were conducted. Intramuscular transplantation of QQMNCs or PBMNCs was performed in the ischemic hindlimb model. The clinical appearance of ischemic limbs was observed, and blood flow in ischemic limbs was measured using a laser Doppler perfusion imager. Outcomes were compared between the QQMNC and PBMNC groups. Results Twenty patients with CLTI were included. The mean percentages of CD34+ cells, CD133+ cells, CD34+CD133+ progenitor cells, CD206+ cells, colony-forming cells, and tube formation were significantly higher in the QQMNCs. The mean percentage of CD4+CD25+CD127+ cells was significantly lower in QQMNC. The colony-forming unit count and Dil-acetylated low-density lipoprotein uptake were significantly greater in QQMNCs. The clinical appearance of post-QQMNC-injected limbs was less severe than the appearance of post-PBMNC-injected limbs. Limb perfusion was significantly better in the QQMNCs. Conclusions Proangiogenic and anti-inflammatory phenotypes of MNCs cultured in QQ culture media were reproducible. Intramuscular QQMNC transplantation was safe and resulted in better reperfusion of ischemic hindlimbs compared with PBMNCs.
Collapse
Affiliation(s)
- Wanchai Chinchalongporn
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttapol Chruewkamlow
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttawut Sermsathanasawadi
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kosit Vorateera
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suthatip Jintaworn
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chumpol Wongwanit
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanean Ruangsetakit
- Division of Vascular Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Wirth G, Juusola G, Tarvainen S, Laakkonen JP, Korpisalo P, Ylä-Herttuala S. Capillary Dynamics Regulate Post-Ischemic Muscle Damage and Regeneration in Experimental Hindlimb Ischemia. Cells 2023; 12:2060. [PMID: 37626870 PMCID: PMC10453415 DOI: 10.3390/cells12162060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to show the significance of capillary function in post-ischemic recovery from the perspective of physiological parameters, such as blood flow, hemoglobin oxygenation and tissue regeneration. Muscle-level microvascular alterations of blood flow and hemoglobin oxygenation, and post-ischemic myofiber and capillary responses were analyzed in aged, healthy C57Bl/6J mice (n = 48) and aged, hyperlipidemic LDLR-/-ApoB100/100 mice (n = 69) after the induction of acute hindlimb ischemia using contrast ultrasound, photoacoustic imaging and histological analyses, respectively. The capillary responses that led to successful post-ischemic muscle repair in C57Bl/6J mice included an early capillary dilation phase, preceding the return of arterial driving pressure, followed by an increase in capillary density that further supported satellite cell-induced muscle regeneration. Initial capillary enlargement was absent in the LDLR-/-ApoB100/100 mice with lifelong moderate hypercholesterolemia and led to an inability to recover arterial driving pressure, with a resulting increase in distal necrosis, chronic tissue damage and a delay in the overall recovery after ischemia. To conclude, this manuscript highlights, beyond arterial collateralization, the importance of the proper function of the capillary endothelium in post-ischemic recovery and displays how post-ischemic capillary dynamics associate beyond tissue blood flow to both hemoglobin oxygenation and tissue regeneration.
Collapse
Affiliation(s)
- Galina Wirth
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Greta Juusola
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Santeri Tarvainen
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Petra Korpisalo
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
11
|
Arolkar G, Kumar SK, Wang H, Gonzalez KM, Kumar S, Bishnoi B, Rios Coronado PE, Woo YJ, Red-Horse K, Das S. Dedifferentiation and Proliferation of Artery Endothelial Cells Drive Coronary Collateral Development in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1455-1477. [PMID: 37345524 PMCID: PMC10364966 DOI: 10.1161/atvbaha.123.319319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Collateral arteries act as natural bypasses which reroute blood flow to ischemic regions and facilitate tissue regeneration. In an injured heart, neonatal artery endothelial cells orchestrate a systematic series of cellular events, which includes their outward migration, proliferation, and coalescence into fully functional collateral arteries. This process, called artery reassembly, aids complete cardiac regeneration in neonatal hearts but is absent in adults. The reason for this age-dependent disparity in artery cell response is completely unknown. In this study, we investigated if regenerative potential of coronary arteries is dictated by their ability to dedifferentiate. METHODS Single-cell RNA sequencing of coronary endothelial cells was performed to identify differences in molecular profiles of neonatal and adult endothelial cells in mice. Findings from this in silico analyses were confirmed with in vivo experiments using genetic lineage tracing, whole organ immunostaining, confocal imaging, and cardiac functional assays in mice. RESULTS Upon coronary occlusion, neonates showed a significant increase in actively cycling artery cells and expressed prominent dedifferentiation markers. Data from in silico pathway analyses and in vivo experiments suggested that upon myocardial infarction, cell cycle reentry of preexisting neonatal artery cells, the subsequent collateral artery formation, and recovery of cardiac function are dependent on arterial VegfR2 (vascular endothelial growth factor receptor-2). This subpopulation of dedifferentiated and proliferating artery cells was absent in nonregenerative postnatal day 7 or adult hearts. CONCLUSIONS These data indicate that adult artery endothelial cells fail to drive collateral artery development due to their limited ability to dedifferentiate and proliferate.
Collapse
Affiliation(s)
- Gauri Arolkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Sneha K. Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Hanjay Wang
- Department of Cardiothoracic Surgery (H.W., Y.J.W.), Stanford University School of Medicine, CA
| | - Karen M. Gonzalez
- Institute for Stem Cell Biology and Regenerative Medicine (K.M.G., K.R.-H.), Stanford University School of Medicine, CA
- Department of Biology (K.M.G., K.R.-H.), Stanford University, CA
| | - Suraj Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | | | - Y. Joseph Woo
- Department of Cardiothoracic Surgery (H.W., Y.J.W.), Stanford University School of Medicine, CA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology and Regenerative Medicine (K.M.G., K.R.-H.), Stanford University School of Medicine, CA
- Department of Biology (K.M.G., K.R.-H.), Stanford University, CA
- Howard Hughes Medical Institute, Chevy Chase, MD (K.R.-H.)
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| |
Collapse
|
12
|
Song YY, Liang D, Liu DK, Lin L, Zhang L, Yang WQ. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases. Front Cell Dev Biol 2023; 11:1164166. [PMID: 37427386 PMCID: PMC10325625 DOI: 10.3389/fcell.2023.1164166] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The main treatment strategy for ischemic diseases caused by conditions such as poor blood vessel formation or abnormal blood vessels involves repairing vascular damage and encouraging angiogenesis. One of the mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase (ERK) pathway, is followed by a tertiary enzymatic cascade of MAPKs that promotes angiogenesis, cell growth, and proliferation through a phosphorylation response. The mechanism by which ERK alleviates the ischemic state is not fully understood. Significant evidence suggests that the ERK signaling pathway plays a critical role in the occurrence and development of ischemic diseases. This review briefly describes the mechanisms underlying ERK-mediated angiogenesis in the treatment of ischemic diseases. Studies have shown that many drugs treat ischemic diseases by regulating the ERK signaling pathway to promote angiogenesis. The prospect of regulating the ERK signaling pathway in ischemic disorders is promising, and the development of drugs that specifically act on the ERK pathway may be a key target for promoting angiogenesis in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yue-Yue Song
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Liang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Kun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qing Yang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Province Cardiovascular Disease Chinese Medicine Precision Diagnosis Engineering Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Ma S, Yang Y, Mu Y, Peng H, Wei P, Jing W, Peng C, Liu X, Zhao B, Cai M, Liu Z, Yu X, Deng J. Modification of the small intestinal submucosa membrane with oligopeptides screened from intrinsically disordered regions to promote angiogenesis and accelerate wound healing. BIOMATERIALS ADVANCES 2023; 148:213360. [PMID: 36905827 DOI: 10.1016/j.bioadv.2023.213360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
A slow vascularization rate is considered one of the major disadvantages of biomaterials used for accelerating wound healing. Several efforts, including cellular and acellular technologies, have been made to facilitate biomaterial-induced angiogenesis. However, no well-established techniques for promoting angiogenesis have been reported. In this study, a small intestinal submucosa (SIS) membrane modified by an angiogenesis-promoting oligopeptide (QSHGPS) screened from intrinsically disordered regions (IDRs) of MHC class II was used to promote angiogenesis and accelerate wound healing. Because the main component of SIS membranes is collagen, the collagen-binding peptide sequence TKKTLRT and the pro-angiogenic oligopeptide sequence QSHGPS were used to construct chimeric peptides to obtain specific oligopeptide-loaded SIS membranes. The resulting chimeric peptide-modified SIS membranes (SIS-L-CP) significantly promoted the expression of angiogenesis-related factors in umbilical vein endothelial cells. Furthermore, SIS-L-CP exhibited excellent angiogenic and wound-healing abilities in a mouse hindlimb ischaemia model and a rat dorsal skin defect model. The high biocompatibility and angiogenic capacity of the SIS-L-CP membrane make it promising in angiogenesis- and wound healing-related regenerative medicine.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yilin Yang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Huizhen Peng
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 102600, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 102600, China; Foshan (Southern China) Institute for New Materials, Foshan 528220, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 102600, China
| | - Mingxiang Cai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing 102600, China.
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
14
|
Abbas H, Olivere LA, Padgett ME, Schmidt CA, Gilmore BF, McCord TJ, Southerland KW, McClung JM, Kontos CD. Muscle progenitor cells are required for skeletal muscle regeneration and prevention of adipogenesis after limb ischemia. Front Cardiovasc Med 2023; 10:1118738. [PMID: 36937923 PMCID: PMC10017542 DOI: 10.3389/fcvm.2023.1118738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal muscle injury in peripheral artery disease (PAD) has been attributed to vascular insufficiency, however evidence has demonstrated that muscle cell responses play a role in determining outcomes in limb ischemia. Here, we demonstrate that genetic ablation of Pax7+ muscle progenitor cells (MPCs) in a model of hindlimb ischemia (HLI) inhibited muscle regeneration following ischemic injury, despite a lack of morphological or physiological changes in resting muscle. Compared to control mice (Pax7WT), the ischemic limb of Pax7-deficient mice (Pax7Δ) was unable to generate significant force 7 or 28 days after HLI. A significant increase in adipose was observed in the ischemic limb 28 days after HLI in Pax7Δ mice, which replaced functional muscle. Adipogenesis in Pax7Δ mice corresponded with a significant increase in PDGFRα+ fibro/adipogenic progenitors (FAPs). Inhibition of FAPs with batimastat decreased muscle adipose but increased fibrosis. In vitro, Pax7Δ MPCs failed to form myotubes but displayed increased adipogenesis. Skeletal muscle from patients with critical limb threatening ischemia displayed increased adipose in more ischemic regions of muscle, which corresponded with fewer satellite cells. Collectively, these data demonstrate that Pax7+ MPCs are required for muscle regeneration after ischemia and suggest that muscle regeneration may be an important therapeutic target in PAD.
Collapse
Affiliation(s)
- Hasan Abbas
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
- Duke-NUS Medical School, Singapore, Singapore
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | | | - Michael E. Padgett
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Cameron A. Schmidt
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Brian F. Gilmore
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Timothy J. McCord
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin W. Southerland
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Joseph M. McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
- Brody School of Medicine, East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Christopher D. Kontos
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
- Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
15
|
Maeda S, Kawamura T, Chida D, Shimamura K, Toda K, Harada A, Sawa Y, Miyagawa S. Notch Signaling-Modified Mesenchymal Stem Cell Patch Improves Left Ventricular Function via Arteriogenesis Induction in a Rat Myocardial Infarction Model. Cell Transplant 2023; 32:9636897231154580. [PMID: 36946544 PMCID: PMC10037722 DOI: 10.1177/09636897231154580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
For ischemic cardiomyopathy (ICM) with limited therapeutic options, the induction of arteriogenesis has the potential to improve cardiac function through major restoration of blood flow. We hypothesized that transplantation of a Notch signaling-modified mesenchymal stem cell (SB623 cell) patch would induce angiogenesis and arteriogenesis in ischemic lesions, leading to improvement of left ventricular (LV) function in a rat ICM model. Two weeks after the induction of ischemia, SB623 cell patch transplantation into ICM rats (SB group, n = 10) or a sham operation (no-treatment group, n = 10) was performed. The LV ejection fraction was significantly improved at 6 weeks after SB623 cell patch transplantation (P < 0.001). Histological findings revealed that the number of von Willebrand factor (vWF)-positive capillary vessels (P < 0.01) and alpha smooth muscle actin (αSMA)- and vWF-positive arterioles with a diameter greater than 20 µm (P = 0.002) was significantly increased in the SB group, suggesting the induction of angiogenesis and arteriogenesis. Moreover, rat cardiomyocytes treated with SB623 cell patch transplantation showed upregulation of ephrin-B2 (P = 0.03) and EphB4 (P = 0.01) gene expression, indicating arteriogenesis induction. In conclusion, SB623 cell patch transplantation improved LV function by inducing angiogenesis and arteriogenesis in a rat ICM model.
Collapse
Affiliation(s)
- Shusaku Maeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Kazuo Shimamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
16
|
Fasudil, a ROCK inhibitor, preserves limb integrity in a mouse model of unilateral critical limb ischemia: Possible interplay of inflammatory and angiogenic signaling pathways. Life Sci 2022; 309:121019. [DOI: 10.1016/j.lfs.2022.121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022]
|
17
|
Zhuang J, Zhang X, Liu Q, Zhu M, Huang X. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Am J Cancer Res 2022; 12:6223-6241. [PMID: 36168632 PMCID: PMC9475455 DOI: 10.7150/thno.73421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic diseases, the leading cause of disability and death, are caused by the restriction or blockage of blood flow in specific tissues, including ischemic cardiac, ischemic cerebrovascular and ischemic peripheral vascular diseases. The regeneration of functional vasculature network in ischemic tissues is essential for treatment of ischemic diseases. Direct delivery of pro-angiogenesis factors, such as VEGF, has demonstrated the effectiveness in ischemic disease therapy but suffering from several obstacles, such as low delivery efficacy in disease sites and uncontrolled modulation. In this review, we summarize the molecular mechanisms of inducing vascular regeneration, providing the guidance for designing the desired nanomedicines. We also introduce the delivery of various nanomedicines to ischemic tissues by passive or active targeting manner. To achieve the efficient delivery of nanomedicines in various ischemic diseases, we highlight targeted delivery of nanomedicines and controllable modulation of disease microenvironment using nanomedicines.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.,Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Grogan GM, Benedict KC, Hoppe IC. Use of Rectus Femoris Muscle Flap in Patients With Absent Profunda Femoris Vascular Flow. EPLASTY 2022; 22:e42. [PMID: 36212605 PMCID: PMC9516764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND The rectus femoris (RF) muscle flap is an excellent choice for soft tissue coverage of complex wounds of the groin because of its reliable vascular anatomy and sufficient bulk allowing coverage of vascular anastomoses. The muscle receives its blood supply from the descending branch of the lateral femoral circumflex artery (dLFCA), which originates from the profunda femoris artery (PFA) in the proximal thigh. This case series reports 3 patients on whom pedicled RF muscle flaps were performed successfully despite known occlusion of the PFA preoperatively. METHODS All 3 patients had a history of peripheral vascular disease (PVD) and underwent femoral-popliteal bypass. This was complicated by pseudoaneurysm in 2 patients and exposure of the polytetrafluorethylene graft in the third patient. Computed tomography angiography (CTA) or traditional angiography was obtained for each patient, showing occlusion of the PFA. After adequate debridement and confirming flow through the pedicle, vascular graft coverage at the groin was performed using a pedicled RF muscle flap, followed by split thickness skin grafting (n = 2) or primary skin closure (n = 1). RESULTS The 3 patients included in this report had successful coverage of exposed vascular bypass grafts in the groin utilizing pedicled RF muscle flaps despite known occlusion of the PFA preoperatively. Follow-up at 3 months postoperatively showed healthy flaps with well-healed overlying skin graft or closure for all patients. CONCLUSIONS The pedicled RF muscle flap may be successfully used for coverage of complex groin wounds in patients with occlusion of the PFA. This flap is useful in complex groin wounds related to vascular interventions, particularly when other local options have been exhausted. This case report presents 3 successful cases of groin wound coverage using pedicled RF muscle flap despite known preoperative occlusion of the PFA.
Collapse
Affiliation(s)
- Graham M Grogan
- University of Mississippi Medical Center Division of Plastic and Reconstructive Surgery, Jackson, MS
| | - Katherine C Benedict
- University of Mississippi Medical Center Division of Plastic and Reconstructive Surgery, Jackson, MS
| | - Ian C Hoppe
- University of Mississippi Medical Center Division of Plastic and Reconstructive Surgery, Jackson, MS
| |
Collapse
|
19
|
Zhu D, Jia C, Cai T, Li J, Feng X, Chen N, Zhao C, Wang Y, Cao Y, Cao Y. Ruan Jian Qing Mai Recipe Inhibits the Inflammatory Response in Acute Lower Limb Ischemic Mice through the JAK2/STAT3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2481022. [PMID: 36034959 PMCID: PMC9410777 DOI: 10.1155/2022/2481022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Ruan jian qing mai recipe (RJQM) is an empirical prescription for treating arteriosclerosis obliterans (ASO). However, the mechanism of RJQM recipe-mediated ASO attenuation has not yet been elucidated. Therefore, this study aimed to explore the mechanism by which the RJQM recipe relieves ASO in a mouse model of lower limb ischemia, which was established by ligating and breaking the femoral artery of the left lower limb. The surgical groups were divided into the ischemic group, beraprost sodium group, low-dose RJQM group, medium-dose RJQM group, and high-dose RJQM group. Normal mice were set as the control group. The blood flow of the lower limb was examined on days 7 and 14. At the end of animal procedures, blood samples were collected, and the rectus femoris of the left lower limb were harvested. Results revealed that mice in the ischemic group demonstrated low blood flow. Additionally, hematoxylin and eosin, and Masson staining results showed that inflammation of the rectus femoris was obvious in the ischemia group, and the level of fibrosis was increased. Blood flow was recovered in all treatment groups compared to the ischemic group, and the inflammatory infiltration and fibrosis of the rectus femoris were relieved after RJQM treatment. The serum levels of interleukin (IL)-17A and IL-21 were decreased, and the expression of JAK2/STAT3 proteins was inhibited in all RJQM treatment groups compared to the ischemia group. Furthermore, the improvement of IL-17A, IL-21, and rectus femoris fibrosis was more obvious with increasing treatment time. In conclusion, RJQM can effectively alleviate ASO and promote the recovery of lower limb blood flow by regulating the JAK2/STAT3 signaling pathway to reduce the inflammatory response.
Collapse
Affiliation(s)
- Di Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chenglin Jia
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tongkai Cai
- PLA Naval Medical University, Shanghai 200433, China
| | - Jiacheng Li
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xia Feng
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Nan Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng Zhao
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yuzhen Wang
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yongbing Cao
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Diseases, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| |
Collapse
|
20
|
Xu Y, Ward AD, Goldman D, Yin H, Arpino JM, Nong Z, Lee JJ, O'Neil C, Pickering JG. Arteriolar dysgenesis in ischemic, regenerating skeletal muscle revealed by automated micro-morphometry, computational modeling, and perfusion analysis. Am J Physiol Heart Circ Physiol 2022; 323:H38-H48. [PMID: 35522554 DOI: 10.1152/ajpheart.00010.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rebuilding the local vasculature is central to restoring the health of muscles subjected to ischemic injury. Arteriogenesis yields remodeled collateral arteries that circumvent the obstruction, and angiogenesis produces capillaries to perfuse the regenerating myofibers. However, the vital intervening network of arterioles that feed the regenerated capillaries is poorly understood and an investigative challenge. We used machine learning and automated micro-morphometry to quantify the arteriolar landscape in distal hindlimb muscles in mice that have regenerated after femoral artery excision. Assessment of 1546 arteriolar sections revealed a striking (> 2-fold) increase in arteriolar density in regenerated muscle 14 and 28 days after ischemic injury. Lumen caliber was initially similar to that of control arterioles but after 4 weeks lumen area was reduced by 46%. In addition, the critical smooth muscle layer was attenuated throughout the arteriolar network, across a 150 to 5 µm diameter range. To understand the consequences of the reshaped distal hindlimb arterioles, we undertook computational flow modeling which revealed blunted flow augmentation. Moreover, impaired flow reserve was confirmed in vivo by laser Doppler analyses of flow in response to directly applied sodium nitroprusside. Thus, in hindlimb muscles regenerating after ischemic injury, the arteriolar network is amplified, inwardly remodels, and is diffusely under-muscularized. These defects and the associated flow restraints could contribute to the deleterious course of peripheral artery disease and merit attention when considering therapeutic innovations.
Collapse
Affiliation(s)
- Yiwen Xu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Aaron D Ward
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Hao Yin
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John-Michael Arpino
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Zengxuan Nong
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Jason J Lee
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Caroline O'Neil
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Su W, Liang L, Zhou L, Cao Y, Zhou X, Liu S, Wang Q, Zhang H. Macrophage Paired Immunoglobulin-Like Receptor B Deficiency Promotes Peripheral Atherosclerosis in Apolipoprotein E–Deficient Mice. Front Cell Dev Biol 2022; 9:783954. [PMID: 35321392 PMCID: PMC8936951 DOI: 10.3389/fcell.2021.783954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Peripheral atherosclerotic disease (PAD) is the narrowing or blockage of arteries that supply blood to the lower limbs. Given its complex nature, bioinformatics can help identify crucial genes involved in the progression of peripheral atherosclerosis. Materials and Methods: Raw human gene expression data for 462 PAD arterial plaque and 23 normal arterial samples were obtained from the GEO database. The data was analyzed using an integrated, multi-layer approach involving differentially-expressed gene analysis, KEGG pathway analysis, GO term enrichment analysis, weighted gene correlation network analysis, and protein-protein interaction analysis. The monocyte/macrophage-expressed leukocyte immunoglobulin-like receptor B2 (LILRB2) was strongly associated with the human PAD phenotype. To explore the role of the murine LILRB2 homologue PirB in vivo, we created a myeloid-specific PirB-knockout Apoe−/− murine model of PAD (PirBMΦKO) to analyze femoral atherosclerotic burden, plaque features of vulnerability, and monocyte recruitment to femoral atherosclerotic lesions. The phenotypes of PirBMΦKO macrophages under various stimuli were also investigated in vitro. Results:PirBMΦKO mice displayed increased femoral atherogenesis, a more vulnerable plaque phenotype, and enhanced monocyte recruitment into lesions. PirBMΦKO macrophages showed enhanced pro-inflammatory responses and a shift toward M1 over M2 polarization under interferon-γ and oxidized LDL exposure. PirBMΦKO macrophages also displayed enhanced efferocytosis and reduced lipid efflux under lipid exposure. Conclusion: Macrophage PirB reduces peripheral atherosclerotic burden, stabilizes peripheral plaque composition, and suppresses macrophage accumulation in peripheral lesions. Macrophage PirB inhibits pro-inflammatory activation, inhibits efferocytosis, and promotes lipid efflux, characteristics critical to suppressing peripheral atherogenesis.
Collapse
Affiliation(s)
- Wenhua Su
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Liwen Liang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Cardiovascular Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiuli Zhou
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Shiqi Liu
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Qian Wang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Hong Zhang,
| |
Collapse
|
22
|
Silva A, Hatch CJ, Chu MT, Cardinal TR. Collateral Arteriogenesis Involves a Sympathetic Denervation That Is Associated With Abnormal α-Adrenergic Signaling and a Transient Loss of Vascular Tone. Front Cardiovasc Med 2022; 9:805810. [PMID: 35242824 PMCID: PMC8886147 DOI: 10.3389/fcvm.2022.805810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Stimulating collateral arteriogenesis is an attractive therapeutic target for peripheral artery disease (PAD). However, the potency of arteriogenesis-stimulation in animal models has not been matched with efficacy in clinical trials. This may be because the presence of enlarged collaterals is not sufficient to relieve symptoms of PAD, suggesting that collateral function is also important. Specifically, collaterals are the primary site of vascular resistance following arterial occlusion, and impaired collateral vasodilation could impact downstream tissue perfusion and limb function. Therefore, we evaluated the effects of arteriogenesis on collateral vascular reactivity. Following femoral artery ligation in the mouse hindlimb, collateral functional vasodilation was impaired at day 7 (17 ± 3 vs. 60 ± 8%) but restored by day 28. This impairment was due to a high resting diameter (73 ± 4 μm at rest vs. 84 ± 3 μm dilated), which does not appear to be a beneficial effect of arteriogenesis because increasing tissue metabolic demand through voluntary exercise decreased resting diameter and restored vascular reactivity at day 7. The high diameter in sedentary animals was not due to sustained NO-dependent vasodilation or defective myogenic constriction, as there were no differences between the enlarged and native collaterals in response to eNOS inhibition with L-NAME or L-type calcium channel inhibition with nifedipine, respectively. Surprisingly, in the context of reduced vascular tone, vasoconstriction in response to the α-adrenergic agonist norepinephrine was enhanced in the enlarged collateral (−62 ± 2 vs. −37 ± 2%) while vasodilation in response to the α-adrenergic antagonist prazosin was reduced (6 ± 4% vs. 22 ± 16%), indicating a lack of α-adrenergic receptor activation by endogenous norepinephrine and suggesting a denervation of the neuroeffector junction. Staining for tyrosine hydroxylase demonstrated sympathetic denervation, with neurons occupying less area and located further from the enlarged collateral at day 7. Inversely, MMP2 presence surrounding the enlarged collateral was greater at day 7, suggesting that denervation may be related to extracellular matrix degradation during arteriogenesis. Further investigation on vascular wall maturation and the functionality of enlarged collaterals holds promise for identifying novel therapeutic targets to enhance arteriogenesis in patients with PAD.
Collapse
|
23
|
Falero-Diaz G, Barboza CDA, Pires F, Fanchin M, Ling J, Zigmond ZM, Griswold AJ, Martinez L, Vazquez-Padron RI, Velazquez OC, Lassance-Soares RM. Ischemic-Trained Monocytes Improve Arteriogenesis in a Mouse Model of Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2022; 42:175-188. [PMID: 34879707 PMCID: PMC8792358 DOI: 10.1161/atvbaha.121.317197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Monocytes, which play an important role in arteriogenesis, can build immunologic memory by a functional reprogramming that modifies their response to a second challenge. This process, called trained immunity, is evoked by insults that shift monocyte metabolism, increasing HIF (hypoxia-inducible factor)-1α levels. Since ischemia enhances HIF-1α, we evaluate whether ischemia can lead to a functional reprogramming of monocytes, which would contribute to arteriogenesis after hindlimb ischemia. METHODS AND RESULTS Mice exposed to ischemia by 24 hours (24h) of femoral artery occlusion (24h trained) or sham were subjected to hindlimb ischemia one week later; the 24h trained mice showed significant improvement in blood flow recovery and arteriogenesis after hindlimb ischemia. Adoptive transfer using bone marrow-derived monocytes (BM-Mono) from 24h trained or sham donor mice, demonstrated that recipients subjected to hindlimb ischemia who received 24h ischemic-trained monocytes had remarkable blood flow recovery and arteriogenesis. Further, ischemic-trained BM-Mono had increased HIF-1α and GLUT-1 (glucose transporter-1) gene expression during femoral artery occlusion. Circulating cytokines and GLUT-1 were also upregulated during femoral artery occlusion.Transcriptomic analysis and confirmatory qPCR performed in 24h trained and sham BM-Mono revealed that among the 15 top differentially expressed genes, 4 were involved in lipid metabolism in the ischemic-trained monocytes. Lipidomic analysis confirmed that ischemia training altered the cholesterol metabolism of these monocytes. Further, several histone-modifying epigenetic enzymes measured by qPCR were altered in mouse BM-Mono exposed to 24h hypoxia. CONCLUSIONS Ischemia training in BM-Mono leads to a unique gene profile and improves blood flow and arteriogenesis after hindlimb ischemia.
Collapse
Affiliation(s)
- Gustavo Falero-Diaz
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Catarina de A. Barboza
- Department of Adapted Physical Activity, School of Physical Education (FEF), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Felipe Pires
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Maeva Fanchin
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Jingjing Ling
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Zachary M. Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
24
|
Liu C, Han J, Marcelina O, Nugrahaningrum DA, Huang S, Zou M, Wang G, Miyagishi M, He Y, Wu S, Kasim V. Discovery of Salidroside-Derivated Glycoside Analogues as Novel Angiogenesis Agents to Treat Diabetic Hind Limb Ischemia. J Med Chem 2021; 65:135-162. [PMID: 34939794 DOI: 10.1021/acs.jmedchem.1c00947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Therapeutic angiogenesis is a potential therapeutic strategy for hind limb ischemia (HLI); however, currently, there are no small-molecule drugs capable of inducing it at the clinical level. Activating the hypoxia-inducible factor-1 (HIF-1) pathway in skeletal muscle induces the secretion of angiogenic factors and thus is an attractive therapeutic angiogenesis strategy. Using salidroside, a natural glycosidic compound as a lead, we performed a structure-activity relationship (SAR) study for developing a more effective and druggable angiogenesis agent. We found a novel glycoside scaffold compound (C-30) with better efficacy than salidroside in enhancing the accumulation of the HIF-1α protein and stimulating the paracrine functions of skeletal muscle cells. This in turn significantly increased the angiogenic potential of vascular endothelial and smooth muscle cells and, subsequently, induced the formation of mature, functional blood vessels in diabetic and nondiabetic HLI mice. Together, this study offers a novel, promising small-molecule-based therapeutic strategy for treating HLI.
Collapse
Affiliation(s)
- Caiping Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingxuan Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Olivia Marcelina
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Dyah Ari Nugrahaningrum
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Song Huang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Yun He
- School of Pharmaceutical Science, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Vivi Kasim
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
25
|
McEnaney RM, McCreary DD, Skirtich NO, Andraska EA, Sachdev U, Tzeng E. Elastic Laminar Reorganization Occurs with Outward Diameter Expansion during Collateral Artery Growth and Requires Lysyl Oxidase for Stabilization. Cells 2021; 11:7. [PMID: 35011567 PMCID: PMC8750335 DOI: 10.3390/cells11010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/16/2023] Open
Abstract
When a large artery becomes occluded, hemodynamic changes stimulate remodeling of arterial networks to form collateral arteries in a process termed arteriogenesis. However, the structural changes necessary for collateral remodeling have not been defined. We hypothesize that deconstruction of the extracellular matrix is essential to remodel smaller arteries into effective collaterals. Using multiphoton microscopy, we analyzed collagen and elastin structure in maturing collateral arteries isolated from ischemic rat hindlimbs. Collateral arteries harvested at different timepoints showed progressive diameter expansion associated with striking rearrangement of internal elastic lamina (IEL) into a loose fibrous mesh, a pattern persisting at 8 weeks. Despite a 2.5-fold increase in luminal diameter, total elastin content remained unchanged in collaterals compared with control arteries. Among the collateral midzones, baseline elastic fiber content was low. Outward remodeling of these vessels with a 10-20 fold diameter increase was associated with fractures of the elastic fibers and evidence of increased wall tension, as demonstrated by the straightening of the adventitial collagen. Inhibition of lysyl oxidase (LOX) function with β-aminopropionitrile resulted in severe fragmentation or complete loss of continuity of the IEL in developing collaterals. Collateral artery development is associated with permanent redistribution of existing elastic fibers to accommodate diameter growth. We found no evidence of new elastic fiber formation. Stabilization of the arterial wall during outward remodeling is necessary and dependent on LOX activity.
Collapse
Affiliation(s)
- Ryan M. McEnaney
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; (D.D.M.); (N.O.S.); (E.T.)
- Division of Vascular Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.A.A.); (U.S.)
| | - Dylan D. McCreary
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; (D.D.M.); (N.O.S.); (E.T.)
| | - Nolan O. Skirtich
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; (D.D.M.); (N.O.S.); (E.T.)
| | - Elizabeth A. Andraska
- Division of Vascular Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.A.A.); (U.S.)
| | - Ulka Sachdev
- Division of Vascular Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.A.A.); (U.S.)
| | - Edith Tzeng
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA; (D.D.M.); (N.O.S.); (E.T.)
- Division of Vascular Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.A.A.); (U.S.)
| |
Collapse
|
26
|
Kulkarni R, Andraska E, McEnaney R. Structural Remodeling of the Extracellular Matrix in Arteriogenesis: A Review. Front Cardiovasc Med 2021; 8:761007. [PMID: 34805316 PMCID: PMC8602576 DOI: 10.3389/fcvm.2021.761007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Lower extremity arterial occlusive disease (AOD) results in significant morbidity and mortality for the population, with up to 10% of patients ultimately requiring amputation. An alternative method for non-surgical revascularization which is yet to be fully understood is the optimization of the body's own natural collateral arterial network in a process known as arteriogenesis. Under conditions of conductance vessel stenosis or occlusion resulting in increased flow, shear forces, and pressure gradients within collaterals, positive remodeling occurs to increase the diameter and capacity of these vessels. The creation of a distal arteriovenous fistula (AVF) will drive increased arteriogenesis as compared to collateral formation with the occlusion of a conductance vessel alone by further increasing flow through these arterioles, demonstrating the capacity for arteriogenesis to form larger, more efficient collaterals beyond what is spontaneously achieved after arterial occlusion. Arteries rely on an extracellular matrix (ECM) composed of elastic fibers and collagens that provide stability under hemodynamic stress, and ECM remodeling is necessary to allow for increased diameter and flow conductance in mature arterial structures. When positive remodeling occurs, digestion of lamella and the internal elastic lamina (IEL) by matrix metalloproteinases (MMPs) and other elastases results in the rearrangement and thinning of elastic structures and may be replaced with disordered elastin synthesis without recovery of elastic function. This results in transmission of wall strain to collagen and potential for aneurysmal degeneration along collateral networks, as is seen in the pancreaticoduodenal artery (PDA) after celiac occlusion and inferior mesenteric artery (IMA) with concurrent celiac and superior mesenteric artery (SMA) occlusions. Further understanding into the development of collaterals is required to both better understand aneurysmal degeneration and optimize collateral formation in AOD.
Collapse
Affiliation(s)
- Rohan Kulkarni
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Andraska
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ryan McEnaney
- Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Veterans Affairs Hospitals Pittsburgh Healthcare System, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Kübler M, Götz P, Braumandl A, Beck S, Ishikawa-Ankerhold H, Deindl E. Impact of C57BL/6J and SV-129 Mouse Strain Differences on Ischemia-Induced Postnatal Angiogenesis and the Associated Leukocyte Infiltration in a Murine Hindlimb Model of Ischemia. Int J Mol Sci 2021; 22:ijms222111795. [PMID: 34769229 PMCID: PMC8584150 DOI: 10.3390/ijms222111795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Strain-related differences in arteriogenesis in inbred mouse strains have already been studied excessively. However, these analyses missed evaluating the mouse strain-related differences in ischemia-induced angiogenic capacities. With the present study, we wanted to shed light on the different angiogenic potentials and the associated leukocyte infiltration of C57BL/6J and SV-129 mice to facilitate the comparison of angiogenesis-related analyses between these strains. For the induction of angiogenesis, we ligated the femoral artery in 8-12-week-old male C57BL/6J and SV-129 mice and performed (immuno-) histological analyses on the ischemic gastrocnemius muscles collected 24 h or 7 days after ligation. As evidenced by hematoxylin and eosin staining, C57BL/6J mice showed reduced tissue damage but displayed an increased capillary-to-muscle fiber ratio and an elevated number of proliferating capillaries (CD31+/BrdU+ cells) compared to SV-129 mice, thus showing improved angiogenesis. Regarding the associated leukocyte infiltration, we found increased numbers of neutrophils (MPO+ cells), NETs (MPO+/CitH3+/DAPI+), and macrophages (CD68+ cells) in SV-129 mice, whereas macrophage polarization (MRC1- vs. MRC1+) and total leukocyte infiltration (CD45+ cells) did not differ between the mouse strains. In summary, we show increased ischemia-induced angiogenic capacities in C57BL/6J mice compared to SV-129 mice, with the latter showing aggravated tissue damage, inflammation, and impaired angiogenesis.
Collapse
Affiliation(s)
- Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (P.G.); (A.B.); (S.B.); (H.I.-A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (P.G.); (A.B.); (S.B.); (H.I.-A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Anna Braumandl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (P.G.); (A.B.); (S.B.); (H.I.-A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Sebastian Beck
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (P.G.); (A.B.); (S.B.); (H.I.-A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (P.G.); (A.B.); (S.B.); (H.I.-A.)
- Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (P.G.); (A.B.); (S.B.); (H.I.-A.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-(0)-89-2180-76504
| |
Collapse
|
28
|
Schneckmann R, Suvorava T, Hundhausen C, Schuler D, Lorenz C, Freudenberger T, Kelm M, Fischer JW, Flögel U, Grandoch M. Endothelial Hyaluronan Synthase 3 Augments Postischemic Arteriogenesis Through CD44/eNOS Signaling. Arterioscler Thromb Vasc Biol 2021; 41:2551-2562. [PMID: 34380333 DOI: 10.1161/atvbaha.121.315478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective: The dominant driver of arteriogenesis is elevated shear stress sensed by the endothelial glycocalyx thereby promoting arterial outward remodeling. Hyaluronan, a critical component of the endothelial glycocalyx, is synthesized by 3 HAS isoenzymes (hyaluronan synthases 1-3) at the plasma membrane. Considering further the importance of HAS3 for smooth muscle cell and immune cell functions we aimed to evaluate its role in collateral artery growth. Approach and Results: Male Has3-deficient (Has3-KO) mice were subjected to hindlimb ischemia. Blood perfusion was monitored by laser Doppler perfusion imaging and endothelial function was assessed by measurement of flow-mediated dilation in vivo. Collateral remodeling was monitored by high resolution magnetic resonance angiography. A neutralizing antibody against CD44 (clone KM201) was injected intraperitoneally to analyze hyaluronan signaling in vivo. After hindlimb ischemia, Has3-KO mice showed a reduced arteriogenic response with decreased collateral remodeling and impaired perfusion recovery. While postischemic leukocyte infiltration was unaffected, a diminished flow-mediated dilation pointed towards an impaired endothelial cell function. Indeed, endothelial AKT (protein kinase B)-dependent eNOS (endothelial nitric oxide synthase) phosphorylation at Ser1177 was substantially reduced in Has3-KO thigh muscles. Endothelial-specific Has3-KO mice mimicked the hindlimb ischemia-induced phenotype of impaired perfusion recovery as observed in global Has3-deficiency. Mechanistically, blocking selectively the hyaluronan binding site of CD44 reduced flow-mediated dilation, thereby suggesting hyaluronan signaling through CD44 as the underlying signaling pathway. Conclusions: In summary, HAS3 contributes to arteriogenesis in hindlimb ischemia by hyaluronan/CD44-mediated stimulation of eNOS phosphorylation at Ser1177. Thus, strategies augmenting endothelial HAS3 or CD44 could be envisioned to enhance vascularization under pathological conditions.
Collapse
Affiliation(s)
- Rebekka Schneckmann
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Tatsiana Suvorava
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Christian Hundhausen
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Dominik Schuler
- Clinic for Cardiology, Pneumology and Angiology (D.S., M.K.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Christin Lorenz
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Till Freudenberger
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Malte Kelm
- Clinic for Cardiology, Pneumology and Angiology (D.S., M.K.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, University Hospital Düsseldorf, Heinrich-Heine-University, Germany (M.K., J.W.F.)
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, University Hospital Düsseldorf, Heinrich-Heine-University, Germany (M.K., J.W.F.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology (U.F.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
29
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
30
|
Spronck B, Latorre M, Wang M, Mehta S, Caulk AW, Ren P, Ramachandra AB, Murtada SI, Rojas A, He CS, Jiang B, Bersi MR, Tellides G, Humphrey JD. Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice. J R Soc Interface 2021; 18:20210336. [PMID: 34314650 PMCID: PMC8315831 DOI: 10.1098/rsif.2021.0336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension induces significant aortic remodelling, often adaptive but sometimes not. To identify immuno-mechanical mechanisms responsible for differential remodelling, we studied thoracic aortas from 129S6/SvEvTac and C57BL/6 J mice before and after continuous 14-day angiotensin II infusion, which elevated blood pressure similarly in both strains. Histological and biomechanical assessments of excised vessels were similar at baseline, suggesting a common homeostatic set-point for mean wall stress. Histology further revealed near mechano-adaptive remodelling of the hypertensive 129S6/SvEvTac aortas, but a grossly maladaptive remodelling of C57BL/6 J aortas. Bulk RNA sequencing suggested that increased smooth muscle contractile processes promoted mechano-adaptation of 129S6/SvEvTac aortas while immune processes prevented adaptation of C57BL/6 J aortas. Functional studies confirmed an increased vasoconstrictive capacity of the former while immunohistochemistry demonstrated marked increases in inflammatory cells in the latter. We then used multiple computational biomechanical models to test the hypothesis that excessive adventitial wall stress correlates with inflammatory cell infiltration. These models consistently predicted that increased vasoconstriction against an increased pressure coupled with modest deposition of new matrix thickens the wall appropriately, restoring wall stress towards homeostatic consistent with adaptive remodelling. By contrast, insufficient vasoconstriction permits high wall stresses and exuberant inflammation-driven matrix deposition, especially in the adventitia, reflecting compromised homeostasis and gross maladaptation.
Collapse
Affiliation(s)
- Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA,Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Sameet Mehta
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Alexander W. Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Pengwei Ren
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alexia Rojas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chang-Shun He
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Matthew R. Bersi
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Protease nexin-1 deficiency increases mouse hindlimb neovascularisation following ischemia and accelerates femoral artery perfusion. Sci Rep 2021; 11:13412. [PMID: 34183729 PMCID: PMC8238971 DOI: 10.1038/s41598-021-92794-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022] Open
Abstract
We previously identified the inhibitory serpin protease nexin-1 (PN-1) as an important player of the angiogenic balance with anti-angiogenic activity in physiological conditions. In the present study, we aimed to determine the role of PN-1 on pathological angiogenesis and particularly in response to ischemia, in the mouse model induced by femoral artery ligation. In wild-type (WT) muscle, we observed an upregulation of PN-1 mRNA and protein after ischemia. Angiography analysis showed that femoral artery perfusion was more rapidly restored in PN-1−/− mice than in WT mice. Moreover, immunohistochemistry showed that capillary density increased following ischemia to a greater extent in PN-1−/− than in WT muscles. Moreover, leukocyte recruitment and IL-6 and MCP-1 levels were also increased in PN-1−/− mice compared to WT after ischemia. This increase was accompanied by a higher overexpression of the growth factor midkine, known to promote leukocyte trafficking and to modulate expression of proinflammatory cytokines. Our results thus suggest that the higher expression of midkine observed in PN-1- deficient mice can increase leukocyte recruitment in response to higher levels of MCP-1, finally driving neoangiogenesis. Thus, PN-1 can limit neovascularisation in pathological conditions, including post-ischemic reperfusion of the lower limbs.
Collapse
|
32
|
Craps S, Van Wauwe J, De Moudt S, De Munck D, Leloup AJ, Boeckx B, Vervliet T, Dheedene W, Criem N, Geeroms C, Jones EA, Zwijsen A, Lambrechts D, Fransen P, Beerens M, Luttun A. Prdm16 Supports Arterial Flow Recovery by Maintaining Endothelial Function. Circ Res 2021; 129:63-77. [PMID: 33902304 PMCID: PMC8221541 DOI: 10.1161/circresaha.120.318501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/physiopathology
- Calcium/metabolism
- Calcium Signaling
- Cells, Cultured
- Collateral Circulation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Femoral Artery/metabolism
- Femoral Artery/physiopathology
- Hindlimb/blood supply
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Physiologic
- Regional Blood Flow
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Sander Craps
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
| | - Jore Van Wauwe
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
| | - Sofie De Moudt
- Pharmaceutical Sciences, Physiopharmacology, University of Antwerp, Antwerp, Belgium (S.D.M., D.D.M., A.J.A.L., P.F.)
| | - Dorien De Munck
- Pharmaceutical Sciences, Physiopharmacology, University of Antwerp, Antwerp, Belgium (S.D.M., D.D.M., A.J.A.L., P.F.)
| | - Arthur J.A. Leloup
- Pharmaceutical Sciences, Physiopharmacology, University of Antwerp, Antwerp, Belgium (S.D.M., D.D.M., A.J.A.L., P.F.)
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics (B.B., D.L.), KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium (B.B., D.L.)
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine (T.V.), KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
| | - Nathan Criem
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering (C.G.), KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration (C.G.), KU Leuven, Leuven, Belgium
| | - Elizabeth A.V. Jones
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics (B.B., D.L.), KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium (B.B., D.L.)
| | - Paul Fransen
- Pharmaceutical Sciences, Physiopharmacology, University of Antwerp, Antwerp, Belgium (S.D.M., D.D.M., A.J.A.L., P.F.)
| | - Manu Beerens
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA (M.B.)
| | - Aernout Luttun
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (S.C., J.V.W., W.D., N.C., E.A.V.J., A.Z., M.B., A.L.), KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Yin H, Arpino JM, Lee JJ, Pickering JG. Regenerated Microvascular Networks in Ischemic Skeletal Muscle. Front Physiol 2021; 12:662073. [PMID: 34177614 PMCID: PMC8231913 DOI: 10.3389/fphys.2021.662073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle is the largest organ in humans. The viability and performance of this metabolically demanding organ are exquisitely dependent on the integrity of its microcirculation. The architectural and functional attributes of the skeletal muscle microvasculature are acquired during embryonic and early postnatal development. However, peripheral vascular disease in the adult can damage the distal microvasculature, together with damaging the skeletal myofibers. Importantly, adult skeletal muscle has the capacity to regenerate. Understanding the extent to which the microvascular network also reforms, and acquires structural and functional competence, will thus be critical to regenerative medicine efforts for those with peripheral artery disease (PAD). Herein, we discuss recent advances in studying the regenerating microvasculature in the mouse hindlimb following severe ischemic injury. We highlight new insights arising from real-time imaging of the microcirculation. This includes identifying otherwise hidden flaws in both network microarchitecture and function, deficiencies that could underlie the progressive nature of PAD and its refractoriness to therapy. Recognizing and overcoming these vulnerabilities in regenerative angiogenesis will be important for advancing treatment options for PAD.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Western University, London, ON, Canada
| | | | - Jason J Lee
- Robarts Research Institute, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada.,Department of Biochemistry, Western University, London, ON, Canada
| |
Collapse
|
34
|
Leclerc CJ, Cooper TT, Bell GI, Lajoie GA, Flynn LE, Hess DA. Decellularized adipose tissue scaffolds guide hematopoietic differentiation and stimulate vascular regeneration in a hindlimb ischemia model. Biomaterials 2021; 274:120867. [PMID: 33992837 DOI: 10.1016/j.biomaterials.2021.120867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
Cellular therapies to stimulate therapeutic angiogenesis in individuals with critical limb ischemia (CLI) remain under intense investigation. In this context, the efficacy of cell therapy is dependent on the survival, biodistribution, and pro-angiogenic paracrine signaling of the cells transplanted. Hematopoietic progenitor cells (HPC) purified from human umbilical cord blood using high aldehyde dehydrogenase-activity (ALDHhi cells) and expanded ex vivo, represent a heterogeneous mixture of progenitor cells previously shown to support limb revascularization in mouse models of CLI. The objectives of this study were to investigate the utility of bioscaffolds derived from human decellularized adipose tissue (DAT) to guide the differentiation of seeded HPC in vitro and harness the pro-angiogenic capacity of HPC at the site of ischemia after implantation in vivo. Probing whether the DAT scaffolds altered HPC differentiation, label-free quantitative mass spectrometry and flow cytometric phenotype analyses indicated that culturing the HPC on the DAT scaffolds supported their differentiation towards the pro-angiogenic monocyte/macrophage lineage at the expense of megakaryopoiesis. Moreover, implantation of HPC in DAT scaffolds within a unilateral hindlimb ischemia model in NOD/SCID mice increased cell retention at the site of ischemia relative to intramuscular injection, and accelerated the recovery of limb perfusion, improved functional limb use and augmented CD31+ capillary density when compared to DAT implantation alone or saline-injected controls. Collectively, these data indicate that cell-instructive DAT scaffolds can direct therapeutic HPC differentiation towards the monocyte/macrophage lineage and represent a promising delivery platform for improving the efficacy of cell therapies for CLI.
Collapse
Affiliation(s)
- Christopher J Leclerc
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada, N6A 5B9; Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B6, Canada
| | - Tyler T Cooper
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B6, Canada; Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Gillian I Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B6, Canada
| | - Gilles A Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Amit Chakma Engineering Building, The University of Western Ontario, London, Ontario, Canada, N6A 5B9; Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B6, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
35
|
Johnson LL, Johnson J, Ober R, Holland A, Zhang G, Backer M, Backer J, Ali Z, Tekabe Y. Novel Receptor for Advanced Glycation End Products-Blocking Antibody to Treat Diabetic Peripheral Artery Disease. J Am Heart Assoc 2020; 10:e016696. [PMID: 33327730 PMCID: PMC7955479 DOI: 10.1161/jaha.120.016696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Expression of receptor for advanced glycation end products (RAGE) plays an important role in diabetic peripheral artery disease. We proposed to show that treatment with an antibody blocking RAGE would improve hind limb perfusion and muscle viability in diabetic pig with femoral artery (FA) ligation. Methods and Results Purpose‐bred diabetic Yucatan minipigs with average fasting blood sugar of 357 mg/dL on insulin to maintain a glucose range of 300 to 500 mg/dL were treated with either a humanized monoclonal anti‐RAGE antibody (CR‐3) or nonimmune IgG. All pigs underwent intravascular occlusion of the anterior FA. Animals underwent (201Tl) single‐photon emission computed tomography/x‐ray computed tomography imaging on days 1 and 28 after FA occlusion, angiogenesis imaging with [99mTc]dodecane tetra‐acetic acid–polyethylene glycol–single chain vascular endothelial growth factor (scVEGF), muscle biopsies on day 7, and contrast angiogram day 28. Results showed greater increases in perfusion to the gastrocnemius from day 1 to day 28 in CR‐3 compared with IgG treated pigs (P=0.0024), greater uptake of [99mTc]dodecane tetra‐acetic acid‐polyethylene glycol‐scVEGF (scV/Tc) in the proximal gastrocnemius at day 7, confirmed by tissue staining for capillaries and vascular endothelial growth factor A, and less muscle loss and fibrosis at day 28. Contrast angiograms showed better reconstitution of the distal FA from collaterals in the CR‐3 versus IgG treated diabetic pigs (P=0.01). The gastrocnemius on nonoccluded limb at necropsy had higher 201Tl uptake (percentage injected dose per gram) and reduced RAGE staining in arterioles in CR‐3 treated compared with IgG treated animals (P=0.04). Conclusions A novel RAGE‐blocking antibody improved hind limb perfusion and angiogenesis in diabetic pigs with FA occlusion. Contributing factors are increased collaterals and reduced vascular RAGE expression. CR‐3 shows promise for clinical treatment in diabetic peripheral artery disease.
Collapse
Affiliation(s)
- Lynne L Johnson
- Department of Medicine Columbia University Medical Center New York NY
| | - Jordan Johnson
- Department of Medicine Columbia University Medical Center New York NY
| | - Rebecca Ober
- Department of Medicine Columbia University Medical Center New York NY
| | - April Holland
- Department of Medicine Columbia University Medical Center New York NY
| | - Geping Zhang
- Department of Medicine Columbia University Medical Center New York NY
| | | | | | - Ziad Ali
- Department of Medicine Columbia University Medical Center New York NY
| | - Yared Tekabe
- Department of Medicine Columbia University Medical Center New York NY
| |
Collapse
|
36
|
Leyba KA, Vasudevan S, O'Sullivan TD, Goergen CJ. Evaluation of Hemodynamics in a Murine Hindlimb Ischemia Model Using Spatial Frequency Domain Imaging. Lasers Surg Med 2020; 53:557-566. [PMID: 32956499 PMCID: PMC7981275 DOI: 10.1002/lsm.23320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/09/2020] [Accepted: 08/30/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Spatial frequency domain imaging (SFDI), an optical imaging technique capable of quantitatively measuring tissue hemodynamics over a large field-of-view, has captured the interest of scientists and clinicians due to its ability to image rapidly and noninvasively. The goal of this study was to apply SFDI in a preclinical murine model to assess its ability to measure hemodynamic changes due to hindlimb ischemia in vivo longitudinally. STUDY DESIGN/MATERIALS AND METHODS Complete unilateral femoral artery ligation was performed on a total of nine C57BL/6J mice to induce ischemia in the left hindlimb. Changes in vascular perfusion in each mouse were monitored through SFDI acquisition of both the ischemic and control limbs throughout the course of 4 weeks. High-frequency pulsed-wave Doppler ultrasound was also acquired to confirm occlusion of the left femoral artery post-ligation compared with the control limb, while histological analysis was used to quantify femoral artery lumen shape and size. RESULTS Tissue oxygen saturation in the ischemic limb normalized to the control limb decreased from a ratio of 0.96 ± 0.06 at baseline to 0.86 ± 0.10 at day 1, then 0.94 ± 0.06 at day 3, followed by 0.95 ± 0.14 at day 7, 0.91 ± 0.09 at day 14, 0.90 ± 0.09 at day 21, and 1.01 ± 0.09 at day 28. CONCLUSION The results of this study indicate the utility of SFDI to detect hemodynamic changes in a preclinical murine model, as well as how to effectively use this tool to extract information regarding ischemia-induced hindlimb changes. In our model, we observed a decline in tissue oxygen saturation within one day post-ischemic injury, followed by a return to baseline values over the 4-week study period. While reducing skin artifacts and modifying camera hardware could still improve this murine imaging approach, our multimodality study presented here suggests that SFDI can be used to reliably characterize ischemia-mediated changes in a clinically relevant mouse model of peripheral arterial disease. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Katherine A Leyba
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Sandhya Vasudevan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Thomas D O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
37
|
Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvasc Res 2020; 132:104058. [PMID: 32798552 DOI: 10.1016/j.mvr.2020.104058] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
The coronary collateral circulation is a rich anastomotic network of primitive vessels which have the ability to augment in size and function through the process of arteriogenesis. In this review, we evaluate the current understandings of the molecular and cellular mechanisms by which this process occurs, specifically focussing on elevated fluid shear stress (FSS), inflammation, the redox state and gene expression along with the integrative, parallel and simultaneous process by which this occurs. The initiating step of arteriogenesis occurs following occlusion of an epicardial coronary artery, with an increase in FSS detected by mechanoreceptors within the endothelium. This must occur within a 'redox window' where an equilibrium of oxidative and reductive factors are present. These factors initially result in an inflammatory milieu, mediated by neutrophils as well as lymphocytes, with resultant activation of a number of downstream molecular pathways resulting in increased expression of proteins involved in monocyte attraction and adherence; namely vascular cell adhesion molecule 1 (VCAM-1), monocyte chemoattractant protein 1 (MCP-1) and transforming growth factor beta (TGF-β). Once monocytes and other inflammatory cells adhere to the endothelium they enter the extracellular matrix and differentiate into macrophages in an effort to create a favourable environment for vessel growth and development. Activated macrophages secrete inflammatory cytokines such as tumour necrosis factor-α (TNF-α), growth factors such as fibroblast growth factor-2 (FGF-2) and matrix metalloproteinases. Finally, vascular smooth muscle cells proliferate and switch to a contractile phenotype, resulting in an increased diameter and functionality of the collateral vessel, thereby allowing improved perfusion of the distal myocardium subtended by the occluded vessel. This simultaneously reduces FSS within the collateral vessel, inhibiting further vessel growth.
Collapse
|
38
|
Lee JJ, Arpino JM, Yin H, Nong Z, Szpakowski A, Hashi AA, Chevalier J, O'Neil C, Pickering JG. Systematic Interrogation of Angiogenesis in the Ischemic Mouse Hind Limb: Vulnerabilities and Quality Assurance. Arterioscler Thromb Vasc Biol 2020; 40:2454-2467. [PMID: 32787524 PMCID: PMC7505144 DOI: 10.1161/atvbaha.120.315028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: There has been little success in translating preclinical studies of mouse hind limb ischemia into benefit for patients with peripheral artery disease. Using systematic strategies, we sought to define the injury and angiogenesis landscapes in mice subjected to hind limb ischemia and ascertain whether published studies to date have used an analysis strategy concordant with these data. Approach and Results: Maps of ischemic injury were generated from 22 different hind limb muscles and 33 muscle territories in 12-week-old C57BL/6 mice, based on loss or centralization of myofiber nuclei. Angiogenesis was similarly mapped based on CD (cluster of differentiation) 31–positive capillary content. Only 10 of 33 muscle territories displayed consistent muscle injury, with the distal anterior hind limb muscles most reliably injured. Angiogenesis was patchy and exclusively associated with zones of regenerated muscle (central nuclei). Angiogenesis was not observed in normal appearing muscle, necrotic muscle, or injury border zones. Systematic review of mouse hind limb angiogenesis studies identified 5147 unique publications, of which 509 met eligibility criteria for analysis. Only 7% of these analyzed manuscripts evaluated angiogenesis in distal anterior hind limb muscles and only 15% consistently examined for angiogenesis in zones of muscle regeneration. Conclusions: In 12-week C57BL/6 mice, angiogenesis postfemoral artery excision proceeds exclusively in zones of muscle regeneration. Only a minority of studies to date have analyzed angiogenesis in regions of demonstrably regenerating muscle or in high-likelihood territories. Quality assurance standards, informed by the atlas and mapping data herein, could augment data reliability and potentially help translate mouse hind limb ischemia studies to patient care.
Collapse
Affiliation(s)
- Jason J Lee
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - John-Michael Arpino
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - Hao Yin
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Zengxuan Nong
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Alexis Szpakowski
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Abdulaziz A Hashi
- Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada
| | - Jacqueline Chevalier
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - Caroline O'Neil
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada.,Department of Biochemistry (J.G.P.), Western University, London, Ontario, Canada
| |
Collapse
|
39
|
Ma T, Bai YP. The hydromechanics in arteriogenesis. Aging Med (Milton) 2020; 3:169-177. [PMID: 33103037 PMCID: PMC7574636 DOI: 10.1002/agm2.12101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022] Open
Abstract
Coronary heart diseases are tightly associated with aging. Although current revascularization therapies, such as percutaneous coronary interventions (PCI) and coronary artery bypass graft (CABG), improve the clinical outcomes of patients with coronary diseases, their application and therapeutic effects are limited in elderly patients. Thus, developing novel therapeutic strategies, like prompting collateral development or the process of arteriogenesis, is necessary for the treatment of the elderly with coronary diseases. Arteriogenesis (ie, the vascular remodeling from pre‐existent arterioles to collateral conductance networks) functions as an essential compensation for tissue hypoperfusion caused by artery occlusion or stenosis, and its mechanisms remain to be elucidated. In this review, we will summarize the roles of the major hydromechanical components in laminar conditions in arteriogenesis, and discuss the potential effects of disturbed flow components in non‐laminar conditions.
Collapse
Affiliation(s)
- Tianqi Ma
- Department of Geriatric Medicine Xiangya Hospital Central South University Changsha China
| | - Yong-Ping Bai
- Department of Geriatric Medicine Xiangya Hospital Central South University Changsha China
| |
Collapse
|
40
|
Heuslein JL, Gorick CM, Price RJ. Epigenetic regulators of the revascularization response to chronic arterial occlusion. Cardiovasc Res 2020; 115:701-712. [PMID: 30629133 DOI: 10.1093/cvr/cvz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Peripheral arterial disease (PAD) is the leading cause of lower limb amputation and estimated to affect over 202 million people worldwide. PAD is caused by atherosclerotic lesions that occlude large arteries in the lower limbs, leading to insufficient blood perfusion of distal tissues. Given the severity of this clinical problem, there has been long-standing interest in both understanding how chronic arterial occlusions affect muscle tissue and vasculature and identifying therapeutic approaches capable of restoring tissue composition and vascular function to a healthy state. To date, the most widely utilized animal model for performing such studies has been the ischaemic mouse hindlimb. Despite not being a model of PAD per se, the ischaemic hindlimb model does recapitulate several key aspects of PAD. Further, it has served as a valuable platform upon which we have built much of our understanding of how chronic arterial occlusions affect muscle tissue composition, muscle regeneration and angiogenesis, and collateral arteriogenesis. Recently, there has been a global surge in research aimed at understanding how gene expression is regulated by epigenetic factors (i.e. non-coding RNAs, histone post-translational modifications, and DNA methylation). Thus, perhaps not unexpectedly, many recent studies have identified essential roles for epigenetic factors in regulating key responses to chronic arterial occlusion(s). In this review, we summarize the mechanisms of action of these epigenetic regulators and highlight several recent studies investigating the role of said regulators in the context of hindlimb ischaemia. In addition, we focus on how these recent advances in our understanding of the role of epigenetics in regulating responses to chronic arterial occlusion(s) can inform future therapeutic applications to promote revascularization and perfusion recovery in the setting of PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| |
Collapse
|
41
|
Barry O, Wang Y, Wahl G. Determination of baseline alveolar mucosa perfusion parameters using laser Doppler flowmetry and tissue spectrophotometry in healthy adults. Acta Odontol Scand 2020; 78:31-37. [PMID: 31349769 DOI: 10.1080/00016357.2019.1645353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: To determine the baseline perfusion parameters of the alveolar mucosa using laser Doppler flowmetry and tissue spectrophotometry (LDF-TS) in healthy adults.Material and methods: Forty-two healthy adult subjects of either sex were tested. The perfusion of the alveolar mucosa was evaluated using a laser Doppler flowmetry and tissue spectrophotometry using O2C 'oxygen to see' device. The measurements encompassed the maxillary and mandibular mucosa at 20 different points.Results: The O2C device is a reliable method for noninvasive measurement of different perfusion parameters of the oral mucosa. The hemoglobin saturation values (So2 in %), as well as relative amount of hemoglobin in arbitrary units (AU) of the maxillary mucosa demonstrated lower values of that in the mandible. The flow value (AU) exhibited a significant difference in the posterior molar region only, while the velocity value (AU) showed a significant difference across all points except for the anterior region.Conclusion: the present study provides a set of brand-new perfusion parameters of the microcirculation of the alveolar mucosa using LDF-TS. The study suggests a variation of the perfusion parameters between the maxilla and the mandible. Differences in the anatomy of the blood supply, the thickness of the mucosa and the cortical bone, may be attributed to this variation. Further studies using different probes and a combination of ultrasonic measurements and SDF imaging will aid in giving a better overview of the perfusion in the oral mucosa.
Collapse
Affiliation(s)
- Obada Barry
- Department of Oral Surgery, Bonn University Dental Clinic, Bonn, Germany
| | - Ying Wang
- Department of Oral Surgery, Bonn University Dental Clinic, Bonn, Germany
| | - Gerhard Wahl
- Department of Oral Surgery, Bonn University Dental Clinic, Bonn, Germany
| |
Collapse
|
42
|
Isoform-Specific Roles of ERK1 and ERK2 in Arteriogenesis. Cells 2019; 9:cells9010038. [PMID: 31877781 PMCID: PMC7017123 DOI: 10.3390/cells9010038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the clinical importance of arteriogenesis, this biological process is poorly understood. ERK1 and ERK2 are key components of a major intracellular signaling pathway activated by vascular endothelial growth (VEGF) and FGF2, growth factors critical to arteriogenesis. To investigate the specific role of each ERK isoform in arteriogenesis, we used mice with a global Erk1 knockout as well as Erk1 and Erk2 floxed mice to delete Erk1 or Erk2 in endothelial cells, macrophages, and smooth muscle cells. We found that ERK1 controls macrophage infiltration following an ischemic event. Loss of ERK1 in endothelial cells and macrophages induced an excessive macrophage infiltration leading to an increased but poorly functional arteriogenesis. Loss of ERK2 in endothelial cells leads to a decreased arteriogenesis due to decreased endothelial cell proliferation and a reduced eNOS expression. These findings show for the first time that isoform-specific roles of ERK1 and ERK2 in the control of arteriogenesis.
Collapse
|
43
|
Alexandrescu VA, Brochier S, Limgba A, Balthazar S, Khelifa H, De Vreese P, Azdad K, Nodit M, Pottier M, Van Espen D, Sinatra T. Healing of Diabetic Neuroischemic Foot Wounds With vs Without Wound-Targeted Revascularization: Preliminary Observations From an 8-Year Prospective Dual-Center Registry. J Endovasc Ther 2019; 27:20-30. [PMID: 31709886 DOI: 10.1177/1526602819885131] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Purpose: To assess the clinical efficacy of endovascular angiosome-oriented wound-targeted revascularization (WTR) vs indirect (wound-indifferent) revascularization (IR) in diabetic patients with neuroischemic foot ulcers. Materials and Methods: Between April 2009 and July 2017, 167 diabetic patients (mean age 72.8 years; 137 men) with chronic limb-threatening ischemia (Rutherford category 5) and foot wounds (Wagner 2-4) in 194 limbs were prospectively registered and scheduled for primary infragenicular endovascular treatment. Specific angiosome source artery reperfusion sustained by patent foot arches or arterial-arterial connections was attempted initially. If this approach failed, topographic revascularization via available collaterals (WTRc) and IR were sequentially attempted. Results: Reperfusion was successful in 176 (91%) of 194 limbs (113 with WTR, 28 with WTRc, and 35 with IR); the global angiosome-oriented technical success (WTR and WTRc) was 73% (141/194). The mean follow-up was 10.9±0.7 months (range 3-12.5). Over 1 year, 102 (58%) of the 176 successfully treated limbs experienced wound healing [79/113 (70%) in the WTR group, 15/28 (54%) in the WTRc group, and 7/35 (20%) in the IR group; p=0.011]. The mean time to healing was 6.8±0.4 months in the WTR group, 7.9±0.6 months in the WTRc group, and 9.8±0.7 months in the IR group (p=0.001). Relapses were noted in 18 (16%) WTR limbs, 5 (18%) WTRc limbs, and 6 (17%) IR limbs. Comparison between WTR and IR and WTRc vs IR showed improved cicatrization in the angiosome-oriented groups (p<0.05). Major adverse limb events (MALE) and limb salvage were different between WTR and WTRc and between WTR and IR groups (p<0.05), while WTRc vs IR was not. Amputation-free survival was not influenced by the revascularization strategy (p=0.093). Conclusion: Wound healing in diabetic patients with chronic limb-threatening ischemia appeared to be improved by intentional wound-targeted revascularization, but no uniform benefit concerning MALE or limb preservation was observed. IR still represents an alternative for limb salvage in cases in which angiosome-guided revascularization fails.
Collapse
Affiliation(s)
| | - Sophie Brochier
- Department of Diabetology, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Augustin Limgba
- Department of Surgery, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Severine Balthazar
- Department of Anesthesiology, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Hafid Khelifa
- Department of Intensive Care, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Pierrick De Vreese
- Department of Anesthesiology, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Khalid Azdad
- Department of Radiology, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Mihaela Nodit
- Department of Geriatric Care, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Morgane Pottier
- Department of Surgery, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Didier Van Espen
- Department of Orthopedic Surgery, Princess Paola Hospital, Marche-en-Famenne, Belgium
| | - Tommy Sinatra
- Department of Surgery, Princess Paola Hospital, Marche-en-Famenne, Belgium
| |
Collapse
|
44
|
Alleboina S, Ayalew D, Peravali R, Chen L, Wong T, Dokun AO. Dual specificity phosphatase 5 regulates perfusion recovery in experimental peripheral artery disease. Vasc Med 2019; 24:395-404. [PMID: 31451089 DOI: 10.1177/1358863x19866254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral artery disease (PAD) is caused by atherosclerotic occlusions of vessels outside the heart, particularly those of the lower extremities. Angiogenesis is one critical physiological response to vessel occlusion in PAD, but our understanding of the molecular mechanisms involved in angiogenesis is incomplete. Dual specificity phosphatase 5 (DUSP5) has been shown to play a key role in embryonic vascular development, but its role in post-ischemic angiogenesis is not known. We induced hind limb ischemia in mice and found robust upregulation of Dusp5 expression in ischemic hind limbs. Moreover, in vivo knockdown of Dusp5 resulted in impaired perfusion recovery in ischemic limbs and was associated with increased limb necrosis. In vitro studies showed upregulation of DUSP5 in human endothelial cells exposed to ischemia, and knockdown of DUSP5 in these ischemic endothelial cells resulted in impaired endothelial cell proliferation and angiogenesis, but did not alter apoptosis. Finally, we show that these effects of DUSP5 on post-ischemic angiogenesis are a result of DUSP5-dependent decrease in ERK1/2 phosphorylation and p21 protein expression. Thus, we have identified a role of DUSP5 in post-ischemic angiogenesis and implicated a DUSP5-ERK-p21 pathway that may serve as a therapeutic target for the modulation of post-ischemic angiogenesis in PAD.
Collapse
Affiliation(s)
- Satyanarayana Alleboina
- Division of Endocrinology, Diabetes and Metabolism, Health Sciences Center, University of Tennessee, Memphis, TN, USA
| | - Dawit Ayalew
- Division of Endocrinology, Diabetes and Metabolism, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rahul Peravali
- Division of Endocrinology, Diabetes and Metabolism, Health Sciences Center, University of Tennessee, Memphis, TN, USA
| | - Lingdan Chen
- Division of Endocrinology, Diabetes and Metabolism, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Thomas Wong
- Division of Endocrinology, Diabetes and Metabolism, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ayotunde O Dokun
- Division of Endocrinology, Diabetes and Metabolism, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
45
|
Zhang J, Nugrahaningrum DA, Marcelina O, Ariyanti AD, Wang G, Liu C, Wu S, Kasim V. Tyrosol Facilitates Neovascularization by Enhancing Skeletal Muscle Cells Viability and Paracrine Function in Diabetic Hindlimb Ischemia Mice. Front Pharmacol 2019; 10:909. [PMID: 31474865 PMCID: PMC6702659 DOI: 10.3389/fphar.2019.00909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
As one of the most severe manifestations of diabetes, vascular complications are the main causes of diabetes-related morbidity and mortality. Hyperglycemia induces systemic abnormalities, including impaired angiogenesis, causing diabetic patients to be highly susceptible in suffering hindlimb ischemia (HLI). Despite its severe prognosis, there is currently no effective treatment for diabetic HLI. Skeletal muscle cells secrete multiple angiogenic factors, hence, recently are reported to be critical for angiogenesis; however, hyperglycemia disrupted the paracrine function in skeletal muscle cells, leading to the impaired angiogenesis potential observed in diabetic patients. The present study showed that tyrosol, a phenylethanoid compound, suppresses accumulation of intracellular reactive oxygen species (ROS) caused by hyperglycemia, most plausibly by promoting heme oxygenase-1 (HO-1) expression in skeletal muscle cells. Consequently, tyrosol exerts cytoprotective function against hyperglycemia-induced oxidative stress in skeletal muscle cells, increases their proliferation vigorously, and simultaneously suppresses apoptosis. Furthermore, tyrosol grossly increases the secretion of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) from skeletal muscle cells. This leads to enhanced proliferation and migration capabilities of vascular endothelial and smooth muscle cells, two types of cells that are responsible in forming blood vessels, through cell-cell communication. Finally, in vivo experiment using the diabetic HLI mouse model showed that tyrosol injection into the gastrocnemius muscle of the ischemic hindlimb significantly enhances the formation of functional blood vessels and subsequently leads to significant recovery of blood perfusion. Overall, our findings highlight the potential of the pharmacological application of tyrosol as a small molecule drug for therapeutic angiogenesis in diabetic HLI patients.
Collapse
Affiliation(s)
- Jianqi Zhang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Dyah Ari Nugrahaningrum
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Agnes Dwi Ariyanti
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Guixue Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Caiping Liu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
46
|
Al-Rifai R, Tournois C, Kheirallah S, Bouland N, Poitevin G, Nguyen P, Beljebbar A. Subcutaneous and transcutaneous monitoring of murine hindlimb ischemia by in vivo Raman spectroscopy. Analyst 2019; 144:4677-4686. [PMID: 31268052 DOI: 10.1039/c8an02449a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the development of murine hindlimb ischemia from day 1 to day 55 after femoral artery ligation (FAL) using blood flow analysis, functional tests, histopathological staining, and in vivo Raman spectroscopy. FAL resulted in hindlimb blood deprivation and the loss of functionality as attested by the blood flow analysis and functional tests, respectively. The limbs recovered a normal circulation progressively without recovering complete functionality. Histological analysis showed changes in the morphology of muscle fibers with intense inflammation. From day 22 to day 55 post-ischemia, regeneration of the myofibers was observed. Raman spectroscopic results related to subcutaneous analysis made the identification of modification in the biochemical constituents of hindlimb muscles possible during disease progression. Ischemia was characterized by a quantitative increase in the lipid content and a decrease in the protein content. The lipid to protein ratio can be used as a spectroscopic marker to score the severity of ischemia. Multivariate statistical analysis PC-LDA (Principal Component-Linear Discriminant Analysis) was used to classify all the data measured for the normal and ischemic tissues. This classification illustrated an excellent separation between the control and ischemic tissues at any time during the course of ischemic development. In vivo Raman spectroscopy was then applied to assess the potential of this technique as a screening tool to explore an ischemic disease non-invasively (transcutaneously). For this purpose, the influence of skin on the diagnostic accuracy was evaluated; transcutaneous analysis revealed the accuracy of this technique, indicating its potential in the in situ monitoring of muscle structural changes during ischemia.
Collapse
Affiliation(s)
- Rida Al-Rifai
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Claire Tournois
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France and Laboratoire d'Hématologie, CHU Robert Debré, Reims, France
| | | | - Nicole Bouland
- Laboratoire d'Anatomopathologie, Université de Reims Champagne-Ardenne, France
| | - Gaël Poitevin
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Philippe Nguyen
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France and Laboratoire d'Hématologie, CHU Robert Debré, Reims, France
| | - Abdelilah Beljebbar
- BioSpectroscopie Translationnelle BioSpecT, EA 7506, Université de Reims Champagne-Ardenne, France.
| |
Collapse
|
47
|
Kwee BJ, Seo BR, Najibi AJ, Li AW, Shih TY, White D, Mooney DJ. Treating ischemia via recruitment of antigen-specific T cells. SCIENCE ADVANCES 2019; 5:eaav6313. [PMID: 31392268 PMCID: PMC6669016 DOI: 10.1126/sciadv.aav6313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
Ischemic diseases are a leading cause of mortality and can result in autoamputation of lower limbs. We explored the hypothesis that implantation of an antigen-releasing scaffold, in animals previously vaccinated with the same antigen, can concentrate TH2 T cells and enhance vascularization of ischemic tissue. This approach may be clinically relevant, as all persons receiving childhood vaccines recommended by the Centers for Disease Control and Prevention have vaccines that contain aluminum, a TH2 adjuvant. To test the hypothesis, mice with hindlimb ischemia, previously vaccinated with ovalbumin (OVA) and aluminum, received OVA-releasing scaffolds. Vaccinated mice receiving OVA-releasing scaffolds locally concentrated antigen-specific TH2 T cells in the surrounding ischemic tissue. This resulted in local angiogenesis, increased perfusion in ischemic limbs, and reduced necrosis and enhanced regenerating myofibers in the muscle. These findings support the premise that antigen depots may provide a treatment for ischemic diseases in patients previously vaccinated with aluminum-containing adjuvants.
Collapse
Affiliation(s)
- Brian J. Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Aileen W. Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Des White
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
48
|
Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling. Compr Physiol 2019; 9:1213-1247. [PMID: 31187898 DOI: 10.1002/cphy.c180026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.
Collapse
Affiliation(s)
| | - Xinggui Shen
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - John Glawe
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Gopi K Kolluru
- Departments of Pathology, LSU Health Sciences Center, Shreveport
| | - Christopher G Kevil
- Departments of Pathology, LSU Health Sciences Center, Shreveport.,Departments of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport.,Departments of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport
| |
Collapse
|
49
|
Liao L, Bai Y. The dynamics of monocytes in the process of collateralization. Aging Med (Milton) 2019; 2:50-55. [PMID: 31942512 PMCID: PMC6880710 DOI: 10.1002/agm2.12054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 12/16/2022] Open
Abstract
Collateralization is an important way for patients with coronary heart disease to supply blood flow to the ischemic area. At present, research on the mechanism of collateral circulation mainly focuses on the inflammatory response. Monocytes are the kernel of inflammatory response during arteriogenesis. Therefore, we reviewed the recent developments in this field in terms of the dynamic changes of monocytes during collateralization. We searched and scanned PubMed for the following terms until November 2018: collateral, collateralization, monocyte, macrophage, and arteriogenesis. Articles were obtained and examined to figure out the dynamics of monocytes in the progress of collateralization. Substantial research shows that recruitment, infiltration, and phenotypic transformation of monocytes can affect function in various ways, respectively. Mechanical or chemical factors that can produce effects on collateral development may be due partly to impact on dynamics of monocytes. Although mechanisms of dynamics of monocytes during arteriogenesis are not elucidated clearly, there is no doubt that deeper exploration of the underlying mechanisms will contribute to pharmaceutical development aiming for promoting collateral development.
Collapse
Affiliation(s)
- Long‐Sheng Liao
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
50
|
Osteopontin isoforms differentially promote arteriogenesis in response to ischemia via macrophage accumulation and survival. J Transl Med 2019; 99:331-345. [PMID: 29959420 PMCID: PMC6311150 DOI: 10.1038/s41374-018-0094-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
Osteopontin (OPN) is critical for ischemia-induced neovascularization. Unlike rodents, humans express three OPN isoforms (a, b, and c); however, the roles of these isoforms in post-ischemic neovascularization and cell migration remain undefined. Our objective was to determine if OPN isoforms differentially affect post-ischemic neovascularization and to elucidate the mechanisms underlying these differences. To investigate if human OPN isoforms exert divergent effects on post-ischemic neovascularization, we utilized OPN-/- mice and a loss-of-function/gain-of-function approach in vivo and in vitro. In this study OPN-/- mice underwent hindlimb ischemia surgery and 1.5 × 106 lentivirus particles were administered intramuscularly to overexpress OPNa, OPNb, or OPNc. OPNa and OPNc significantly improved limb perfusion 30.4% ± 0.8 and 70.9% ± 6.3, respectively, and this translated to improved functional limb use, as measured by voluntary running wheel utilization. OPNa- and OPNc-treated animals exhibited significant increases in arteriogenesis, defined here as the remodeling of existing arterioles into larger conductance arteries. Macrophages play a prominent role in the arteriogenesis process and OPNa- and OPNc-treated animals showed significant increases in macrophage accumulation in vivo. In vitro, OPN isoforms did not affect macrophage polarization, whereas all three isoforms increased macrophage survival and decreased macrophage apoptosis. However, OPN isoforms exert differential effects on macrophage migration, where OPNa and OPNc significantly increased macrophage migration, with OPNc serving as the most potent isoform. In conclusion, human OPN isoforms exert divergent effects on neovascularization through differential effects on arteriogenesis and macrophage accumulation in vivo and on macrophage migration and survival, but not polarization, in vitro. Altogether, these data support that human OPN isoforms may represent novel therapeutic targets to improve neovascualrization and preserve tissue function in patients with obstructive artery diseases.
Collapse
|