1
|
Yeves AM, Ennis IL. Na +/H + exchanger and cardiac hypertrophy. HIPERTENSION Y RIESGO VASCULAR 2019; 37:22-32. [PMID: 31601481 DOI: 10.1016/j.hipert.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Reactive cardiac hypertrophy (CH) is an increase in heart mass in response to hemodynamic overload. Exercise-induced CH emerges as an adaptive response with improved cardiac function, in contrast to pathological CH that represents a risk factor for cardiovascular health. The Na+/H+ exchanger (NHE-1) is a membrane transporter that not only regulates intracellular pH but also intracellular Na+ concentration. In the scenario of cardiovascular diseases, myocardial NHE-1 is activated by a variety of stimuli, such as neurohumoral factors and mechanical stress, leading to intracellular Na+ overload and activation of prohypertrophic cascades. NHE-1 hyperactivity is intimately linked to heart diseases, including ischemia-reperfusion injury, maladaptive CH and heart failure. In this review, we will present evidence to support that the NHE-1 hyperactivity constitutes a "switch on/off" for the pathological phenotype during CH development. We will also discuss some classical and novel strategies to avoid NHE-1 hyperactivity, and that are therefore worthwhile to improve cardiovascular health.
Collapse
Affiliation(s)
- A M Yeves
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata - CONICET, Calle 60 y 120, 1900 La Plata, Argentina
| | - I L Ennis
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata - CONICET, Calle 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
2
|
Piccin A, Murphy C, Eakins E, Rondinelli MB, Daves M, Vecchiato C, Wolf D, Mc Mahon C, Smith OP. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment. Eur J Haematol 2019; 102:319-330. [PMID: 30664257 DOI: 10.1111/ejh.13212] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Sickle cell anaemia (SCA) is the consequence of abnormal haemoglobin production due to an inherited point mutation in the β-globin gene. The resulting haemoglobin tetramer is poorly soluble when deoxygenated, and when this is prolonged, intracellular gelation of sickle haemoglobin occurs, followed by haemoglobin polymerisation. If many cycles of sickling and unsickling occur, the red cell membrane will be disrupted leading to haemolysis and vaso-occlusive events. Recent studies have also shown that leucocyte adhesion molecules and nitric oxide (NO) depletion are involved in endothelial damage. New insights in SCA pathophysiology and vascular biology have shown that cell-derived microparticle (MP) generation is also involved in the vaso-occlusion. Endothelial damage is perpetuated by impaired production or increased consumption of protective modulators such as protein C, protein S and NO. New therapeutic interventions should address these aspects of SCA pathogenesis. To date, the only US-FDA-approved therapy to prevent painful vaso-occulsive episodes is hydroxyurea that reduces haemoglobin polymerisation in sickle cells by increasing the production of foetal haemoglobin and L-glutamine. However, several new drugs have been tested in the last years in randomised clinical trials. We here report an update on the current status of knowledge on SCA.
Collapse
Affiliation(s)
- Andrea Piccin
- Department of Paediatric Haematology, Our Lady's Children's Hospital, Dublin, Ireland.,Internal Medicine V, University of Medicine, Innsbruck, Austria.,Transfusion Service, San Maurizio Regional Hospital, Bolzano, Italy.,Irish Blood Transfusion Service, Dublin, Ireland
| | | | - Elva Eakins
- Irish Blood Transfusion Service, Dublin, Ireland
| | | | - Massimo Daves
- Transfusion Service, San Maurizio Regional Hospital, Bolzano, Italy
| | - Cinzia Vecchiato
- Transfusion Service, San Maurizio Regional Hospital, Bolzano, Italy
| | - Dominik Wolf
- Internal Medicine V, University of Medicine, Innsbruck, Austria.,Medical Clinic 3, Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Corrina Mc Mahon
- Department of Paediatric Haematology, Our Lady's Children's Hospital, Dublin, Ireland.,University College Dublin (UCD), Dublin, Ireland
| | - Owen P Smith
- Department of Paediatric Haematology, Our Lady's Children's Hospital, Dublin, Ireland.,University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
3
|
Affiliation(s)
- Daniela Zablocki
- From Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark
| | - Junichi Sadoshima
- From Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark.
| |
Collapse
|
4
|
Månsson A. Hypothesis and theory: mechanical instabilities and non-uniformities in hereditary sarcomere myopathies. Front Physiol 2014; 5:350. [PMID: 25309450 PMCID: PMC4163974 DOI: 10.3389/fphys.2014.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), due to point mutations in genes for sarcomere proteins such as myosin, occurs in 1/500 people and is the most common cause of sudden death in young individuals. Similar mutations in skeletal muscle, e.g., in the MYH7 gene for slow myosin found in both the cardiac ventricle and slow skeletal muscle, may also cause severe disease but the severity and the morphological changes are often different. In HCM, the modified protein function leads, over years to decades, to secondary remodeling with substantial morphological changes, such as hypertrophy, myofibrillar disarray, and extensive fibrosis associated with severe functional deterioration. Despite intense studies, it is unclear how the moderate mutation-induced changes in protein function cause the long-term effects. In hypertrophy of the heart due to pressure overload (e.g., hypertension), mechanical stress in the myocyte is believed to be major initiating stimulus for activation of relevant cell signaling cascades. Here it is considered how expression of mutated proteins, such as myosin or regulatory proteins, could have similar consequences through one or both of the following mechanisms: (1) contractile instabilities within each sarcomere (with more than one stable velocity for a given load), (2) different tension generating capacities of cells in series. These mechanisms would have the potential to cause increased tension and/or stretch of certain cells during parts of the cardiac cycle. Modeling studies are used to illustrate these ideas and experimental tests are proposed. The applicability of similar ideas to skeletal muscle is also postulated, and differences between heart and skeletal muscle are discussed.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University Kalmar, Sweden
| |
Collapse
|
5
|
Hamad EA, Zhu W, Chan TO, Myers V, Gao E, Li X, Zhang J, Song J, Zhang XQ, Cheung JY, Koch W, Feldman AM. Cardioprotection of controlled and cardiac-specific over-expression of A(2A)-adenosine receptor in the pressure overload. PLoS One 2012; 7:e39919. [PMID: 22792196 PMCID: PMC3391213 DOI: 10.1371/journal.pone.0039919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
Adenosine binds to three G protein-coupled receptors (R) located on the cardiomyocyte (A(1)-R, A(2A)-R and A(3)-R) and provides cardiac protection during both ischemic and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress. Because of its ability to increase cardiac contractility and heart rate, we hypothesized that enhanced signaling through A(2A)-R would protect the heart during the stress of transverse aortic constriction (TAC). Using a cardiac-specific and inducible promoter, we selectively over-expressed A(2A)-R in FVB mice. Echocardiograms were obtained at baseline, 2, 4, 8, 12, 14 weeks and hearts were harvested at 14 weeks, when WT mice developed a significant decrease in cardiac function, an increase in end systolic and diastolic dimensions, a higher heart weight to body weight ratio (HW/BW), and marked fibrosis when compared with sham-operated WT. More importantly, these changes were significantly attenuated by over expression of the A(2A)-R. Furthermore, WT mice also demonstrated marked increases in the hypertrophic genes β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF)--changes that are mediated by activation of the transcription factor GATA-4. Levels of the mRNAs encoding β-MHC, ANP, and GATA-4 were significantly lower in myocardium from A(2A)-R TG mice after TAC when compared with WT and sham-operated controls. In addition, three inflammatory factors genes encoding cysteine dioxygenase, complement component 3, and serine peptidase inhibitor, member 3N, were enhanced in WT TAC mice, but their expression was suppressed in A(2A)-R TG mice. A(2A)-R over-expression is protective against pressure-induced heart failure secondary to TAC. These cardioprotective effects are associated with attenuation of GATA-4 expression and inflammatory factors. The A(2A)-R may provide a novel new target for pharmacologic therapy in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Eman A. Hamad
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Weizhong Zhu
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tung O. Chan
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Valerie Myers
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erhe Gao
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xue Li
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Jin Zhang
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Jianliang Song
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xue-Qian Zhang
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph Y. Cheung
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Walter Koch
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Arthur M. Feldman
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Cook JL, Re RN. Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol 2011; 302:R482-93. [PMID: 22170617 DOI: 10.1152/ajpregu.00493.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the classical renin-angiotensin system, circulating ANG II mediates growth stimulatory and hemodynamic effects through the plasma membrane ANG II type I receptor, AT1. ANG II also exists in the intracellular space in some native cells, and tissues and can be upregulated in diseases, including hypertension and diabetes. Moreover, intracellular AT1 receptors can be found associated with endosomes, nuclei, and mitochondria. Intracellular ANG II can function in a canonical fashion through the native receptor and also in a noncanonical fashion through interaction with alternative proteins. Likewise, the receptor and proteolytic fragments of the receptor can function independently of ANG II. Participation of the receptor and ligand in alternative intracellular pathways may serve to amplify events that are initiated at the plasma membrane. We review historical and current literature relevant to ANG II, compared with other intracrines, in tissue culture and transgenic models. In particular, we describe a new transgenic mouse model, which demonstrates that intracellular ANG II is linked to high blood pressure. Appreciation of the diverse, pleiotropic intracellular effects of components of the renin-angiotensin system should lead to alternative disease treatment targets and new therapies.
Collapse
Affiliation(s)
- Julia L Cook
- Laboratory of Molecular Genetics, Department of Research, New Orleans, LA 70121, USA.
| | | |
Collapse
|
7
|
Abstract
IGF-1 (insulin-like growth factor-1) plays a unique role in the cell protection of multiple systems, where its fine-tuned signal transduction helps to preserve tissues from hypoxia, ischaemia and oxidative stress, thus mediating functional homoeostatic adjustments. In contrast, its deprivation results in apoptosis and dysfunction. Many prospective epidemiological surveys have associated low IGF-1 levels with late mortality, MI (myocardial infarction), HF (heart failure) and diabetes. Interventional studies suggest that IGF-1 has anti-atherogenic actions, owing to its multifaceted impact on cardiovascular risk factors and diseases. The metabolic ability of IGF-1 in coupling vasodilation with improved function plays a key role in these actions. The endothelial-protective, anti-platelet and anti-thrombotic activities of IGF-1 exert critical effects in preventing both vascular damage and mechanisms that lead to unstable coronary plaques and syndromes. The pro-survival and anti-inflammatory short-term properties of IGF-1 appear to reduce infarct size and improve LV (left ventricular) remodelling after MI. An immune-modulatory ability, which is able to suppress 'friendly fire' and autoreactivity, is a proposed important additional mechanism explaining the anti-thrombotic and anti-remodelling activities of IGF-1. The concern of cancer risk raised by long-term therapy with IGF-1, however, deserves further study. In the present review, we discuss the large body of published evidence and review data on rhIGF-1 (recombinant human IGF-1) administration in cardiovascular disease and diabetes, with a focus on dosage and safety issues. Perhaps the time has come for the regenerative properties of IGF-1 to be assessed as a new pharmacological tool in cardiovascular medicine.
Collapse
|
8
|
Weeks KL, McMullen JR. The Athlete's Heart vs. the Failing Heart: Can Signaling Explain the Two Distinct Outcomes? Physiology (Bethesda) 2011; 26:97-105. [DOI: 10.1152/physiol.00043.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiac remodeling is typically associated with disease and can lead to heart failure. In contrast, remodeling that occurs in the athlete's heart is considered an adaptive physiological response. This review provides an overview of signaling mechanisms responsible for inducing left ventricular hypertrophy in the athlete's heart and in settings of pathological hypertrophy and heart failure.
Collapse
Affiliation(s)
- Kate L. Weeks
- Cardiac Hypertrophy Laboratory, Baker IDI Heart and Diabetes Institute, and
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Julie R. McMullen
- Cardiac Hypertrophy Laboratory, Baker IDI Heart and Diabetes Institute, and
| |
Collapse
|
9
|
Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin–angiotensin system. Basic Res Cardiol 2010; 105:513-22. [DOI: 10.1007/s00395-010-0093-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/18/2010] [Accepted: 03/10/2010] [Indexed: 01/01/2023]
|
10
|
Hingtgen SD, Li Z, Kutschke W, Tian X, Sharma RV, Davisson RL. Superoxide scavenging and Akt inhibition in myocardium ameliorate pressure overload-induced NF-κB activation and cardiac hypertrophy. Physiol Genomics 2010; 41:127-36. [PMID: 20103697 DOI: 10.1152/physiolgenomics.00202.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies from our laboratory and others have shown that increases in cytoplasmic superoxide (O(2)(·-)) levels and Akt activation play a key role in agonist-stimulated NF-κB activation and cardiomyocyte hypertrophy in vitro. In this study, we tested the hypothesis that adenovirus (Ad)-mediated intramyocardial gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD) or a dominant-negative form of Akt (AdDNAkt) in mice would attenuate pressure overload-induced increases in activation of the redox-sensitive transcription factor NF-κB and cardiac hypertrophy. Adult C57BL/6 mice were subjected to thoracic aortic banding (TAB) or sham surgery, and intramyocardial injections of viral vectors (AdCu/ZnSOD, AdDNAkt, or control) were performed. There was robust transgene expression in the heart, which peaked 6-7 days after injection and then declined to undetectable levels by 12-14 days. In mice injected with AdBgL II, TAB caused a significant increase in O(2)(·-) generation and cardiac mass at 1 wk, and these responses were markedly attenuated by AdCu/ZnSOD. In addition, TAB induced time-dependent activation of NF-κB in the myocardium as measured longitudinally by in vivo bioluminescent imaging of NF-κB-dependent luciferase expression. This was also abolished by intracardiac AdCu/ZnSOD or AdDNAkt, but not the control vector. The inhibition of Akt and O(2)(·-)-mediated NF-κB activation in TAB hearts was associated with an attenuation of cardiac hypertrophy. Since a direct cause-and-effect relationship between NF-κB activation and cardiomyocyte hypertrophy has been established previously, our data support the hypothesis that increased O(2)(·-) generation and Akt activation are key signaling intermediates in pressure overload-induced activation of NF-κB and cardiac hypertrophy.
Collapse
Affiliation(s)
- Shawn D Hingtgen
- Department of Anatomy and Cell Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
11
|
Impaired angiotensin II-extracellular signal-regulated kinase signaling in failing human ventricular myocytes. J Hypertens 2008; 26:2030-9. [PMID: 18806628 DOI: 10.1097/hjh.0b013e328308de68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiotensin II was reported to induce insulin-like growth factor-I and endothelin-1 gene expression and peptide release by ventricular cardiomyocytes. However, the progression from cardiac hypertrophy to failure in humans is characterized by a reduced myocyte expression of insulin-like growth factor-I and endothelin-1, notwithstanding the enhanced cardiac generation of angiotensin II. In the present study we investigated the functional status of the signaling pathways responsible for angiotensin II-induced endothelin-1 and insulin-like growth factor-I formation in human ventricular myocytes isolated from patients with dilated (n = 19) or ischemic (n = 14) cardiomyopathy and nonfailing donor hearts (n = 6).In human nonfailing ventricular myocytes, angiotensin II (100 nmol/l) induced insulin-like growth factor-I and endothelin-1 gene expression, and peptide release was mediated by extracellular signal-regulated kinase activation and inhibited by extracellular signal-regulated kinase antagonism (PD98059, 30 micromol/l), endothelin-1 formation being partially reduced also by c-Jun N-terminal kinase inhibition (SP600125, 10 micromol/l); insulin-like growth factor-I and endothelin-1 formations were unaffected by the inhibition of p38 mitogen-activated protein kinase (SB203580, 10 micromol/l) and Janus tyrosine kinase 2 (AG490, 10 micromol/l). In failing myocytes, angiotensin II failed to induce insulin-like growth factor-I and endothelin-1 formation; angiotensin II-induced extracellular signal-regulated kinase activation was significantly impaired (-88% vs. controls) although c-Jun NH2-terminal kinase activation was preserved. The impaired extracellular signal-regulated kinase phosphorylation in failing myocytes was associated with increased myocyte levels of mitogen-activated protein kinase phosphatases.Therefore, the altered growth factor production in failing myocytes is associated with a significant derangement in intracellular signaling.
Collapse
|
12
|
Anger T, Grebe N, Osinski D, Stelzer N, Carson W, Daniel WG, Hoeher M, Garlichs CD. Role of endogenous RGS proteins on endothelial ERK 1/2 activation. Exp Mol Pathol 2008; 85:165-73. [PMID: 18977218 DOI: 10.1016/j.yexmp.2008.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 09/23/2008] [Indexed: 11/27/2022]
Abstract
Endothelial cells are maintaining atherosclerotic signaling mediated by Extracellular Regulated Kinases 1 and 2 (ERK). Signaling gets activated upon stimulation of G protein-coupled receptors mediated by G(q) and G(i/o) proteins subjected to regulation by RGS proteins. The goal of the study was to delineate the specificity of RGS proteins modulating induced ERK phosphorylation. We used stimulated HUVEC, silenced specifically RGS proteins and compared assessed ERK 1/2 activation with immunohistochemical stainings on atherosclerotic plaques. Increased ERK phosphorylation was detected upon stimulation with Phenylephrine (2.6+/-0.1 times over basal), Endothelin-1 (1.8+/-0.2), Dopamine (5.1+/-0.2), TNF (9.8+/-0.7) or IL-4 (3.1+/-0.3). RGS silencing increased activation of ERK 1/2: Phen (RGS3, 5), ET-1 (RGS3, 4), Dopa (RGS3), TNF (RGS2, 3, 4) or IL-4 (RGS2, 3, 4). Immunohistochemically, increased ERK activation was detected on atherosclerotic plaques. This data supports the role of RGS proteins on ERK activation in human atherosclerosis which identifies RGS proteins as new therapeutical targets.
Collapse
Affiliation(s)
- Thomas Anger
- Department for Cardiology, Friedrich-Alexander University of Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Endothelin-1 system activation plays an important role in the etiology of atherosclerotic vascular disease. Aging and hypertension are two independent cardiovascular risk factors that have been shown to exhibit increased endothelin-1 system activation. This review focuses on the cardiovascular effects of the endothelin system, its relation to aging and hypertension, as well as potential treatment options. RECENT FINDINGS Many of the cardiovascular complications associated with both aging and hypertension are attributable, in part, to endothelial dysfunction, particularly vasomotor dysregulation. To date most studies have focused on the effects of aging and hypertension on endothelium-dependent nitric oxide-mediated vasodilation. However, endothelin-1-mediated vasoconstrictor tone increases with age and contributes to the pathogenesis of hypertension. Pharmacologic approaches to reduce endothelin-1 system activation have produced limited results and are largely disease-specific. In contrast, regular aerobic exercise has been shown to be extremely effective at reducing endothelin-1 system activity. SUMMARY Both aging and hypertension represent important cardiovascular disease risk factors that are characterized by increased endothelin-1-mediated vasoconstrictor tone. Future studies are needed to elucidate pharmacologic options for reducing endothelin-1 system activity especially in older hypertensive adults, though regular aerobic exercise must continue to be a point of emphasis for maintaining/improving vascular health.
Collapse
|
14
|
MESH Headings
- Amiloride/pharmacology
- Amiloride/therapeutic use
- Angiotensin II/physiology
- Animals
- Calcium Signaling
- Carbonic Anhydrase II/physiology
- Cardiomegaly/physiopathology
- Cardiomegaly/prevention & control
- Cation Transport Proteins/antagonists & inhibitors
- Cation Transport Proteins/chemistry
- Cation Transport Proteins/physiology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Endothelins/physiology
- Heart Failure/drug therapy
- Heart Failure/etiology
- Heart Failure/physiopathology
- Hormones/physiology
- Humans
- Hydrogen/metabolism
- Hydrogen-Ion Concentration
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- MAP Kinase Signaling System
- Mice
- Mitochondria, Heart/drug effects
- Models, Cardiovascular
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Rabbits
- Rats
- Rats, Inbred SHR
- Reactive Oxygen Species
- Signal Transduction
- Sodium/metabolism
- Sodium-Hydrogen Exchanger 1
- Sodium-Hydrogen Exchangers/antagonists & inhibitors
- Sodium-Hydrogen Exchangers/chemistry
- Sodium-Hydrogen Exchangers/physiology
- Stress, Mechanical
- Swine
Collapse
Affiliation(s)
- Horacio E Cingolani
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina.
| | | |
Collapse
|
15
|
Abstract
Ventricular remodelling describes structural changes in the left ventricle in response to chronic alterations in loading conditions, with three major patterns: concentric remodelling, when a pressure load leads to growth in cardiomyocyte thickness; eccentric hypertrophy, when a volume load produces myocyte lengthening; and myocardial infarction, an amalgam of patterns in which stretched and dilated infarcted tissue increases left-ventricular volume with a combined volume and pressure load on non-infarcted areas. Whether left-ventricular hypertrophy is adaptive or maladaptive is controversial, as suggested by patterns of signalling pathways, transgenic models, and clinical findings in aortic stenosis. The transition from apparently compensated hypertrophy to the failing heart indicates a changing balance between metalloproteinases and their inhibitors, effects of reactive oxygen species, and death-promoting and profibrotic neurohumoral responses. These processes are evasive therapeutic targets. Here, we discuss potential novel therapies for these disorders, including: sildenafil, an unexpected option for anti-transition therapy; surgery for increased sphericity caused by chronic volume overload of mitral regurgitation; an antifibrotic peptide to inhibit the fibrogenic effects of transforming growth factor beta; mechanical intervention in advanced heart failure; and stem-cell therapy.
Collapse
Affiliation(s)
- Lionel H Opie
- Hatter Institute for Heart Research, Cape Heart Centre and Department of Medicine, University of Cape Town Faculty of Health Sciences, Observatory 7925, Cape Town, South Africa.
| | | | | | | |
Collapse
|
16
|
Desjardins F, Aubin MC, Carrier M, Perrault LP. Decrease of Endothelin Receptor Subtype ETB and Release of COX-Derived Products Contribute to Endothelial Dysfunction of Porcine Epicardial Coronary Arteries in Left Ventricular Hypertrophy. J Cardiovasc Pharmacol 2005; 45:499-508. [PMID: 15897775 DOI: 10.1097/01.fjc.0000159641.36900.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alterations in the regulation of coronary circulation play a major role in the enhanced susceptibility to ischemic injury of the myocardium in left ventricular hypertrophy (LVH). The present study was designed to assess the role of endothelium-dependent contracting factors and endothelin receptors in the coronary endothelial dysfunction in LVH, occurring 2 months after aortic banding in a swine model. Hemodynamic and morphologic analyses were performed in LVH and control groups. Vascular reactivity studies were performed in rings from control and aortic banding groups to assess the contribution of endothelin (ET-1) receptor subtypes to the contraction induced by ET-1 and IRL-1620 (an ETB receptor agonist), with and without endothelium. The effects of cyclooxygenase (COX)-derived products induced by ET-1, serotonin (5-HT), and bradykinin (BK) were evaluated, with or without indomethacin (a COX antagonist). ET-1 receptor density was assessed by confocal microscopy and Western blot experiments. The wall-to-lumen ratio, determined in digital planimetry, was increased in the LVH group with no significant changes in coronary perfusion pressures. There was a significant increase in contractions to ET-1 in the LVH group, which were reduced by exposure to indomethacin and daltroban (thromboxane A2 [TXA2] receptor antagonist). Relaxations to 5-HT and BK were improved by indomethacin in the LVH group. There was no significant change in ETA receptor density (3.113 +/- 0.389 vs 3.594 +/- 0.314) but a decrease in ETB receptor density (6.435 +/- 0.265 vs 4.588 +/- 0.089; P < 0.001) in the LVH group. The coronary endothelial dysfunction of swine epicardial coronary arteries in LVH secondary to 2 months of aortic banding involves both relaxing and contracting factors. ETA receptors and COX-derived products are preferentially implicated in the increased contractions to ET-1. Strategies aimed at decreasing ET-1 effects with ET-1 antagonists selective for ETA receptors could improve the coronary endothelial dysfunction in LVH.
Collapse
Affiliation(s)
- Fanny Desjardins
- Research Center, Department of Pharmacology, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI, Gallagher PE. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111:2605-10. [PMID: 15897343 DOI: 10.1161/circulationaha.104.510461] [Citation(s) in RCA: 1198] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) has emerged as a novel regulator of cardiac function and arterial pressure by converting angiotensin II (Ang II) into the vasodilator and antitrophic heptapeptide, angiotensin-(1-7) [Ang-(1-7)]. As the only known human homolog of ACE, the demonstration that ACE2 is insensitive to blockade by ACE inhibitors prompted us to define the effect of ACE inhibition on the ACE2 gene. METHODS AND RESULTS Blood pressure, cardiac rate, and plasma and cardiac tissue levels of Ang II and Ang-(1-7), together with cardiac ACE2, neprilysin, Ang II type 1 receptor (AT1), and mas receptor mRNAs, were measured in Lewis rats 12 days after continuous administration of vehicle, lisinopril, losartan, or both drugs combined in their drinking water. Equivalent decreases in blood pressure were obtained in rats given lisinopril or losartan alone or in combination. ACE inhibitor therapy caused a 1.8-fold increase in plasma Ang-(1-7), decreased plasma Ang II, and increased cardiac ACE2 mRNA but not cardiac ACE2 activity. Losartan increased plasma levels of both Ang II and Ang-(1-7), as well as cardiac ACE2 mRNA and cardiac ACE2 activity. Combination therapy duplicated the effects found in rats medicated with lisinopril, except that cardiac ACE2 mRNA fell to values found in vehicle-treated rats. Losartan treatment but not lisinopril increased cardiac tissue levels of Ang II and Ang-(1-7), whereas none of the treatments had an effect on cardiac neprilysin mRNA. CONCLUSIONS Selective blockade of either Ang II synthesis or activity induced increases in cardiac ACE2 gene expression and cardiac ACE2 activity, whereas the combination of losartan and lisinopril was associated with elevated cardiac ACE2 activity but not cardiac ACE2 mRNA. Although the predominant effect of ACE inhibition may result from the combined effect of reduced Ang II formation and Ang-(1-7) metabolism, the antihypertensive action of AT1 antagonists may in part be due to increased Ang II metabolism by ACE2.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Modesti PA, Vanni S, Bertolozzi I, Cecioni I, Lumachi C, Perna AM, Boddi M, Gensini GF. Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension 2003; 43:101-8. [PMID: 14638623 DOI: 10.1161/01.hyp.0000104720.76179.18] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanical factors play a key role in activation of cardiac growth factor response in hemodynamic overload, and both cooperate in myocardial remodeling. The present study was performed to investigate whether a different growth factor response is activated in the right and left ventricles in aortocaval fistula and its effects on regional myocardial adaptation. Relations between regional growth factor expression (angiotensin II, insulin-like growth factor-I, and endothelin-1), myocyte shape changes, and collagen deposition were investigated at mRNA and peptide levels in adult pigs after the creation of an aortocaval fistula distal to the renal arteries (n=15) and in sham-operated animals (n=15). The role of angiotensin II was investigated by the administration of angiotensin-converting enzyme inhibitor or angiotensin II receptor antagonist. In the left ventricle, pure volume overload was accompanied by persistent increase of insulin-like growth factor-I mRNA expression, peptide concentration (2.2-fold versus sham at 3 months, P<0.05), and significant increase of myocyte length (+29% at 3 months, P<0.05). Conversely, the mixed pressure-volume overload faced by the right ventricle resulted in significant regional overexpression of all growth factors investigated (angiotensin II, insulin-like growth factor-I, and endothelin-1), with corresponding increase of myocyte diameter and length and collagen deposition (+117% at 3 months). Collagen accumulation in the right ventricle as well as the increase in right ventricular end-diastolic pressure at the 3-month observation were inhibited by angiotensin II antagonism. The left and right ventricles respond differently to aortocaval fistula, and local growth factor expression is closely related to the regional myocardial adaptation.
Collapse
Affiliation(s)
- Pietro Amedeo Modesti
- Clinica Medica Generale e Cardiologia, University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|