1
|
Niedbalski PJ, Cochran AS, Akinyi TG, Thomen RP, Fugate EM, Lindquist DM, Pratt RG, Cleveland ZI. Preclinical hyperpolarized 129 Xe MRI: ventilation and T 2 * mapping in mouse lungs at 7 T using multi-echo flyback UTE. NMR IN BIOMEDICINE 2020; 33:e4302. [PMID: 32285574 PMCID: PMC7702724 DOI: 10.1002/nbm.4302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 05/13/2023]
Abstract
Fast apparent transverse relaxation (short T2 *) is a common obstacle when attempting to perform quantitative 1 H MRI of the lungs. While T2 * times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129 Xe), T2 * can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T2 * of HP 129 Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi-echo radial flyback imaging sequence and use it to measure HP 129 Xe T2 * at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T1 relaxation outside the animal by using multiple gradient-refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129 Xe T2 * in vivo for 10 healthy C57Bl/6 J mice and found T2 * ~ 5 ms in the lung airspaces. Interestingly, T2 * was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O2 content of the inhaled gas mixture. These results are discussed in the context of T2 * relaxation within porous media.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Alexander S. Cochran
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Teckla G. Akinyi
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Robert P. Thomen
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Diana M. Lindquist
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ronald G. Pratt
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Fan X, Fayer SE, Gabrielse G. Gaseous 3He nuclear magnetic resonance probe for cryogenic environments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:083107. [PMID: 31472665 DOI: 10.1063/1.5099379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Normal nuclear magnetic resonance (NMR) probes cannot be used to make high frequency resolution measurements in a cryogenic environment because they lose their frequency resolution when the liquid sample in the probe freezes. A gaseous 3He NMR probe, designed and constructed to work naturally in such cryogenic environments, is demonstrated at 4.2 K and 5.3 T to have a frequency resolution better than 0.4 ppb. As a demonstration of its usefulness, the cryogenic probe is used to shim a superconducting solenoid with a cryogenic interior to produce a magnetic field with a high spatial homogeneity and to measure the magnetic field stability.
Collapse
Affiliation(s)
- X Fan
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - S E Fayer
- Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
| | - G Gabrielse
- Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
3
|
Fast quantum control in dissipative systems using dissipationless solutions. Sci Rep 2019; 9:4048. [PMID: 30858537 PMCID: PMC6412050 DOI: 10.1038/s41598-019-39731-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/31/2019] [Indexed: 11/24/2022] Open
Abstract
We report on a systematic geometric procedure, built up on solutions designed in the absence of dissipation, to mitigate the effects of dissipation in the control of open quantum systems. Our method addresses a standard class of open quantum systems that encompasses non-Hermitian Hamiltonians. It provides the analytical expression of the extra magnetic field to be superimposed to the driving field in order to compensate the geometric distortion induced by dissipation for spin systems, and produces an exact geometric optimization of fast population transfer. Interestingly, it also preserves the robustness properties of protocols originally optimized against noise. Its extension to two interacting spins restores a fidelity close to unity for the fast generation of Bell state in the presence of dissipation.
Collapse
|
4
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
5
|
Yu J, Law M, Kadlecek S, Emami K, Ishii M, Stephen M, Woodburn JM, Vahdat V, Rizi RR. Simultaneous measurement of pulmonary partial pressure of oxygen and apparent diffusion coefficient by hyperpolarized 3He MRI. Magn Reson Med 2009; 61:1015-21. [PMID: 19230017 DOI: 10.1002/mrm.21854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hyperpolarized (3)He (HP (3)He) MRI shows promise to assess structural and functional pulmonary parameters in a sensitive, regional, and noninvasive way. Structural HP (3)He MRI has applied the apparent diffusion coefficient (ADC) for the detection of disease-induced lung microstructure changes at the alveolar level, and HP (3)He pulmonary partial pressure of oxygen (pO(2)) imaging measures the oxygen transfer efficiency between the lung and blood stream. Although both parameters are affected in chronic obstructive pulmonary disease (COPD), a quantitative assessment of the regional correlation of the two parameters has not been reported in the literature. In this work, a single acquisition technique for the simultaneous measurement of ADC and pO(2) is presented. This technique is based on the multiple regression method, in which a general linear estimator is used to retrieve the values of ADC and pO(2) from a series of measurements. The measurement uncertainties are also analytically derived and used to find an optimal measurement scheme. The technique was first tested on a phantom model, and then on an in vivo normal pig experiment. A case study was performed on a COPD patient, which showed that in a region of interest ADC was 29% higher while oxygen depletion rate was 61% lower than the corresponding global average values.
Collapse
Affiliation(s)
- Jiangsheng Yu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
McIver JW, Erwin R, Chen WC, Gentile TR. End-compensated magnetostatic cavity for polarized 3He neutron spin filters. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:063905. [PMID: 19566213 DOI: 10.1063/1.3154386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have expanded upon the "Magic Box" concept, a coil driven magnetic parallel plate capacitor constructed out of mu-metal, by introducing compensation sections at the ends of the box that are tuned to limit end-effects similar to those of short solenoids. This ability has reduced the length of the magic box design without sacrificing any loss in field homogeneity, making the device far more applicable to the often space limited neutron beam line. The appeal of the design beyond affording longer polarized 3He lifetimes is that it provides a vertical guide field, which facilitates neutron spin transport for typical polarized beam experiments. We have constructed two end-compensated magic boxes of dimensions 28.4 x 40 x 15 cm3 (length x width x height) with measured, normalized volume-averaged transverse field gradients ranging from 3.3 x 10(-4) to 6.3 x 10(-4) cm(-1) for cell sizes ranging from 8.1 x 6.0 to 12.0 x 7.9 cm2 (diameter x length), respectively.
Collapse
Affiliation(s)
- J W McIver
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | | | | | | |
Collapse
|
7
|
Fain SB, Korosec FR, Holmes JH, O'Halloran R, Sorkness RL, Grist TM. Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging 2007; 25:910-23. [PMID: 17410561 DOI: 10.1002/jmri.20876] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The noninvasive assessment of lung function using imaging is increasingly of interest for the study of lung diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Hyperpolarized gas MRI (HP MRI) has demonstrated the ability to detect changes in ventilation, perfusion, and lung microstructure that appear to be associated with both normal lung development and disease progression. The physical characteristics of HP gases and their application to MRI are presented with an emphasis on current applications. Clinical investigations using HP MRI to study asthma, COPD, cystic fibrosis, pediatric chronic lung disease, and lung transplant are reviewed. Recent advances in polarization, pulse sequence development for imaging with Xe-129, and prototype low magnetic field systems dedicated to lung imaging are highlighted as areas of future development for this rapidly evolving technology.
Collapse
Affiliation(s)
- Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Shanbhag DD, Altes TA, Miller GW, Mata JF, Knight-Scott J. q-space analysis of lung morphometry in vivo with hyperpolarized3He spectroscopy. J Magn Reson Imaging 2006; 24:84-94. [PMID: 16767705 DOI: 10.1002/jmri.20618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To examine the utility of a (3)He spectroscopic q-space technique for detecting changes in lung morphometry in vivo. MATERIALS AND METHODS A diffusion-weighted spectroscopy sequence was used to collect global diffusion data from healthy adults (N = 11), healthy children (N = 5), and chronic obstructive pulmonary disease (COPD) patients (N = 2) using 40 cc of hyperpolarized (3)He gas within a two second breathhold. Displacement probability profiles (DPP) were obtained by Fourier transformation of diffusion data with respect to q. A bi-Gaussian model was used to decompose the DPPs into narrow and broad components, characterized by root-mean-square displacements X(rms1) and X(rms2), respectively. RESULTS In healthy adults, the narrow component (X(rms,1)) of the DPP had a mean displacement of 188 +/- 10 microm, slightly less than the reported average size of the alveoli. The broad component (X(rms,2)) had a mean value of 474 +/- 44 microm, comparable to the diameter of the respiratory bronchioles in the acinus. In children, both X(rms1) (167 +/- 4 microm) and X(rms2) (382 +/- 22 microm) compared to healthy adults (P < 0.01). In COPD patients, the mean displacements were elevated (X(rms1): 265 +/- 71 microm; X(rms2): 530 +/- 109 microm) compared to healthy adults. Excellent correlation was found between rms displacements and age (age vs. X(rms,1): r = 0.78, P < 0.001; age vs. X(rms,2): r = 0.90, P < 0.001). CONCLUSION The q-space parameters agreed remarkably well with published alveolar morphometry data. The results suggest that the technique may be sensitive to disease, as evident from the elevated mean displacements in COPD patients compared to healthy volunteers. Detailed lung microstructural information can be obtained using a very low volume of inhaled (3)He.
Collapse
Affiliation(s)
- Dattesh D Shanbhag
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
9
|
Gladden L, Mantle M, Sederman A. Magnetic Resonance Imaging of Catalysts and Catalytic Processes. ADVANCES IN CATALYSIS 2006. [DOI: 10.1016/s0360-0564(06)50001-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Kober F, Wolf PE, Vermeulen G, Duhamel G, Lamalle L, Leviel JL, Décorps M, Ziegler A. Rat lung MRI using low-temperature prepolarized helium-3. Magn Reson Med 2001; 45:1130-3. [PMID: 11378894 DOI: 10.1002/mrm.1150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to evaluate the recently proposed technique of 3He prepolarization at low temperature and high field (Kober et al. Magn Reson Med 1999; 41:1084-1087) for fast imaging of the lung. Helium-3 was cooled to 2.4 K in a magnetic field of 8 Tesla to obtain a polarization of 0.26%. The polarized 3He was warmed up to room temperature and transferred to a rat, with a final polarization of about 0.1%, large enough for acquiring a 3D image of the rat lung in 30 s.
Collapse
Affiliation(s)
- F Kober
- Laboratoire mixte INSERM U438/Université Joseph Fourier: RMN Bioclinique, Laboratoire de Recherche Correspondant du CEA, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Koptyug IV, Altobelli SA, Fukushima E, Matveev AV, Sagdeev RZ. Thermally polarized (1)H NMR microimaging studies of liquid and gas flow in monolithic catalysts. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 147:36-42. [PMID: 11042045 DOI: 10.1006/jmre.2000.2186] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The feasibility of gas flow imaging in moderately high magnetic fields employing thermally polarized gases at atmospheric pressures is demonstrated experimentally. Two-dimensional spatial maps of flow velocity distributions for acetylene, propane, and butane flowing along the transport channels of shaped monolithic alumina catalysts were obtained at 7 T by (1)H NMR, with true in-plane resolution of 400 &mgr;m and reasonable detection times. The resolution is shown to be limited by the echo attenuation due to rapid molecular diffusion in the imaging gradients of magnetic field. All gas flow images exhibit flow patterns that are not fully developed, in agreement with the range of Reynolds numbers (190-570) and the length of the sample used in gas flow experiments. The flow maps reveal the highly nonuniform spatial distribution of shear rates within the monolith channels of square cross-section, the kind of information essential for evaluation and improvement of the efficiency of mass transfer in shaped catalysts. The water flow images were obtained at lower Re numbers for comparison. These images demonstrate the transformation of a transient flow pattern observed closer to the inflow edge of a monolith into a fully developed one further downstream. Copyright 2000 Academic Press.
Collapse
Affiliation(s)
- IV Koptyug
- International Tomography Center, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|