1
|
Niess F, Roat S, Bogner W, Krššák M, Kemp GJ, Schmid AI, Trattnig S, Moser E, Zaitsev M, Meyerspeer M. 3D localized lactate detection in muscle tissue using double-quantum filtered 1 H MRS with adiabatic refocusing pulses at 7 T. Magn Reson Med 2021; 87:1174-1183. [PMID: 34719061 DOI: 10.1002/mrm.29061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Lactate is a key metabolite in skeletal muscle and whole-body physiology. Its MR visibility in muscle is affected by overlapping lipid signals and fiber orientation. Double-quantum filtered (DQF) 1 H MRS selectively detects lactate at 1.3 ppm, but at ultra-high field the efficiency of slice-selective 3D-localization with conventional RF pulses is limited by bandwidth. This novel 3D-localized 1 H DQF MRS sequence uses adiabatic refocusing pulses to unambiguously detect lactate in skeletal muscle at 7 T. METHODS Lactate double-quantum coherences were 3D-localized using slice-selective Shinnar-Le Roux optimized excitation and adiabatic refocusing pulses (similar to semi-LASER). DQF MR spectra were acquired at 7 T from lactate phantoms, meat specimens with injected lactate (exploring multiple TEs and fiber orientations), and human gastrocnemius in vivo during and after exercise (without cuff ischemia). RESULTS Lactate was readily detected, achieving the full potential of 50% signal with a DQF, in solution. The effects of fiber orientation and TE on the lactate doublet (peak splitting, amplitude, and phase) were in good agreement with theory and literature. Exercise-induced lactate accumulation was detected with 30 s time resolution. CONCLUSION This novel 3D-localized 1 H DQF MRS sequence can dynamically detect glycolytically generated lactate in muscle during exercise and recovery at 7 T.
Collapse
Affiliation(s)
- Fabian Niess
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.,High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Sigrun Roat
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Graham J Kemp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Albrecht I Schmid
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ewald Moser
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Maxim Zaitsev
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Payne GS, Harris LM, Cairns GS, Messiou C, deSouza NM, Macdonald A, Saran F, Leach MO. Validating a robust double-quantum-filtered (1) H MRS lactate measurement method in high-grade brain tumours. NMR IN BIOMEDICINE 2016; 29:1420-6. [PMID: 27514007 PMCID: PMC5042032 DOI: 10.1002/nbm.3587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 05/23/2023]
Abstract
(1) H MRS measurements of lactate are often confounded by overlapping lipid signals. Double-quantum (DQ) filtering eliminates lipid signals and permits single-shot measurements, which avoid subtraction artefacts in moving tissues. This study evaluated a single-voxel-localized DQ filtering method qualitatively and quantitatively for measuring lactate concentrations in the presence of lipid, using high-grade brain tumours in which the results could be compared with standard acquisition as a reference. Paired standard acquisition and DQ-filtered (1) H MR spectra were acquired at 3T from patients receiving treatment for glioblastoma, using fLASER (localization by adiabatic selective refocusing using frequency offset corrected inversion pulses) single-voxel localization. Data were acquired from 2 × 2 × 2 cm(3) voxels, with a repetition time of 1 s and 128 averages (standard acquisition) or 256 averages (DQ-filtered acquisition), requiring 2.15 and 4.3 min respectively. Of 37 evaluated data pairs, 20 cases (54%) had measureable lactate (fitted Cramér-Rao lower bounds ≤ 20%) in either the DQ-filtered or the standard acquisition spectra. The measured DQ-filtered lactate signal was consistently downfield of lipid (1.33 ± 0.03 ppm vs 1.22 ± 0.08 ppm; p = 0.002), showing that it was not caused by lipid breakthrough, and that it matched the lactate signal seen in standard measurements (1.36 ± 0.02 ppm). In the absence of lipid, similar lactate concentrations were measured by the two methods (mean ratio DQ filtered/standard acquisition = 1.10 ± 0.21). In 7/20 cases with measurable lactate, signal was not measureable in the standard acquisition owing to lipid overlap but was quantified in the DQ-filtered acquisition. Conversely, lactate was undetected in seven DQ-filtered acquisitions but visible using the standard acquisition. In conclusion, the DQ filtering method has proven robust in eliminating lipid and permits uncontaminated measurement of lactate. This is important validation prior to use in tissues outside the brain, which contain large amounts of lipid and which are often susceptible to motion.
Collapse
Affiliation(s)
- G S Payne
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK.
| | - L M Harris
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| | - G S Cairns
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| | - C Messiou
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| | - N M deSouza
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| | - A Macdonald
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| | - F Saran
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| | - M O Leach
- MRI Unit, Royal Marsden Hospital, Sutton, Surrey, UK
| |
Collapse
|
3
|
Payne GS, deSouza NM, Messiou C, Leach MO. Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter. NMR IN BIOMEDICINE 2015; 28:496-504. [PMID: 25802214 PMCID: PMC4737099 DOI: 10.1002/nbm.3276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 05/15/2023]
Abstract
Measurement of tissue lactate using (1) H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single-voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (-CH) resonance and the 1.3 ppm -CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi-LASER sequence was written ("FOCI-LASER", abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF-fLASER, includes a selective multiple-quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF-fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple-quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single-voxel single-shot MQF-fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti-cancer treatments as well as in measurements of tissue hypoxia.
Collapse
Affiliation(s)
- Geoffrey S Payne
- Cancer Research UK Cancer Imaging Centre, Royal Marsden Hospital and Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | |
Collapse
|
4
|
Mellon EA, Lee SC, Pickup S, Kim S, Goldstein SC, Floyd TF, Poptani H, Delikatny EJ, Reddy R, Glickson JD. Detection of lactate with a hadamard slice selected, selective multiple quantum coherence, chemical shift imaging sequence (HDMD-SelMQC-CSI) on a clinical MRI scanner: Application to tumors and muscle ischemia. Magn Reson Med 2010; 62:1404-13. [PMID: 19785016 DOI: 10.1002/mrm.22141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lactate is an important metabolite in normal and malignant tissues detectable by NMR spectroscopy; however, it has been difficult to clinically detect the lactate methyl resonance because it is obscured by lipid resonances. The selective homonuclear multiple quantum coherence transfer technique offers a method for distinguishing lipid and lactate resonances. We implemented a three-dimensional selective homonuclear multiple quantum coherence transfer version with Hadamard slice selection and two-dimensional phase encoding (Hadamard encoded-selective homonuclear multiple quantum coherence transfer-chemical shift imaging) on a conventional clinical MR scanner. Hadamard slice selection is explained and demonstrated in vivo. This is followed by 1-cm(3) resolution lactate imaging with detection to 5-mM concentration in 20 min on a 3-T clinical scanner. An analysis of QSel gradient duration and amplitude effects on lactate and lipid signal is presented. To demonstrate clinical feasibility, a 5-min lactate scan of a patient with a non-Hodgkin's lymphoma in the superficial thigh is reported. The elevated lactate signal coincides with the T(2)-weighted image of this tumor. As a test of selective homonuclear multiple quantum coherence transfer sensitivity, a thigh tourniquet was applied to a normal volunteer and an increase in lactate was detected immediately after tourniquet flow constriction. In conclusion, the Hadamard encoded-selective homonuclear multiple quantum coherence transfer-chemical shift imaging sequence is demonstrated on a phantom and in two lipid-rich, clinically relevant, in vivo conditions.
Collapse
Affiliation(s)
- Eric A Mellon
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pickup S, Lee SC, Mancuso A, Glickson JD. Lactate imaging with Hadamard-encoded slice-selective multiple quantum coherence chemical-shift imaging. Magn Reson Med 2008; 60:299-305. [PMID: 18666110 DOI: 10.1002/mrm.21659] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability to generate in vivo maps of lactate may have significant diagnostic utility in staging and treatment planning of a wide variety of cancers. The double selective multiple quantum filter technique (SelMQC) has been shown to be effective for nonlocalized detection of lactate with little or no interference from other signals. Here the SelMQC technique has been combined with longitudinal Hadamard slice selection and chemical shift imaging (CSI) to yield slice-selective images of lactate. The technique is shown to be effective in phantoms and in WSU-DLCL2 xenografts implanted in flanks of SCID mice. Tumors exhibited an annulus of elevated lactate concentration surrounding a necrotic tumor core.
Collapse
Affiliation(s)
- Stephen Pickup
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
6
|
Trabesinger AH, Meier D, Boesiger P. In vivo 1H NMR spectroscopy of individual human brain metabolites at moderate field strengths. Magn Reson Imaging 2003; 21:1295-302. [PMID: 14725936 DOI: 10.1016/j.mri.2003.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This article reviews spectral editing techniques for in vivo 1H NMR spectroscopy of human brain tissue at moderate field strengths of 1.5-3 Tesla. Various aspects of 1H NMR spectroscopy are discussed with regard to in vivo applications. The parameter set [delta, J, n] (delta being the relative chemical shift, J the scalar coupling constant and n the number of coupled spins) is used to characterize the spin systems under investigation and to classify the editing techniques that are used in in vivo 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Andreas H Trabesinger
- Institute for Biomedical Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | | |
Collapse
|
7
|
Shen J. Slice-selective J-coupled coherence transfer using symmetric linear phase pulses: applications to localized GABA spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 163:73-80. [PMID: 12852909 DOI: 10.1016/s1090-7807(03)00112-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Symmetric, linear phase, slice-selective RF pulses were analyzed theoretically for performing slice-selective coherence transfer. It was shown using numerical simulations of product operators that, when a prefocusing gradient of the same area as that of the refocusing gradient is added, these pulses become slice-selective universal rotator pulses, therefore, capable of performing slice-selective coherence transfer. As an example, a slice-selective universal rotator pulse based on a seven-lobe hamming-filtered sinc pulse was applied to in vivo single-shot simultaneous spectral editing and spatial localization of neurotransmitter GABA in the human brain.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, 9000 Rockville Pike, MSC 1527, Bethesda, MD 20892-1527, USA.
| |
Collapse
|
8
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2002; 15:251-262. [PMID: 11968141 DOI: 10.1002/nbm.748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|