1
|
MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc. Int J Mol Sci 2019; 20:ijms20153656. [PMID: 31357417 PMCID: PMC6696110 DOI: 10.3390/ijms20153656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes. Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699, showing a greater precision in the chromophore-protein interactions in the GAF1-2 construct. A 3D Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophore.
Collapse
|
2
|
Bielytskyi P, Gräsing D, Zahn S, Mote KR, Alia A, Madhu PK, Matysik J. Assignment of NMR resonances of protons covalently bound to photochemically active cofactors in photosynthetic reaction centers by 13C- 1H photo-CIDNP MAS-J-HMQC experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:64-76. [PMID: 30529893 DOI: 10.1016/j.jmr.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Modified versions of through-bond heteronuclear correlation (HETCOR) experiments are presented to take advantage of the light-induced hyperpolarization that occurs on 13C nuclei due to the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Such 13C-1H photo-CIDNP MAS-J-HMQC and photo-CIDNP MAS-J-HSQC experiments are applied to acquire the 2D 13C-1H correlation spectra of selectively 13C-labeled photochemically active cofactors in the frozen quinone-blocked photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wild-type (WT). Resulting spectra contain no correlation peaks arising from the protein backbone, which greatly simplifies the assignment of aliphatic region. Based on the photo-CIDNP MAS-J-HMQC NMR experiment, we obtained assignment of selective 1H NMR resonances of the cofactors involved in the electron transfer process in the RC and compared them with values theoretically predicted by density functional theory (DFT) calculation as well as with the chemical shifts obtained from monomeric cofactors in the solution. We also compared proton chemical shifts obtained by photo-CIDNP MAS-J-HMQC experiment under continuous illumination with the ones obtained in dark by classical cross-polarization (CP) HETCOR. We expect that the proposed approach will become a method of choice for obtaining 1H chemical shift maps of the active cofactors in photosynthetic RCs and will aid the interpretation of heteronuclear spin-torch experiments.
Collapse
Affiliation(s)
- Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, the Netherlands; Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
3
|
Song C, Mroginski MA, Lang C, Kopycki J, Gärtner W, Matysik J, Hughes J. 3D Structures of Plant Phytochrome A as Pr and Pfr From Solid-State NMR: Implications for Molecular Function. FRONTIERS IN PLANT SCIENCE 2018; 9:498. [PMID: 29740459 PMCID: PMC5928327 DOI: 10.3389/fpls.2018.00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/03/2018] [Indexed: 05/25/2023]
Abstract
We present structural information for oat phyA3 in the far-red-light-absorbing (Pfr) signaling state, to our knowledge the first three-dimensional (3D) information for a plant phytochrome as Pfr. Solid-state magic-angle spinning (MAS) NMR was used to detect interatomic contacts in the complete photosensory module [residues 1-595, including the NTE (N-terminal extension), PAS (Per/Arnt/Sim), GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) and PHY (phytochrome-specific) domains but with the C-terminal PAS repeat and transmitter-like module deleted] auto-assembled in vitro with 13C- and 15N-labeled phycocyanobilin (PCB) chromophore. Thereafter, quantum mechanics/molecular mechanics (QM/MM) enabled us to refine 3D structural models constrained by the NMR data. We provide definitive atomic assignments for all carbon and nitrogen atoms of the chromophore, showing the Pfr chromophore geometry to be periplanar ZZEssa with the D -ring in a β-facial disposition incompatible with many earlier notions regarding photoconversion yet supporting circular dichroism (CD) data. The Y268 side chain is shifted radically relative to published Pfr crystal structures in order to accommodate the β-facial ring D . Our findings support a photoconversion sequence beginning with Pr photoactivation via an anticlockwise D -ring Za→Ea photoflip followed by significant shifts at the coupling of ring A to the protein, a B -ring propionate partner swap from R317 to R287, changes in the C -ring propionate hydrogen-bonding network, breakage of the D272-R552 salt bridge accompanied by sheet-to-helix refolding of the tongue region stabilized by Y326-D272-S554 hydrogen bonding, and binding of the NTE to the hydrophobic side of ring A . We discuss phyA photoconversion, including the possible roles of mesoscopic phase transitions and protonation dynamics in the chromophore pocket. We also discuss possible associations between structural changes and translocation and signaling processes within the cell.
Collapse
Affiliation(s)
- Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, Leiden, Netherlands
| | | | - Christina Lang
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Jakub Kopycki
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
4
|
Duffy CDP, Pandit A, Ruban AV. Modeling the NMR signatures associated with the functional conformational switch in the major light-harvesting antenna of photosystem II in higher plants. Phys Chem Chem Phys 2014; 16:5571-80. [PMID: 24513782 DOI: 10.1039/c3cp54971b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major photosystem II antenna complex, LHCII, possesses an intrinsic conformational switch linked to the formation of a photoprotective, excitation-quenching state. Recent solid state NMR experiments revealed that aggregation-induced quenching in (13)C-enriched LHCII from C. reinhardtii is associated with changes to the chemical shifts of three specific (13)C atoms in the Chla conjugated macrocycle. We performed DFT-based NMR calculations on the strongly-quenched crystal structure of LHCII (taken from spinach). We demonstrate that specific Chla-xanthophyll interactions in the quenched structure lead to changes in the Chla(13)C chemical shifts that are qualitatively similar to those observed by solid state NMR. We propose that these NMR changes are due to modulations in Chla-xanthophyll associations that occur due to a quenching-associated functional conformation change in the lutein and neoxanthin domains of LHCII. The combination of solid-state NMR and theoretical modeling is therefore a powerful tool for assessing functional conformational switching in the photosystem II antenna.
Collapse
Affiliation(s)
- Christopher D P Duffy
- The School of Biological and Chemical Science, Queen Mary, University of London, Mile End, London E1 4NS, UK.
| | | | | |
Collapse
|
5
|
Song C, Essen LO, Gärtner W, Hughes J, Matysik J. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A. MOLECULAR PLANT 2012; 5:698-715. [PMID: 22419823 DOI: 10.1093/mp/sss017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite extensive study, the molecular structure of the chromophore-binding pocket of phytochrome A (phyA), the principal photoreceptor controlling photomorphogenesis in plants, has not yet been successfully resolved. Here, we report a series of two-dimensional (2-D) magic-angle spinning solid-state NMR experiments on the recombinant N-terminal, 65-kDa PAS-GAF-PHY light-sensing module of phytochrome A3 from oat (Avena sativa), assembled with uniformly 13C- and 15N-labeled phycocyanobilin (u-[13C,15N]-PCB-As.phyA3). The Pr state of this protein was studied regarding the electronic structure of the chromophore and its interactions with the proximal amino acids. Using 2-D 13C-13C and 1H-15N experiments, a complete set of 13C and 15N assignments for the chromophore were obtained. Also, a large number of 1H-13C distance restraints between the chromophore and its binding pocket were revealed by interfacial heteronuclear correlation spectroscopy. 13C doublings of the chromophore A-ring region and the C-ring carboxylate moiety, together with the observation of two Pr isoforms, Pr-I and Pr-II, demonstrate the local mobility of the chromophore and the plasticity of its protein environment. It appears that the interactions and dynamics in the binding pocket of phyA in the Pr state are remarkably similar to those of cyanobacterial phytochrome (Cph1). The N-terminus of the region modeled (residues 56-66 of phyA) is highly mobile. Differences in the regulatory processes involved in plant and Cph1 phytochromes are discussed.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Pandit A, de Groot HJM. Solid-state NMR applied to photosynthetic light-harvesting complexes. PHOTOSYNTHESIS RESEARCH 2012; 111:219-226. [PMID: 21842288 PMCID: PMC3295999 DOI: 10.1007/s11120-011-9674-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/12/2011] [Indexed: 05/29/2023]
Abstract
This short review describes how solid-state NMR has provided a mechanistic and electronic picture of pigment-protein and pigment-pigment interactions in photosynthetic antenna complexes. NMR results on purple bacterial antenna complexes show how the packing of the protein and the pigments inside the light-harvesting oligomers induces mutual conformational stress. The protein scaffold produces deformation and electrostatic polarization of the BChl macrocycles and leads to a partial electronic charge transfer between the BChls and their coordinating histidines, which can tune the light-harvesting function. In chlorosome antennae assemblies, the NMR template structure reveals how the chromophores can direct their self-assembly into higher macrostructures which, in turn, tune the light-harvesting properties of the individual molecules by controlling their disorder, structural deformation, and electronic polarization without the need for a protein scaffold. These results pave the way for addressing the next challenge, which is to resolve the functional conformational dynamics of the lhc antennae of oxygenic species that allows them to switch between light-emitting and light-energy dissipating states.
Collapse
Affiliation(s)
- Anjali Pandit
- Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Martiskainen J, Linnanto J, Aumanen V, Myllyperkiö P, Korppi-Tommola J. Excitation Energy Transfer in Isolated Chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii. Photochem Photobiol 2012; 88:675-83. [DOI: 10.1111/j.1751-1097.2012.01098.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Song C, Lang C, Mailliet J, Hughes J, Gärtner W, Matysik J. Exploring Chromophore-Binding Pocket: High-Resolution Solid-State H-C Interfacial Correlation NMR Spectra with Windowed PMLG Scheme. APPLIED MAGNETIC RESONANCE 2012; 42:79-88. [PMID: 22303079 PMCID: PMC3260431 DOI: 10.1007/s00723-011-0196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/21/2011] [Indexed: 05/26/2023]
Abstract
High-resolution two-dimensional (2D) (1)H-(13)C heteronuclear correlation spectra are recorded for selective observation of interfacial 3-5.5 Å contacts of the uniformly (13)C-labeled phycocyanobilin (PCB) chromophore with its unlabeled binding pocket. The experiment is based on a medium- and long-distance heteronuclear correlation (MELODI-HETCOR) method. For improving (1)H spectral resolution, a windowed phase-modulated Lee-Goldburg (wPMLG) decoupling scheme is applied during the t(1) evolution period. Our approach allows for identification of chromophore-protein interactions, in particular for elucidation of the hydrogen-bonding networks and charge distributions within the chromophore-binding pocket. The resulting pulse sequence is tested on the cyanobacterial (Cph1) phytochrome sensory module (residues 1-514, Cph1Δ2) containing uniformly (13)C- and (15)N-labeled PCB chromophore (u-[(13)C,(15)N]-PCB-Cph1Δ2) at 17.6 T.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Christina Lang
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße 3, 35390 Giessen, Germany
| | - Jo Mailliet
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße 3, 35390 Giessen, Germany
| | - Jon Hughes
- Pflanzenphysiologie, Justus-Liebig-Universität, Senckenbergstraße 3, 35390 Giessen, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Sytina OA, van Stokkum IHM, van Grondelle R, Groot ML. Single and multi-exciton dynamics in aqueous protochlorophyllide aggregates. J Phys Chem A 2010; 115:3936-46. [PMID: 21171640 DOI: 10.1021/jp108317u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In plants, the oxidoreductase enzyme POR reduces protochlorophyllide (Pchlide) into chlorophyllide (Chlide), using NADPH as a cofactor. The reduction involves the transfer of two electrons and two protons to the C17═C18 double bond of Pchlide, and the reaction is initiated by the absorption of light by Pchlide itself. In this work we have studied the excited state dynamics of Pchlide dissolved in water, where it forms excitonically coupled aggregates, by ultrafast time-resolved transient absorption and fluorescence experiments performed in the 480-720 nm visible region and in the 1780-1590 cm(-1) mid-IR region. The ground state visible absorption spectrum of aqueous Pchlide red shifts and broadens in comparison to the spectrum of monomeric Pchlide in organic solvents. The population of the one-exciton state occurs at low excitation densities, of <1 photon per aggregate. We characterized the multiexciton manifolds spectra by measuring the absorption difference spectra at increasingly higher photon densities. The multiexciton states are characterized by blue-shifted stimulated emission and red-shifted excited state absorption in comparison to those of the one-exciton manifold. The relaxation dynamics of the multiexciton manifolds into the one-exciton manifold is found to occur in ∼10 ps. This surprisingly slow rate we suggest is due to the intrinsic charge transfer character of the PChlide excited state that leads to solvation, stabilizing the CT state, and subsequent charge recombination, which limits the exciton relaxation.
Collapse
Affiliation(s)
- Olga A Sytina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Bettini R, Menabeni R, Tozzi R, Pranzo M, Pasquali I, Chierotti M, Gobetto R, Pellegrino L. Didanosine Polymorphism in a Supercritical Antisolvent Process. J Pharm Sci 2010; 99:1855-70. [DOI: 10.1002/jps.21962] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Fredj AB, Ruiz-López MF. Theoretical Study of Chlorophyll a Hydrates Formation in Aqueous Organic Solvents. J Phys Chem B 2009; 114:681-7. [DOI: 10.1021/jp909380t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arij Ben Fredj
- Equipe de Chimie et Biochimie Théoriques, SRSMC, Nancy-University, BP 70239, 54506 Vandoeuvre-lès-Nancy, France, and Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia
| | - Manuel F. Ruiz-López
- Equipe de Chimie et Biochimie Théoriques, SRSMC, Nancy-University, BP 70239, 54506 Vandoeuvre-lès-Nancy, France, and Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia
| |
Collapse
|
12
|
Alia A, Ganapathy S, de Groot HJM. Magic Angle Spinning (MAS) NMR: a new tool to study the spatial and electronic structure of photosynthetic complexes. PHOTOSYNTHESIS RESEARCH 2009; 102:415-25. [PMID: 19669927 PMCID: PMC2777226 DOI: 10.1007/s11120-009-9478-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/13/2009] [Indexed: 05/08/2023]
Abstract
In the last two decades, Magic Angle Spinning (MAS) NMR has created its own niche in studies involving photosynthetic membrane protein complexes, owing to its ability to provide structural and functional information at atomic resolution of membrane proteins when in the membrane, in the natural environment. The light-harvesting two (LH2) transmembrane complex from Rhodopseudomonas acidophila is used to illustrate the procedure of the technique applicable in photosynthesis research. One- and two-dimensional solid-state NMR experiments involving (13)C- and (15)N-labeled LH2 complexes allow to make a sequence-specific assignment of NMR signals, which forms the basis for resolving structural details and the assessment of charge transfer, electronic delocalization effects, and functional strain in the ground state.
Collapse
Affiliation(s)
- A. Alia
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Swapna Ganapathy
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
13
|
Kakitani Y, Koyama Y, Shimoikeda Y, Nakai T, Utsumi H, Shimizu T, Nagae H. Stacking of Bacteriochlorophyll c Macrocycles in Chlorosome from Chlorobium limicola As Revealed by Intermolecular 13C Magnetic-Dipole Correlation, X-Ray Diffraction, and Quadrupole Coupling in 25Mg NMR. Biochemistry 2008; 48:74-86. [DOI: 10.1021/bi801651w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshinori Kakitani
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Analytical Instrument Division, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan, National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan, and Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan
| | - Yasushi Koyama
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Analytical Instrument Division, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan, National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan, and Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan
| | - Yuichi Shimoikeda
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Analytical Instrument Division, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan, National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan, and Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan
| | - Toshihito Nakai
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Analytical Instrument Division, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan, National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan, and Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan
| | - Hiroaki Utsumi
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Analytical Instrument Division, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan, National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan, and Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan
| | - Tadashi Shimizu
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Analytical Instrument Division, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan, National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan, and Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan
| | - Hiroyoshi Nagae
- Faculty of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda 669-1337, Japan, Analytical Instrument Division, JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan, National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan, and Kobe City University of Foreign Studies, Gakuen-Higashimachi, Nishi-ku, Kobe 651-2187, Japan
| |
Collapse
|
14
|
Coelho C, Rocha J, Madhu PK, Mafra L. Practical aspects of Lee-Goldburg based CRAMPS techniques for high-resolution 1H NMR spectroscopy in solids: implementation and applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 194:264-282. [PMID: 18703365 DOI: 10.1016/j.jmr.2008.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 05/26/2023]
Abstract
Elucidating the local environment of the hydrogen atoms is an important problem in materials science. Because (1)H spectra in solid-state nuclear magnetic resonance (NMR) suffer from low resolution due to homogeneous broadening, even under magic-angle spinning (MAS), information of chemical interest may only be obtained using certain high-resolution (1)H MAS techniques. (1)H Lee-Goldburg (LG) CRAMPS (Combined Rotation And Multiple-Pulse Spectroscopy) methods are particularly well suited for studying inorganic-organic hybrid materials, rich in (1)H nuclei. However, setting up CRAMPS experiments is time-consuming and not entirely trivial, facts that have discouraged their widespread use by materials scientists. To change this status quo, here we describe and discuss some important aspects of the experimental implementation of CRAMPS techniques based on LG decoupling schemes, such as FSLG (Frequency Switched), and windowed and windowless PMLG (Phase Modulated). In particular, we discuss the influence on the quality of the (1)H NMR spectra of the different parameters at play, for example LG (Lee-Goldburg) pulses, radio-frequency (rf) phase, frequency switching, and pulse imperfections, using glycine and adamantane as model compounds. The efficiency and robustness of the different LG-decoupling schemes is then illustrated on the following materials: organo-phosphorus ligand, N-(phosphonomethyl)iminodiacetic acid [H(4)pmida] [I], and inorganic-organic hybrid materials (C(4)H(12)N(2))[Ge(2)(pmida)(2)OH(2)] x 4H(2)O [II] and (C(2)H(5)NH(3))[Ti(H(1.5)PO(4))(PO(4))](2) x H(2)O [III].
Collapse
Affiliation(s)
- Cristina Coelho
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
15
|
Ganapathy S, van Gammeren AJ, Hulsbergen FB, de Groot HJM. Probing Secondary, Tertiary, and Quaternary Structure along with Protein−Cofactor Interactions for a Helical Transmembrane Protein Complex through 1H Spin Diffusion with MAS NMR Spectroscopy. J Am Chem Soc 2007; 129:1504-5. [PMID: 17283988 DOI: 10.1021/ja0664436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Swapna Ganapathy
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
16
|
Kríz J, Dybal J, Brus J. Cooperative Hydrogen Bonds of Macromolecules. 2. Two-Dimensional Cooperativity in the Binding of Poly(4-vinylpyridine) to Poly(4-vinylphenol). J Phys Chem B 2006; 110:18338-46. [PMID: 16970455 DOI: 10.1021/jp063837a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrogen bond interaction of poly(4-vinylphenol) (PVF), ligated by a 20 mol/mol excess of pyridine-d(5) (PD) in tetrahydrofuran-d(8), with poly(4-vinylpyridine) (PVP) was studied using liquid and solid-state NMR and quantum mechanical calculations. Because of its cooperative interaction, PVP substitutes PD in its hydrogen bond with PVF, thus forming a PVF-PVP complex, which gradually precipitates from solution. On the basis of the 1H/13C NMR spin-diffusion experiments and density functional theory quantum calculations, the complex is shown to have the fairly regular structure of a polymer sheet with intermittent H-bond links between PVF and PVP chains. The cooperativity of PVP interaction with PVF was studied by measuring the dependence of the binding degree alpha of PVP on its polymerization degree (P(n), being 10, 17, 30, 36, 48, 65, and 84) at various PVP/PVF molar ratios. The value of alpha was established indirectly by measuring the fraction of liberated PD using its 2H quadrupolar relaxation and pulsed field-gradient spin-echo measurement of self-diffusion. The cooperativity is shown to be of a higher order and two-dimensional, that is, dependent on both the polymerization degree of PVP and its ratio to PVF. A mathematical model of such two-dimensional cooperativity based chiefly on a proximity effect is suggested.
Collapse
Affiliation(s)
- Jaroslav Kríz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | | | | |
Collapse
|
17
|
Hughes JL, Razeghifard R, Logue M, Oakley A, Wydrzynski T, Krausz E. Magneto-Optic Spectroscopy of a Protein Tetramer Binding Two Exciton-Coupled Chlorophylls. J Am Chem Soc 2006; 128:3649-58. [PMID: 16536537 DOI: 10.1021/ja056576b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro chlorophyll (Chl) aggregates have often served as models for in vivo forms of long-wavelength Chl. However, the interaction of protein-bound Chl molecules is typically different than that occurring in solvent-based self-aggregates. We have chosen a water-soluble Chl-binding protein (WSCP) from cauliflower in order to help characterize the spectroscopic properties of Chl in a single well-defined native environment and also to study the pigment-pigment (exciton) interactions present in assemblies of this protein. WSCP forms tetrameric units upon binding two Chl molecules. We present the absorption, circular dichroism (CD), magnetic circular dichroism (MCD), and emission spectra at 1.7 K of recombinant WSCP tetramers containing either Chl a or Chl d. The spectroscopic characteristics provide evidence for significant exciton interaction between equivalent Chl molecules. Our simple exciton analysis allows an estimate of the molecular geometry of the dimer, which is predicted to have an "open sandwich"-type structure. We find that the ratio of the magnetic circular dichroism to absorption, deltaA/A, is substantially increased (approximately 60%) for Chl a in this system compared to its value in solution. This increase is in marked contrast to substantial reductions (>50%) of deltaA/A seen in solvent-based Chl aggregates and in photosynthetic reaction centers. Current theoretical models are unable to account for such large variations in the MCD to absorption ratio for Chl. We propose that spectroscopic studies of WSCP mutants will enable a fundamental understanding of Chl-Chl and Chl-protein interactions.
Collapse
Affiliation(s)
- Joseph L Hughes
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Mafra L, Paz FAA, Shi FN, Rocha J, Trindade T, Fernandez C, Makal A, Wozniak K, Klinowski J. X-ray Diffraction and Solid-State NMR Studies of a Germanium Binuclear Complex. Chemistry 2006; 12:363-75. [PMID: 16189839 DOI: 10.1002/chem.200500281] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A compound formulated as (C4H12N2)[Ge2(pmida)2(OH)2] x 4 H2O (where pmida(4-) = N-(phosphonomethyl)iminodiacetate and C4H12N2(2+) = piperazinedium cation), containing the anionic [Ge2(pmida)2(OH)2]2- complex, has been synthesised by the hydrothermal approach and its structure determined by single-crystal X-ray diffraction analysis. Several high-resolution solid-state magic-angle spinning (MAS) NMR techniques, in particular two-dimensional 1H-X(13C,31P) heteronuclear correlation (HETCOR) and 1H-1H homonuclear correlation (HOMCOR) experiments incorporating a frequency-switched Lee-Goldburg (FS-LG) decoupling scheme, have been employed for the first time in such a material. Using these tools in tandem affords an excellent general approach to study the structure of other inorganic-organic hybrids. We assigned the NMR resonances with the help of C...H and P...H internuclear distances obtained through systematic statistical analyses of the crystallographic data. The compound was further characterised by powder X-ray diffraction techniques, IR and Raman spectroscopy, and by elemental and thermal analyses (thermogravimetric analysis and differential scanning calorimetry).
Collapse
Affiliation(s)
- Luís Mafra
- Department of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kiihne SR, Creemers AFL, Lugtenburg J, de Groot HJM. Accurate CSA measurements from uniformly isotopically labeled biomolecules at high magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 172:1-8. [PMID: 15589401 DOI: 10.1016/j.jmr.2004.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 08/21/2004] [Indexed: 05/24/2023]
Abstract
Obtaining chemical shift anisotropy (CSA) principal values from large biomolecular systems is often a laborious process of preparing many singly isotopically labeled samples and performing multiple independent CSA measurements. We present CSA tensor principal values measured in the biomolecular building blocks tyrosine.HCl, histidine.HCl, and all-E-retinal in both isotopically labeled and unlabeled forms at 17.6 T. The measured tensor values are identical for most carbon sites despite significant dipolar couplings between the spins. Quantum mechanical simulations of an arbitrary three spin system were used to evaluate the accuracy of direct CSA measurement as a function of applied magnetic field strength and molecular parameters. It was found that for a CSA asymmetry of 0.2 or more, an accurate measure of the CSA parameters is obtained when the CSA anisotropy is more than six times the largest dipolar coupling in frequency units. If the CSA asymmetry is more than 0.5, this requirement is relaxed, and accurate results are obtained if the anisotropy is more than three times the dipolar coupling. While these limits are insufficient for measurement of CSA's for alpha-carbons and aliphatic sidechain sites in proteins at current field strengths, they open the way for routine systematic CSA measurements of sites with relatively large CSA tensor values in extensively isotopically labeled biomolecules in widely available magnetic fields.
Collapse
Affiliation(s)
- Suzanne R Kiihne
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
20
|
de Boer I, Matysik J, Erkelens K, Sasaki SI, Miyatake T, Yagai S, Tamiaki H, Holzwarth AR, de Groot HJM. MAS NMR Structures of Aggregated Cadmium Chlorins Reveal Molecular Control of Self-Assembly of Chlorosomal Bacteriochlorophylls. J Phys Chem B 2004. [DOI: 10.1021/jp047048+] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Straus SK. Recent developments in solid-state magic-angle spinning, nuclear magnetic resonance of fully and significantly isotopically labelled peptides and proteins. Philos Trans R Soc Lond B Biol Sci 2004; 359:997-1008. [PMID: 15306412 PMCID: PMC1693383 DOI: 10.1098/rstb.2003.1398] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, a large number of solid-state nuclear magnetic resonance (NMR) techniques have been developed and applied to the study of fully or significantly isotopically labelled ((13)C, (15)N or (13)C/(15)N) biomolecules. In the past few years, the first structures of (13)C/(15)N-labelled peptides, Gly-Ile and Met-Leu-Phe, and a protein, Src-homology 3 domain, were solved using magic-angle spinning NMR, without recourse to any structural information obtained from other methods. This progress has been made possible by the development of NMR experiments to assign solid-state spectra and experiments to extract distance and orientational information. Another key aspect to the success of solid-state NMR is the advances made in sample preparation. These improvements will be reviewed in this contribution. Future prospects for the application of solid-state NMR to interesting biological questions will also briefly be discussed.
Collapse
Affiliation(s)
- Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
22
|
Brus J, Jegorov A. Through-Bonds and Through-Space Solid-State NMR Correlations at Natural Isotopic Abundance: Signal Assignment and Structural Study of Simvastatin. J Phys Chem A 2004. [DOI: 10.1021/jp0498163] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiri Brus
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic, and IVAX Pharmaceutical sro, Research Unit, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Alexandr Jegorov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic, and IVAX Pharmaceutical sro, Research Unit, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
23
|
Leppert J, Urbinati CR, Häfner S, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R. Identification of NH...N hydrogen bonds by magic angle spinning solid state NMR in a double-stranded RNA associated with myotonic dystrophy. Nucleic Acids Res 2004; 32:1177-83. [PMID: 14973225 PMCID: PMC373415 DOI: 10.1093/nar/gkh288] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA plays a central role in biological processes and exhibits a variety of secondary and tertiary structural features that are often stabilized via hydrogen bonds. The distance between the donor and acceptor nitrogen nuclei involved in NH...N hydrogen bonds in nucleic acid base pairs is typically in the range of 2.6-2.9 A. Here, we show for the first time that such spatial proximity between 15N nitrogen nuclei can be conveniently monitored via magic angle spinning solid state NMR on a uniformly 15N-labelled RNA. The presence of NH.N hydrogen bonds is reflected as cross-peaks between the donor and acceptor nitrogen nuclei in 2D 15N dipolar chemical shift correlation spectra. The RNA selected for this experimental study was a CUG repeat expansion implicated in the neuromuscular disease myotonic dystrophy. The results presented provide direct evidence that the CUG repeat expansion adopts a double-stranded conformation.
Collapse
Affiliation(s)
- Jörg Leppert
- Abteilung Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Brus J, Milena Špírková,, Hlavatá D, Strachota A. Self-Organization, Structure, Dynamic Properties, and Surface Morphology of Silica/Epoxy Films As Seen by Solid-State NMR, SAXS, and AFM. Macromolecules 2004. [DOI: 10.1021/ma035608h] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiri Brus
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Milena Špírková,
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Drahomíra Hlavatá
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Adam Strachota
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
25
|
Morishita H, Tamiaki H. Synthesis of 18O-Labelled chlorophyll derivatives at carbonyl oxygen atoms by acidic hydrolysis of the ethylene ketal and acetal. Bioorg Med Chem 2003; 11:4049-57. [PMID: 12927867 DOI: 10.1016/s0968-0896(03)00335-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ethylene ketal of pyropheophorbides, chlorophylls possessing the 13-keto carbonyl group and lacking the 13(2)-methoxycarbonyl group, reacted with H(2)(18)O (ca. 95% 18O atom) by acidic hydrolysis to give efficiently and regioselectively 13(1)-18O-oxo-labelled compounds (ca. 92% 18O). The resulting 18O-labelled chlorin was modified by several chemical reactions to afford some derivatives with little loss of the 18O atom. Following the same procedures, 3(1),13(1)-doubly-18O-labelled pyrochlorophyll derivatives were also prepared. All the synthetic 18O-labelled compounds were identified by FAB-mass and vibrational spectra. Especially, in the vibrational spectroscopic results including IR and resonance Raman spectra, an about 30 cm(-1) wavenumber down-shift of the 3- and/or 13-C[double bond]O stretching vibrational bands was observed by exchanging 3(1)- or 13(1)-oxo-oxygen atom from 16O to 18O.
Collapse
Affiliation(s)
- Hidetada Morishita
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | |
Collapse
|
26
|
Abstract
Over the last decades, NMR spectroscopy has grown into an indispensable tool for chemical analysis, structure determination, and the study of dynamics in organic, inorganic, and biological systems. It is commonly used for a wide range of applications from the characterization of synthetic products to the study of molecular structures of systems such as catalysts, polymers, and proteins. Although most NMR experiments are performed on liquid-state samples, solid-state NMR is rapidly emerging as a powerful method for the study of solid samples and materials. This Review outlines some of the developments of solid-state NMR spectroscopy, including techniques such as cross-polarization, magic-angle spinning, multiple-pulse sequences, homo- and heteronuclear decoupling and recoupling techniques, multiple-quantum spectroscopy, and dynamic angle spinning, as well as their applications to structure determination. Modern solid-state NMR spectroscopic techniques not only produce spectra with a resolution close to that of liquid-state spectra, but also capitalize on anisotropic interactions, which are often unavailable for liquid samples. With this background, the future of solid-state NMR spectroscopy in chemistry appears to be promising, indeed.
Collapse
Affiliation(s)
- David D Laws
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
27
|
|
28
|
de Boer I, Bosman L, Raap J, Oschkinat H, de Groot HJM. 2D(13)C-(13)C MAS NMR correlation spectroscopy with mixing by true (1)H spin diffusion reveals long-range intermolecular distance restraints in ultra high magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 157:286-291. [PMID: 12323147 DOI: 10.1006/jmre.2002.2588] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An improved 2D (13)C-(13)C CP(3) MAS NMR correlation experiment with mixing by true (1)H spin diffusion is presented. With CP(3), correlations can be detected over a much longer range than with direct (1)H-(13)C or (13)C-(13)C dipolar recoupling. The experiment employs a (1)H spin diffusion mixing period tau(m) sandwiched between two cross-polarization periods. An optimized CP(3) sequence for measuring polarization transfer on a length scale between 0.3 and 1.0 nm using short mixing times of 0.1 ms < tau(m) < 1 ms is presented. For such a short tau(m), cross talk from residual transverse magnetization of the donating nuclear species after a CP can be suppressed by extended phase cycling. The utility of the experiment for genuine structure determination is demonstrated using a self-aggregated Chl a/H(2)O sample. The number of intramolecular cross-peaks increases for longer mixing times and this obscures the intermolecular transfer events. Hence, the experiment will be useful for short mixing times only. For a short tau(m) = 0.1 ms, intermolecular correlations are detected between the ends of phytyl tails and ring carbons of neighboring Chl a molecules in the aggregate. In this way the model for the structure, with stacks of Chl a that are arranged back to back with interdigitating phytyl chains stretched between two bilayers, is validated.
Collapse
Affiliation(s)
- Ido de Boer
- Leiden Institute of Chemistry, Gorlaeus Laboratory, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | | | | | | | | |
Collapse
|