1
|
Chauhan N, Dedman CJ, Baldreki C, Dowle AA, Larson TR, Rickaby REM. Contrasting species-specific stress response to environmental pH determines the fate of coccolithophores in future oceans. MARINE POLLUTION BULLETIN 2024; 209:117136. [PMID: 39427478 DOI: 10.1016/j.marpolbul.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Molecular mechanisms driving species-specific environmental sensitivity in coccolithophores are unclear but crucial in understanding species selection and adaptation to environmental change. This study examined proteomic and physiological changes in three species under varying pH conditions. We showed that changing pH drives intracellular oxidative stress and changes membrane potential. Upregulation in antioxidant, DNA repair and cell cycle-related protein-groups indicated oxidative damage across high (pH 8.8) and low pH (pH 7.6) compared to control pH (pH 8.2), and correlated with reduced growth rates. Upregulation of mitochondrial proteins suggested higher metabolite demand for restoring cellular homeostasis under pH-induced stress. Photosynthetic rates generally correlated with CO2 availability, driving higher net carbon fixation rates at low pH. The intracellular pH-buffering capacity of the coastal Chrysotila carterae and high metabolic adaptability in the bloom-forming Gephyrocapsa huxleyi will likely facilitate their adaptation to ocean acidification or artificial ocean alkalinisation. However, the pH sensitivity of the ancient open-ocean Coccolithus braarudii will possibly result in reduced growth and shrinking of its ecological niche.
Collapse
Affiliation(s)
- Nishant Chauhan
- Department of Earth Sciences, University of Oxford, UK; Department of Earth Sciences, University of Cambridge, UK.
| | - Craig J Dedman
- Department of Earth Sciences, University of Oxford, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, UK
| | - Chloë Baldreki
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
2
|
Zhang B, Zhang Z, Yong S, Yu S, Feng H, Yin M, Ye W, Wang Y, Qiu M. An Oomycete-Specific Leucine-Rich Repeat-Containing Protein Is Involved in Zoospore Flagellum Development in Phytophthora sojae. PHYTOPATHOLOGY 2022; 112:2351-2359. [PMID: 35694885 DOI: 10.1094/phyto-12-21-0523-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A leucine-rich repeat (LRR) is a widespread structural motif of 20 to 30 amino acids with characteristic repetitive sequences rich in leucine. LRR-containing proteins are critical for ligand recognition and binding, participating in plant development and defense. Like plants, oomycetes also harbor genes encoding LRR-containing proteins, but their functions remain largely unknown. We identified a zoospore-upregulated gene from Phytophthora sojae with LRRs and an extra structural maintenance of chromosomes-like domain. We generated knockout and complemented knockout strains of this LRR protein and found that its deletion resulted in a pronounced reduction in zoospore mobility and chemotaxis, cyst germination, and virulence. Interestingly, micro-examination of zoospores under a scanning electron microscope revealed irregularly shaped zoospores without flagella in these deletion mutants. In addition, the reintroduction of this LRR protein into the knockout mutant reversed all the deficiencies. Our data demonstrate a critical role for the Phytophthora LRR protein in modulating zoospore development, which impairs migration to the host soybean and affects the spread of Phytophthora pathogens.
Collapse
Affiliation(s)
- Baiyu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Saijiang Yong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuyang Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Maozhu Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
3
|
Yoshinaga M, Nakayama T, Inagaki Y. A novel structural maintenance of chromosomes (SMC)-related protein family specific to Archaea. Front Microbiol 2022; 13:913088. [PMID: 35992648 PMCID: PMC9389158 DOI: 10.3389/fmicb.2022.913088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The ATPases belonging to the structural maintenance of chromosomes (SMC) superfamily are involved in the maintenance of chromosome organization and dynamics, as well as DNA repair. The major proteins in this superfamily recognized to date are either conserved among the three domains of Life (i.e., SMC and Rad50) or specific to Bacteria (i.e., RecF, RecN, and MukB). In Archaea, no protein related to SMC (SMC-related protein) with a broad taxonomic distribution has been reported. Nevertheless, two SMC-related proteins, namely coalescin and Sph, have been identified in crenarchaea Sulfolobus spp. and the euryarchaeon Halobacterium salinarum, respectively, hinting that the diversity of SMC-related proteins has been overlooked in Archaea. In this study, we report a novel SMC-related protein that is distributed among broad archaeal lineages and termed “Archaea-specific SMC-related proteins” or “ASRPs.” We further demonstrate that the ASRP family encloses both coalescin and Sph but the two proteins represent only a tip of the diversity of this family.
Collapse
Affiliation(s)
- Mari Yoshinaga
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Takuro Nakayama
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Yuji Inagaki,
| |
Collapse
|
4
|
Yoshinaga M, Inagaki Y. Ubiquity and Origins of Structural Maintenance of Chromosomes (SMC) Proteins in Eukaryotes. Genome Biol Evol 2021; 13:evab256. [PMID: 34894224 PMCID: PMC8665677 DOI: 10.1093/gbe/evab256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/03/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) protein complexes are common in Bacteria, Archaea, and Eukaryota. SMC proteins, together with the proteins related to SMC (SMC-related proteins), constitute a superfamily of ATPases. Bacteria/Archaea and Eukaryotes are distinctive from one another in terms of the repertory of SMC proteins. A single type of SMC protein is dimerized in the bacterial and archaeal complexes, whereas eukaryotes possess six distinct SMC subfamilies (SMC1-6), constituting three heterodimeric complexes, namely cohesin, condensin, and SMC5/6 complex. Thus, to bridge the homodimeric SMC complexes in Bacteria and Archaea to the heterodimeric SMC complexes in Eukaryota, we need to invoke multiple duplications of an SMC gene followed by functional divergence. However, to our knowledge, the evolution of the SMC proteins in Eukaryota had not been examined for more than a decade. In this study, we reexamined the ubiquity of SMC1-6 in phylogenetically diverse eukaryotes that cover the major eukaryotic taxonomic groups recognized to date and provide two novel insights into the SMC evolution in eukaryotes. First, multiple secondary losses of SMC5 and SMC6 occurred in the eukaryotic evolution. Second, the SMC proteins constituting cohesin and condensin (i.e., SMC1-4), and SMC5 and SMC6 were derived from closely related but distinct ancestral proteins. Based on the above-mentioned findings, we discuss how SMC1-6 have diverged from the archaeal homologs.
Collapse
Affiliation(s)
- Mari Yoshinaga
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Sarkar R, Petrushenko ZM, Dawson DS, Rybenkov VV. Ycs4 Subunit of Saccharomyces cerevisiae Condensin Binds DNA and Modulates the Enzyme Turnover. Biochemistry 2021; 60:3385-3397. [PMID: 34723504 PMCID: PMC8668321 DOI: 10.1021/acs.biochem.1c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Condensins play a key role in higher order chromosome organization. In budding yeast Saccharomyces cerevisiae, a condensin complex consists of five subunits: two conserved structural maintenance of chromosome subunits, Smc2 and Smc4, a kleisin Brn1, and two HEAT repeat subunits, Ycg1, which possesses a DNA binding activity, and Ycs4, which can transiently associate with Smc4 and thereby disrupt its association with the Smc2 head. We characterized here DNA binding activity of the non-SMC subunits using an agnostic, model-independent approach. To this end, we mapped the DNA interface of the complex using sulfo-NHS biotin labeling. Besides the known site on Ycg1, we found a patch of lysines at the C-terminal domain of Ycs4 that were protected from biotinylation in the presence of DNA. Point mutations at the predicted protein-DNA interface reduced both Ycs4 binding to DNA and the DNA stimulated ATPase activity of the reconstituted condensin, whereas overproduction of the mutant Ycs4 was detrimental for yeast viability. Notably, the DNA binding site on Ycs4 partially overlapped with its interface with SMC4, revealing an intricate interplay between DNA binding, engagement of the Smc2-Smc4 heads, and ATP hydrolysis and suggesting a mechanism for ATP-modulated loading and translocation of condensins on DNA.
Collapse
Affiliation(s)
- Rupa Sarkar
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zoya M Petrushenko
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Dean S Dawson
- Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, Oklahoma 73104, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
6
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
7
|
Lee SN, Hong KM, Seong YS, Kwak SJ. Ectopic Overexpression of Coiled-Coil Domain Containing 110 Delays G2/M Entry in U2-OS Cells. Dev Reprod 2020; 24:101-111. [PMID: 32734127 PMCID: PMC7375983 DOI: 10.12717/dr.2020.24.2.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022]
Abstract
Coiled-coil domain containing 110 (CCDC110, KM-HN-1) is a protein containing C-terminal coiled-coil domain (CCD) which was previously discovered as a member of the human cancer/testis antigen (CTA). In addition, CCDC110 has both nuclear localization signal sequence and the leucine zipper motif. Although the functional role of CCDC110 has yet to be fully identified, the mRNA expression levels of CCDC110 are known to be highly elevated in various cancer types including testis, implying its relevance to cancer pathogenesis. In this study, we first developed several monoclonal antibody (mAb) hybridoma clones targeting CCDC110 and further isolated clone by characterizing for its specificity using immunoblotting and immunoprecipitation approaches with basal parenchymal sperm cells in testis tissue. Next, using these mAbs, we showed that the Tet-inducible overexpression of CCDC110 protein delayed the entry of G2/M phase in U2-OS osteosarcoma cells. Based on these results, we propose that CCDC110 plays a crucial role in cell cycle progression.
Collapse
Affiliation(s)
- Sue Nyoung Lee
- Dept. of Nanobiomedical Science & BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Kyeong-Man Hong
- Dept. of Nanobiomedical Science & BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea.,Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Yeon Sun Seong
- Dept. of Nanobiomedical Science & BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea.,3Dept. of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Sahng-June Kwak
- 3Dept. of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
8
|
Sridharan DM, Chien LC, Cucinotta FA, Pluth JM. Comparison of signaling profiles in the low dose range following low and high LET radiation. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:28-41. [PMID: 32414491 DOI: 10.1016/j.lssr.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
During space travel astronauts will be exposed to a very low, mixed field of radiation containing different high LET particles of varying energies, over an extended period. Thus, defining how human cells respond to these complex low dose exposures is important in ascertaining risk. In the current study, we have chosen to investigate how low doses of three different ion's at various energies uniquely change the kinetics of three different phospho-proteins. A normal hTERT immortalized fibroblast cell line, 82-6, was exposed to a range of lower doses (0.05-0.5 Gy) of radiation of different qualities and energies (Si 1000 MeV/u, Si 300 MeV/u, Si 173 MeV/u, Si 93 MeV/u, Fe 1000 MeV/u, Fe 600 MeV/u, Fe 300 MeV/u, Ti 300 MeV/u, Ti 326 MeV/u, Ti 386 MeV/u), covering a wide span of LET's. Exposed samples were analyzed for the average intensity of signal as a fold over the geometric mean level of the sham controls. Three phospho-proteins known to localize to DNA DSBs following radiation (γH2AX, pATF2, pSMC1) were studied. The kinetics of their response was quantified by flow cytometery at 2 and 24 h post exposure. These studies reveal unique kinetic patterns based on the ion, energy, fluence and time following exposure. In addition, γH2AX phosphorylation patterns are uniquely different from phospho-proteins known to be primarily phosphorylated by ATM. This latter finding suggests that the activating kinase(s), or the phosphatases deactivating these proteins, exhibit differences in their response to various radiation qualities and/ or doses of exposure. Further studies will be needed to better define what the differing kinetics for the kinases activated by the unique radiation qualities plays in the biological effectiveness of the particle.
Collapse
Affiliation(s)
- Deepa M Sridharan
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, CA 94710, United States
| | - Lung-Chang Chien
- Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV, 89154, United States
| | - Francis A Cucinotta
- Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, United States
| | - Janice M Pluth
- Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, United States.
| |
Collapse
|
9
|
Wang H, Liu Y, Yuan J, Zhang J, Han F. The condensin subunits SMC2 and SMC4 interact for correct condensation and segregation of mitotic maize chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:467-479. [PMID: 31816133 DOI: 10.1111/tpj.14639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 05/22/2023]
Abstract
Structural Maintenance of Chromosomes 2 (SMC2) and Structural Maintenance of Chromosomes 4 (SMC4) are the core components of the condensin complexes, which are required for chromosome assembly and faithful segregation during cell division. Because of the crucial functions of both proteins in cell division, much work has been done in various vertebrates, but little information is known about their roles in plants. Here, we identified ZmSMC2 and ZmSMC4 in maize (Zea mays) and confirmed that ZmSMC2 associates with ZmSMC4 via their hinge domains. Immunostaining revealed that both proteins showed dynamic localization during mitosis. ZmSMC2 and ZmSMC4 are essential for proper chromosome segregation and for H3 phosphorylation at Serine 10 (H3S10ph) at pericentromeres during mitotic division. The loss of function of ZmSMC2 and ZmSMC4 enlarges mitotic chromosome volume and impairs sister chromatid separation to the opposite poles. Taken together, these findings confirm and extend the coordinated role of ZmSMC2 and ZmSMC4 in maintenance of normal chromosome architecture and accurate segregation during mitosis.
Collapse
Affiliation(s)
- Hefei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Ravi M, Ramanathan S, Krishna K. Factors, mechanisms and implications of chromatin condensation and chromosomal structural maintenance through the cell cycle. J Cell Physiol 2019; 235:758-775. [PMID: 31264212 DOI: 10.1002/jcp.29038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
A series of well-orchestrated events help in the chromatin condensation and the formation of chromosomes. Apart from the formation of chromosomes, maintenance of their structure is important, especially for the cell division. The structural maintenance of chromosome (SMC) proteins, the non-SMC proteins and the SMC complexes are critical for the maintenance of chromosome structure. While condensins have roles for the DNA compaction, organization, and segregation, the cohesin functions in a cyclic manner through the cell cycle, as a "cohesin cycle." Specific mechanisms maintain the architecture of the centromere, the kinetochore and the telomeres which are in tandem with the cell cycle checkpoints. The presence of chromosomal territories and compactness differences through the length of the chromosomes might have implications on selective susceptibility of specific chromosomes for induced genotoxicity.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Srishti Ramanathan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Krupa Krishna
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
11
|
Zhang Y, Yi F, Wang L, Wang Z, Zhang N, Wang Z, Li Z, Song X, Wei S, Cao L. Phosphorylation of SMC1A promotes hepatocellular carcinoma cell proliferation and migration. Int J Biol Sci 2018; 14:1081-1089. [PMID: 29988990 PMCID: PMC6036730 DOI: 10.7150/ijbs.24692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022] Open
Abstract
Structural maintenance of chromosomes protein 1A (SMC1A) has been implicated in the development of a variety of cancer types. However, its role in hepatocellular carcinoma remains unknown. In this study, we found that phosphorylated SMC1A was highly expressed in HepG2 and Bel7402 cells when compared with other cancer cell lines. Furthermore, SMC1A knockdown dramatically reduced HepG2 and Bel7402 cell proliferation and migration. Re-expressing phosphomimetic mutants S957DS966D significantly enhanced the proliferation and migration of SMC1A knockdown HepG2 and Bel7402 cells. In addition, phosphorylated SMC1A promotes hepatocellular carcinoma cells growth in vivo. Importantly, the expression of phosphorylated SMC1A was significantly higher in human hepatocellular carcinomacells when compared to peri-tumor benign hepatocytes, and its overexpression was significantly associated with worse prognostic outcomes. These observations suggest that phosphorylation of SMC1A is a vital event in tumorigenesis and disease progression in hepatocellular carcinoma thus necessitating further investigation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Liang Wang
- Department of Pathology, The College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhijun Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ziwei Li
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China.,Department of Pathology, The College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China.,Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.,Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249-7331, USA
| | - Shi Wei
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249-7331, USA
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Yi F, Wang Z, Liu J, Zhang Y, Wang Z, Xu H, Li X, Bai N, Cao L, Song X. Structural Maintenance of Chromosomes protein 1: Role in Genome Stability and Tumorigenesis. Int J Biol Sci 2017; 13:1092-1099. [PMID: 28924389 PMCID: PMC5599913 DOI: 10.7150/ijbs.21206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023] Open
Abstract
SMC1 (Structural Maintenance of Chromosomes protein 1), well known as one of the SMC superfamily members, has been explored to function in many activities including chromosome dynamics, cell cycle checkpoint, DNA damage repair and genome stability. Upon being properly assembled as part of cohesin, SMC1 can be phosphorylated by ATM and mediate downstream DNA damage repair after ionizing irradiation. Abnormal gene expression or mutation of SMC1 can cause defect in the DNA damage repair pathway, which has been strongly associated with tumorigenesis. Here we focus to discuss SMC1's role in genome stability maintenance and tumorigenesis. Deciphering the underlying molecular mechanism can provide insight into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Fei Yi
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhijun Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hongde Xu
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
13
|
Fujimoto S, Sugano SS, Kuwata K, Osakabe K, Matsunaga S. Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6101-6110. [PMID: 27811079 PMCID: PMC5100022 DOI: 10.1093/jxb/erw371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in sub-nuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms.
Collapse
Affiliation(s)
- Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shigeo S Sugano
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- PRESTO, JST, Saitama 332-0012, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
14
|
Barysz H, Kim JH, Chen ZA, Hudson DF, Rappsilber J, Gerloff DL, Earnshaw WC. Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling. Open Biol 2015; 5:150005. [PMID: 25716199 PMCID: PMC4345284 DOI: 10.1098/rsob.150005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 02/06/2023] Open
Abstract
SMC proteins are essential components of three protein complexes that are important for chromosome structure and function. The cohesin complex holds replicated sister chromatids together, whereas the condensin complex has an essential role in mitotic chromosome architecture. Both are involved in interphase genome organization. SMC-containing complexes are large (more than 650 kDa for condensin) and contain long anti-parallel coiled-coils. They are thus difficult subjects for conventional crystallographic and electron cryomicroscopic studies. Here, we have used amino acid-selective cross-linking and mass spectrometry combined with structure prediction to develop a full-length molecular draft three-dimensional structure of the SMC2/SMC4 dimeric backbone of chicken condensin. We assembled homology-based molecular models of the globular heads and hinges with the lengthy coiled-coils modelled in fragments, using numerous high-confidence cross-links and accounting for potential irregularities. Our experiments reveal that isolated condensin complexes can exist with their coiled-coil segments closely apposed to one another along their lengths and define the relative spatial alignment of the two anti-parallel coils. The centres of the coiled-coils can also approach one another closely in situ in mitotic chromosomes. In addition to revealing structural information, our cross-linking data suggest that both H2A and H4 may have roles in condensin interactions with chromatin.
Collapse
Affiliation(s)
- Helena Barysz
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ji Hun Kim
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dietlind L Gerloff
- Foundation for Applied Molecular Evolution, PO Box 13174, Gainesville, FL 32604, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
15
|
Abstract
DNA replication during S phase generates two identical copies of each chromosome. Each chromosome is destined for a daughter cell, but each daughter must receive one and only one copy of each chromosome. To ensure accurate chromosome segregation, eukaryotic cells are equipped with a mechanism to pair the chromosomes during chromosome duplication and hold the pairs until a bi-oriented mitotic spindle is formed and the pairs are pulled apart. This mechanism is known as sister chromatid cohesion, and its actions span the entire cell cycle. During G1, before DNA is copied during S phase, proteins termed cohesins are loaded onto DNA. Paired chromosomes are held together through G2 phase, and finally the cohesins are dismantled during mitosis. The processes governing sister chromatid cohesion ensure that newly replicated sisters are held together from the moment they are generated to the metaphase-anaphase transition, when sisters separate.
Collapse
Affiliation(s)
- Adam R Leman
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
16
|
Islam MR, Hosen MI, Zaman A, Islam MO. Structural, functional and molecular docking study to characterize GMI1 from Arabidopsis thaliana. Interdiscip Sci 2013; 5:13-22. [PMID: 23605636 DOI: 10.1007/s12539-013-0153-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/10/2012] [Accepted: 10/19/2012] [Indexed: 11/28/2022]
Abstract
γ-irradiation and Mitomycin C Induced 1 (GMI1), is a member of the SMC-hinge domain-containing protein family that takes part in double stranded break repair mechanism in eukaryotic cells. In this study we hypothesize a small molecule-Adenosine Tri Phosphate (ATP) binding region of novel SMC like GM1 protein in model organism Arabidopsis thaliana using in silico modeling. Initially, analyzing sequence information for the protein indicated presence of motifs - 'Walker A nucleotide-binding domain' that are required to interact with nucleotides along with 'Walker B' motif and ABC signature sequences. This was further proven through GMI1-ATP docking experiment and results were verified by comparing the values with controls. In negative control, no binding was seen in the same binding region of GMI1 structure for small molecules randomly selected form PubChem database, whereas in positive control binding affinity of other known proteins with ATP binding potential resembled GMI1-ATP binding affinity of -5.4 kcal/mol. Furthermore we also docked small molecules that shares structural similarity with ATP to GMI1 and found that Purine Mononucleotide bound the region with the best affinity, which implies that the compound may bind the protein with strong binding and can work as a potential agonist/antagonist to GMI1. We believe that the study would shed more light into the GM1 mechanism of action. Although the computational predictions made here are based on concrete confidence, it should be mentioned that in vitro experimentation does not fall into the scopes of this study and thus the results found here have to be further validated in vitro.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | | | | | | |
Collapse
|
17
|
Ravi M, Nivedita K, Pai GM. Chromatin condensation dynamics and implications of induced premature chromosome condensation. Biochimie 2013; 95:124-33. [PMID: 23079335 DOI: 10.1016/j.biochi.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Somatic cell cycle is a dynamic process with sequential events that culminate in cell division. Several physiological activities occur in the cytoplasm and nucleus during each of the cell cycle phases which help in doubling of genetic content, organized arrangement of the duplicated genetic material and perfect mechanism for its equal distribution to the two daughter cells formed. Also, the cell cycle checkpoints ensure that the genetic material is devoid of damages thus ensuring unaltered transmission of genetic information. Two important phenomena occurring during the cell cycle are the DNA condensation and decondensation cycles in the nucleus along with the cyclic expression and functioning of certain specific proteins that help in the same. Several protein families including Cyclins, cyclin dependent kinases, condensins, cohesins and surivins ensure error free, stage specific DNA condensation and decondensation by their highly specific, controlled orchestrated presence and action. Understanding the molecular mechanisms of chromatin compaction towards formation of the structural units, the chromosomes, give us valuable insights into the cellular physiology and also direct us to techniques such as premature chromosome condensation. The techniques of inducing 'prophasing' of interphase cells are undergoing rapid advances which have multidimensional applications for basic research and direct applications.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, Tamil Nadu, India.
| | | | | |
Collapse
|
18
|
Abstract
In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.
Collapse
|
19
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
20
|
Pai DA, Engelke DR. Spatial organization of genes as a component of regulated expression. Chromosoma 2009; 119:13-25. [PMID: 19727792 DOI: 10.1007/s00412-009-0236-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 12/15/2022]
Abstract
The DNA of living cells is highly compacted. Inherent in this spatial constraint is the need for cells to organize individual genetic loci so as to facilitate orderly retrieval of information. Complex genetic regulatory mechanisms are crucial to all organisms, and it is becoming increasingly evident that spatial organization of genes is one very important mode of regulation for many groups of genes. In eukaryotic nuclei, it appears not only that DNA is organized in three-dimensional space but also that this organization is dynamic and interactive with the transcriptional state of the genes. Spatial organization occurs throughout evolution and with genes transcribed by all classes of RNA polymerases in all eukaryotic nuclei, from yeast to human. There is an increasing body of work examining the ways in which this organization and consequent regulation are accomplished. In this review, we discuss the diverse strategies that cells use to preferentially localize various classes of genes.
Collapse
Affiliation(s)
- Dave A Pai
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0606, USA
| | | |
Collapse
|
21
|
White GE, Erickson HP. The coiled coils of cohesin are conserved in animals, but not in yeast. PLoS One 2009; 4:e4674. [PMID: 19262687 PMCID: PMC2650401 DOI: 10.1371/journal.pone.0004674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 01/27/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4) showed moderate sequence divergence (approximately 10-15%) consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3), however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface. METHODOLOGY/PRINCIPAL FINDINGS Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods. CONCLUSIONS/SIGNIFICANCE SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence divergence.
Collapse
Affiliation(s)
- Glenn E. White
- Department of Biological and Environmental Sciences, Longwood University, Farmville, Virginia, United Kingdom
| | - Harold P. Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
22
|
Dai Q, Wang T. Comparison study on k-word statistical measures for protein: from sequence to 'sequence space'. BMC Bioinformatics 2008; 9:394. [PMID: 18811946 PMCID: PMC2571980 DOI: 10.1186/1471-2105-9-394] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/23/2008] [Indexed: 11/30/2022] Open
Abstract
Background Many proposed statistical measures can efficiently compare protein sequence to further infer protein structure, function and evolutionary information. They share the same idea of using k-word frequencies of protein sequences. Given a protein sequence, the information on its related protein sequences hasn't been used for protein sequence comparison until now. This paper proposed a scheme to construct protein 'sequence space' which was associated with protein sequences related to the given protein, and the performances of statistical measures were compared when they explored the information on protein 'sequence space' or not. This paper also presented two statistical measures for protein: gre.k (generalized relative entropy) and gsm.k (gapped similarity measure). Results We tested statistical measures based on protein 'sequence space' or not with three data sets. This not only offers the systematic and quantitative experimental assessment of these statistical measures, but also naturally complements the available comparison of statistical measures based on protein sequence. Moreover, we compared our statistical measures with alignment-based measures and the existing statistical measures. The experiments were grouped into two sets. The first one, performed via ROC (Receiver Operating Curve) analysis, aims at assessing the intrinsic ability of the statistical measures to discriminate and classify protein sequences. The second set of the experiments aims at assessing how well our measure does in phylogenetic analysis. Based on the experiments, several conclusions can be drawn and, from them, novel valuable guidelines for the use of protein 'sequence space' and statistical measures were obtained. Conclusion Alignment-based measures have a clear advantage when the data is high redundant. The more efficient statistical measure is the novel gsm.k introduced by this article, the cos.k followed. When the data becomes less redundant, gre.k proposed by us achieves a better performance, but all the other measures perform poorly on classification tasks. Almost all the statistical measures achieve improvement by exploring the information on 'sequence space' as word's length increases, especially for less redundant data. The reasonable results of phylogenetic analysis confirm that Gdis.k based on 'sequence space' is a reliable measure for phylogenetic analysis. In summary, our quantitative analysis verifies that exploring the information on 'sequence space' is a promising way to improve the abilities of statistical measures for protein comparison.
Collapse
Affiliation(s)
- Qi Dai
- Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China.
| | | |
Collapse
|
23
|
Hudson DF, Ohta S, Freisinger T, MacIsaac F, Sennels L, Alves F, Lai F, Kerr A, Rappsilber J, Earnshaw WC. Molecular and genetic analysis of condensin function in vertebrate cells. Mol Biol Cell 2008; 19:3070-9. [PMID: 18480406 PMCID: PMC2441691 DOI: 10.1091/mbc.e08-01-0057] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/14/2008] [Accepted: 05/01/2008] [Indexed: 01/02/2023] Open
Abstract
We engineered mutants into residues of SMC2 to dissect the role of ATPase function in the condensin complex. These residues are predicted to be involved in ATP binding or hydrolysis and in the Q-loop, which is thought to act as a mediator of conformational changes induced by substrate binding. All the engineered ATPase mutations resulted in lethality when introduced into SMC2 null cells. We found that ATP binding, but not hydrolysis, is essential to allow stable condensin association with chromosomes. How SMC proteins bind and interact with DNA is still a major question. Cohesin may form a ring structure that topologically encircles DNA. We examined whether condensin behaves in an analogous way to its cohesin counterpart, and we have generated a cleavable form of biologically active condensin with PreScission protease sites engineered into the SMC2 protein. This has allowed us to demonstrate that topological integrity of the SMC2-SMC4 heterodimer is not necessary for the stability of the condensin complex in vitro or for its stable association with mitotic chromosomes. Thus, despite their similar molecular organization, condensin and cohesin exhibit fundamental differences in their structure and function.
Collapse
Affiliation(s)
- Damien F. Hudson
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Shinya Ohta
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Tina Freisinger
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Fiona MacIsaac
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Lau Sennels
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Flavia Alves
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Fan Lai
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
- Centre for Genomic Regulation, E-08003 Barcelona, Spain
| | - Alastair Kerr
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Juri Rappsilber
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - William C. Earnshaw
- *Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
24
|
Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 2008; 3:e2018. [PMID: 19194535 PMCID: PMC2635572 DOI: 10.1371/journal.pone.0002018] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). Methodology/Principal Findings We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. Conclusion/Significance Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A mycobacterial smc null mutant is proficient in DNA repair and long-term survival. J Bacteriol 2007; 190:452-6. [PMID: 17981972 DOI: 10.1128/jb.01315-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMC (structural maintenance of chromosomes) proteins play fundamental roles in various aspects of chromosome organization and dynamics, including repair of DNA damage. Mutant strains of Mycobacterium smegmatis and Mycobacterium tuberculosis defective in SMC were constructed. Surprisingly, inactivation of smc did not result in recognizable phenotypes in hallmark assays characteristic for the function of these genes. This is in contrast to data for smc null mutants in other species.
Collapse
|
26
|
An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 2007; 3:e2879. [PMID: 18663385 PMCID: PMC2488364 DOI: 10.1371/journal.pone.0002879] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/08/2008] [Indexed: 12/23/2022] Open
Abstract
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.
Collapse
|
27
|
Nickerson HD, Joshi A, Wolgemuth DJ. Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis. Dev Biol 2007; 306:725-35. [PMID: 17498682 PMCID: PMC2701158 DOI: 10.1016/j.ydbio.2007.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 04/09/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Male mice lacking cyclin A1 protein are sterile. Their sterility results from an arrest in the meiotic cell cycle of spermatocytes, which we now identify as occurring at late diplotene, immediately before diakinesis. The stage of arrest in cyclin A1-deficient mice is distinct from the arrest seen in spermatocytes that are deficient in its putative catalytic partner Cdk2, which occurs much earlier in pachytene. The arrest in cyclin A1-deficient spermatocytes is also accompanied by an unusual clustering of centromeric heterochromatin. Consistent with a possible defect in the centromeric region, immunofluorescent staining of cyclin A1 protein shows localization in the region of the centromere. Phosphorylation of histone H3 at serine 10 in pericentromeric heterochromatin, which normally occurs in late diplotene, is reduced in spermatocytes from heterozygous Ccna1(+/-) testes and completely absent in spermatocytes with no cyclin A1 protein. Concomitantly, the levels of pericentromeric aurora B kinase, known to phosphorylate histone H3 during meiosis, are partially reduced in spermatocytes from testes of heterozygous mice and further reduced in homozygous null spermatocytes. These data suggest a critical and concentration-dependent function for cyclin A1 in the pericentromeric region in late diplotene of meiosis, perhaps in assembly or function of the passenger protein complex.
Collapse
Affiliation(s)
- Helen D Nickerson
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
28
|
Champion K, Higgins NP. Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:5839-49. [PMID: 17400739 PMCID: PMC1952050 DOI: 10.1128/jb.00083-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium share high degrees of DNA and amino acid identity for 65% of the homologous genes shared by the two genomes. Yet, there are different phenotypes for null mutants in several genes that contribute to DNA condensation and nucleoid formation. The mutant R436-S form of the GyrB protein has a temperature-sensitive phenotype in Salmonella, showing disruption of supercoiling near the terminus and replicon failure at 42 degrees C. But this mutation in E. coli is lethal at the permissive temperature. A unifying hypothesis for why the same mutation in highly conserved homologous genes of different species leads to different physiologies focuses on homeotic supercoil control. During rapid growth in mid-log phase, E. coli generates 15% more negative supercoils in pBR322 DNA than Salmonella. Differences in compaction and torsional strain on chromosomal DNA explain a complex set of single-gene phenotypes and provide insight into how supercoiling may modulate epigenetic effects on chromosome structure and function and on prophage behavior in vivo.
Collapse
Affiliation(s)
- Keith Champion
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
| | - N. Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
- Corresponding author. Mailing address: KAUL-524, 720 20th Street South, Birmingham, AL 35294. Phone: (205) 934-3299. Fax: (205) 975-5955. E-mail:
| |
Collapse
|
29
|
Pavlova SV, Elisafenko EA, Zakian SM. The structure and evolution of the MaSMC4 gene of common vole Microtus arvalis (Arvicolidae, Rodentia). RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Gu S, Hu J, Song P, Gong W, Guo M. Identification of a new transcript specifically expressed in mouse spermatocytes: mmrp2. Mol Biol Rep 2006; 32:247-55. [PMID: 16328886 DOI: 10.1007/s11033-005-3005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
In an effort to examine the molecular basis of gametogenesis, we screened Riken cDNA database and the clone 4930481F22 that is expressed preponderantly in mouse testis was identified. In the course of the research, a new isoform of 4930481F22 clone was found, isolated from mouse testis and sequenced. It only lacks the 7th exon of 4930481F22 transcript. The new isoform only has 837 bp and encodes a putative 28.4 kDa protein. We investigated the expression pattern at the mRNA level by RT-PCR and in situ hybridization in testis. The new isoform was only expressed in the gonad, where it began to be detected at day 8 after birth. In situ hybridization proved that the new isoform mostly expressed in spermatocytes. The structure of the predicted protein and the expression pattern of the mRNA suggest that the new isoform could have an important role in meiosis. We temporarily named it mmrp 2 (Mouse Meiosis Related Protein 2).
Collapse
Affiliation(s)
- Shanye Gu
- Laboratory of Molecular Genetic and Developmental Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
31
|
Petrushenko ZM, Lai CH, Rybenkov VV. Antagonistic interactions of kleisins and DNA with bacterial Condensin MukB. J Biol Chem 2006; 281:34208-17. [PMID: 16982609 PMCID: PMC1634889 DOI: 10.1074/jbc.m606723200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MukBEF is a bacterial SMC (structural maintenance of chromosome) complex required for faithful chromosome segregation in Escherichia coli. The SMC subunit of the complex, MukB, promotes DNA condensation in vitro and in vivo; however, all three subunits are required for the function of MukBEF. We report here that MukEF disrupts MukB x DNA complex. Preassembled MukBEF was inert in DNA binding or reshaping. Similarly, the association of MukEF with DNA-bound MukB served to displace MukB from DNA. When purified from cells, MukBEF existed as a mixture of MukEF-saturated and unsaturated complexes. The holoenzyme was unstable and could only bind DNA upon dissociation of MukEF. The DNA reshaping properties of unsaturated MukBEF were identical to those of MukB. Furthermore, the unsaturated MukBEF was stable and proficient in DNA binding. These results support the view that kleisins are not directly involved in DNA binding but rather bridge distant DNA-bound MukBs.
Collapse
Affiliation(s)
| | | | - Valentin V. Rybenkov
- Address correspondence to: Valentin V. Rybenkov, Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019; (405) 325-1677,
| |
Collapse
|
32
|
Liu N, Wang T. Protein-based phylogenetic analysis by using hydropathy profile of amino acids. FEBS Lett 2006; 580:5321-7. [PMID: 16979630 DOI: 10.1016/j.febslet.2006.08.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 08/26/2006] [Accepted: 08/28/2006] [Indexed: 11/23/2022]
Abstract
So far, various approaches for phylogenetic analysis have been developed. Almost all of them put stress on analyzing nucleic acid sequences or protein primary structures. In this paper, we take the physicochemical properties of amino acids into account and introduce the hydropathy profile of amino acids into phylogenetic analysis. We find that this introduction is effectual and our method may be used to complement phylogenetic analysis.
Collapse
Affiliation(s)
- Na Liu
- Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China.
| | | |
Collapse
|
33
|
Abstract
The SMC (structural maintenance of chromosomes) proteins are a highly conserved and ubiquitous family of ATPases, found in nearly all living organisms examined, where they play crucial roles in transmission of the hereditary material. However, the extent to which efficient ATP hydrolysis is required for SMC function has been a matter of some debate. Here we investigate the potential functional significance of ATP binding and hydrolysis in different eukaryotic SMC proteins, both by comparing the conservation of conserved ATPase motifs and by exploring potential coevolution between associated domains. In this way, we have been able to account for the reduced requirement for ATPase activity in cohesin's SMC3 and demonstrate the greater apparent conservation requirements for such activity in condensin SMC proteins. Finally, we explore possible interactions between the SMC and non-SMC components of the condensin complex that are required for full condensin activity and may modulate ATPase activity in the holocomplex.
Collapse
Affiliation(s)
- Neville Cobbe
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh, United Kingdom.
| | | |
Collapse
|
34
|
Petrushenko ZM, Lai CH, Rai R, Rybenkov VV. DNA reshaping by MukB. Right-handed knotting, left-handed supercoiling. J Biol Chem 2005; 281:4606-15. [PMID: 16368697 PMCID: PMC1633270 DOI: 10.1074/jbc.m504754200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MukB is a bacterial SMC (structural maintenance of chromosome) protein required for faithful chromosome segregation in Escherichia coli. We report here that purified MukB introduces right-handed knots into DNA in the presence of type-2 topoisomerase, indicating that the protein promotes intramolecular DNA condensation. The pattern of generated knots suggests that MukB, similar to eukaryotic condensins, stabilizes large right-handed DNA loops. In contrast to eukaryotic condensins, however, the net supercoiling stabilized by MukB was negative. Furthermore, DNA reshaping by MukB did not require ATP. These data establish that bacterial condensins alter the shape of double-stranded DNA in vitro and lend support to the notions that the right-handed knotting is the most conserved biochemical property of condensins. Finally, we found that MukB can be eluted from a heparin column in two distinct forms, one of which is inert in DNA binding or reshaping. Furthermore, we find that the activity of MukB is reversibly attenuated during chromatographic separation. Thus, MukB has a unique set of topological properties, compared with other SMC proteins, and is likely to exist in two different conformations.
Collapse
MESH Headings
- Acyl Carrier Protein/chemistry
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Adenylyl Imidodiphosphate/pharmacology
- Centrifugation, Density Gradient
- Chromatography
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/physiology
- DNA/chemistry
- DNA, Bacterial/genetics
- DNA, Superhelical/chemistry
- Dimerization
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/physiology
- Heparin/chemistry
- Microscopy, Electron
- Models, Biological
- Models, Genetic
- Molecular Conformation
- Molecular Weight
- Nucleic Acid Conformation
- Plasmids/metabolism
- Sepharose/pharmacology
- Sucrose/pharmacology
Collapse
Affiliation(s)
| | | | | | - Valentin V. Rybenkov
- To whom correspondence should be addressed: Dept. of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019. Tel.: 405-325-1677; E-mail:
| |
Collapse
|
35
|
Abstract
During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems.
Collapse
Affiliation(s)
| | | | - N. Patrick Higgins
- *For correspondence. E-mail; Tel. (+1) 205 934 3299; Fax (+1) 205 975 5955
| |
Collapse
|
36
|
Maeshima K, Eltsov M, Laemmli UK. Chromosome structure: improved immunolabeling for electron microscopy. Chromosoma 2005; 114:365-75. [PMID: 16175370 DOI: 10.1007/s00412-005-0023-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 11/30/2022]
Abstract
To structurally dissect mitotic chromosomes, we aim to position along the folded chromatin fiber proteins involved in long-range order, such as topoisomerase IIalpha (topoIIalpha) and condensin. Immuno-electron microscopy (EM) of thin-sectioned chromosomes is the method of choice toward this goal. A much-improved immunoprocedure that avoids problems associated with aldehyde fixation, such as chemical translinking and networking of chromatin fibers, is reported here. We show that ultraviolet irradiation of isolated nuclei or chromosomes facilitates high-level specific immunostaining, as established by fluorescence microscopy with a variety of antibodies and especially by immuno-EM. Ultrastructural localizations of topoIIalpha and condensin I component hBarren (hBar; hCAP-H) in mitotic chromosomes were studied by immuno-EM. We show that the micrographs of thin-sectioned chromosomes map topoIIalpha and hBar to the center of the chromosomal body where the chromatin fibers generally converge. This localization is defined by many clustered gold particles with only rare individual particles in the peripheral halo. The data obtained are consistent with the view that condensin and perhaps topoIIalpha tether chromatin to loops according to a scaffolding-type model.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Department of Biochemistry, University of Geneva, 30, Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | | | | |
Collapse
|
37
|
Abstract
Relatively little is known about the biochemical basis of the capacity of Deinococcus radiodurans to endure the genetic insult that results from exposure to ionizing radiation and can include hundreds of DNA double-strand breaks. However, recent reports indicate that this species compensates for extensive DNA damage through adaptations that allow cells to avoid the potentially detrimental effects of DNA strand breaks. It seems that D. radiodurans uses mechanisms that limit DNA degradation and that restrict the diffusion of DNA fragments that are produced following irradiation, to preserve genetic integrity. These mechanisms also increase the efficiency of the DNA-repair proteins.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
38
|
Larsabal E, Danchin A. Genomes are covered with ubiquitous 11 bp periodic patterns, the "class A flexible patterns". BMC Bioinformatics 2005; 6:206. [PMID: 16120222 PMCID: PMC1242344 DOI: 10.1186/1471-2105-6-206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/24/2005] [Indexed: 11/17/2022] Open
Abstract
Background The genomes of prokaryotes and lower eukaryotes display a very strong 11 bp periodic bias in the distribution of their nucleotides. This bias is present throughout a given genome, both in coding and non-coding sequences. Until now this bias remained of unknown origin. Results Using a technique for analysis of auto-correlations based on linear projection, we identified the sequences responsible for the bias. Prokaryotic and lower eukaryotic genomes are covered with ubiquitous patterns that we termed "class A flexible patterns". Each pattern is composed of up to ten conserved nucleotides or dinucleotides distributed into a discontinuous motif. Each occurrence spans a region up to 50 bp in length. They belong to what we named the "flexible pattern" type, in that there is some limited fluctuation in the distances between the nucleotides composing each occurrence of a given pattern. When taken together, these patterns cover up to half of the genome in the majority of prokaryotes. They generate the previously recognized 11 bp periodic bias. Conclusion Judging from the structure of the patterns, we suggest that they may define a dense network of protein interaction sites in chromosomes.
Collapse
Affiliation(s)
- Etienne Larsabal
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
39
|
Stray JE, Crisona NJ, Belotserkovskii BP, Lindsley JE, Cozzarelli NR. The Saccharomyces cerevisiae Smc2/4 condensin compacts DNA into (+) chiral structures without net supercoiling. J Biol Chem 2005; 280:34723-34. [PMID: 16100111 DOI: 10.1074/jbc.m506589200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smc2/4 forms the core of the Saccharomyces cerevisiae condensin, which promotes metaphase chromosome compaction. To understand how condensin manipulates DNA, we used two in vitro assays to study the role of SMC (structural maintenance of chromosome) proteins and ATP in reconfiguring the path of DNA. The first assay evaluated the topology of knots formed in the presence of topoisomerase II. Unexpectedly, both wild-type Smc2/4 and an ATPase mutant promoted (+) chiral knotting of nicked plasmids, revealing that ATP hydrolysis and the non-SMC condensins are not required to compact DNA chirally. The second assay measured Smc2/4-dependent changes in linking number (Lk). Smc2/4 did not induce (+) supercoiling, but instead induced broadening of topoisomer distributions in a cooperative manner without altering Lk(0). To explain chiral knotting in substrates devoid of chiral supercoiling, we propose that Smc2/4 directs chiral DNA compaction by constraining the duplex to retrace its own path. In this highly cooperative process, both (+) and (-) loops are sequestered (about one per kb), leaving net writhe and twist unchanged while broadening Lk. We have developed a quantitative theory to account for these results. Additionally, we have shown at higher molar stoichiometries that Smc2/4 prevents relaxation by topoisomerase I and nick closure by DNA ligase, indicating that Smc2/4 can saturate DNA. By electron microscopy of Smc2/4-DNA complexes, we observed primarily two protein-laden bound species: long flexible filaments and uniform rings or "doughnuts." Close packing of Smc2/4 on DNA explains the substrate protection we observed. Our results support the hypothesis that SMC proteins bind multiple DNA duplexes.
Collapse
Affiliation(s)
- James E Stray
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
40
|
Lam WS, Yang X, Makaroff CA. Characterization ofArabidopsis thalianaSMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J Cell Sci 2005; 118:3037-48. [PMID: 15972315 DOI: 10.1242/jcs.02443] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structural maintenance of chromosome (SMC) proteins are conserved in most prokaryotes and all eukaryotes examined. SMC proteins participate in many different aspects of chromosome folding and dynamics. They play essential roles in complexes that are responsible for sister chromatid cohesion, chromosome condensation and DNA repair. As part of studies to better understand SMC proteins and sister chromatid cohesion in plants we have characterized Arabidopsis SMC1 and SMC3. Although transcripts for AtSMC1 and AtSMC3 are present throughout the plant, transcript levels for the two genes vary between different tissues. Cell fractionation and immunolocalization results showed that AtSMC3 was present in the nucleus and cytoplasm. In the nucleus, it is primarily associated with the nuclear matrix during interphase and with chromatin from prophase through anaphase in both somatic and meiotic cells. During mitosis and meiosis the protein also co-localized with the spindle from metaphase to telophase. The distribution of AtSMC3 in syn1 mutant plants indicated that SYN1 is required for the proper binding of AtSMC3 to meiotic chromosomes, but not the spindle. Data presented here represent the first detailed cytological study of a plant SMC protein and suggest that SMC3 may have multiple functions in plants.
Collapse
MESH Headings
- 3' Untranslated Regions
- Antigen-Presenting Cells
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Arabidopsis Proteins/physiology
- Blotting, Western
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/physiology
- Cell Fractionation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/physiology
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Chromosomes, Plant/physiology
- Chromosomes, Plant/ultrastructure
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Fluorescent Antibody Technique
- Meiosis/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spindle Apparatus/metabolism
Collapse
Affiliation(s)
- Wing See Lam
- The Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
41
|
Sheedy DM, Dimitrova D, Rankin JK, Bass KL, Lee KM, Tapia-Alveal C, Harvey SH, Murray JM, O'Connell MJ. Brc1-mediated DNA repair and damage tolerance. Genetics 2005; 171:457-68. [PMID: 15972456 PMCID: PMC1456763 DOI: 10.1534/genetics.105.044966] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The structural maintenance of chromosome (SMC) proteins are key elements in controlling chromosome dynamics. In eukaryotic cells, three essential SMC complexes have been defined: cohesin, condensin, and the Smc5/6 complex. The latter is essential for DNA damage responses; in its absence both repair and checkpoint responses fail. In fission yeast, the UV-C and ionizing radiation (IR) sensitivity of a specific hypomorphic allele encoding the Smc6 subunit, rad18-74 (renamed smc6-74), is suppressed by mild overexpression of a six-BRCT-domain protein, Brc1. Deletion of brc1 does not result in a hypersensitivity to UV-C or IR, and thus the function of Brc1 relative to the Smc5/6 complex has remained unclear. Here we show that brc1Delta cells are hypersensitive to a range of radiomimetic drugs that share the feature of creating lesions that are an impediment to the completion of DNA replication. Through a genetic analysis of brc1Delta epistasis and by defining genes required for Brc1 to suppress smc6-74, we find that Brc1 functions to promote recombination through a novel postreplication repair pathway and the structure-specific nucleases Slx1 and Mus81. Activation of this pathway through overproduction of Brc1 bypasses a repair defect in smc6-74, reestablishing resolution of lesions by recombination.
Collapse
Affiliation(s)
- Daniel M Sheedy
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Savvidou E, Cobbe N, Steffensen S, Cotterill S, Heck MMS. DrosophilaCAP-D2 is required for condensin complex stability and resolution of sister chromatids. J Cell Sci 2005; 118:2529-43. [PMID: 15923665 DOI: 10.1242/jcs.02392] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The precise mechanism of chromosome condensation and decondensation remains a mystery, despite progress over the last 20 years aimed at identifying components essential to the mitotic compaction of the genome. In this study, we analyse the localization and role of the CAP-D2 non-SMC condensin subunit and its effect on the stability of the condensin complex. We demonstrate that a condensin complex exists in Drosophila embryos, containing CAP-D2, the anticipated SMC2 and SMC4 proteins, the CAP-H/Barren and CAP-G (non-SMC) subunits. We show that CAP-D2 is a nuclear protein throughout interphase, increasing in level during S phase, present on chromosome axes in mitosis, and still present on chromosomes as they start to decondense late in mitosis. We analysed the consequences of CAP-D2 loss after dsRNA-mediated interference, and discovered that the protein is essential for chromosome arm and centromere resolution. The loss of CAP-D2 after RNAi has additional downstream consequences on the stability of CAP-H, the localization of DNA topoisomerase II and other condensin subunits, and chromosome segregation. Finally, we discovered that even after interfering with two components important for chromosome architecture (DNA topoisomerase II and condensin), chromosomes were still able to compact, paving the way for the identification of further components or activities required for this essential process.
Collapse
Affiliation(s)
- Ellada Savvidou
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | | | | | | | | |
Collapse
|
43
|
England JC, Gober JW. Role of core promoter sequences in the mechanism of swarmer cell-specific silencing of gyrB transcription in Caulobacter crescentus. BMC Microbiol 2005; 5:25. [PMID: 15904494 PMCID: PMC1175088 DOI: 10.1186/1471-2180-5-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 05/17/2005] [Indexed: 12/02/2022] Open
Abstract
Background Each Caulobacter crescentus cell division yields two distinct cell types: a flagellated swarmer cell and a non-motile stalked cell. The swarmer cell is further distinguished from the stalked cell by an inability to reinitiate DNA replication, by the physical properties of its nucleoid, and its discrete program of gene expression. Specifically, with regard to the latter feature, many of the genes involved in DNA replication are not transcribed in swarmer cells. Results We show that for one of these genes involved in DNA replication, gyrB, its pattern of temporal expression depends upon an 80 base pair promoter region with strong resemblance to the Caulobacter crescentus σ73 consensus promoter sequence; regulation does not appear to be affected by the general strength of the promoter activity, as mutations that increased its conformity with the consensus did not affect its cell-cycle expression pattern. Transcription from the gyrB promoter in vitro required only the presence of the σ73 RNA polymerase (from E. coli) and the requisite nucleoside triphosphates, although a distinct binding activity, present in crude whole-cell extracts, formed a complex gyrB promoter DNA. We also assayed the effect on gyrB expression in strains containing mutations in either smc or dps, two genes encoding proteins that condense DNA. However we found there was no change in the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. Conclusion These experiments demonstrate that gyrB transcription does not require any auxiliary factors, suggesting that temporal regulation is not dependent upon an activator protein. Swarmer-specific silencing may not be attributable to the observed physical difference in the swarmer cell nucleoid, since mutations in either smc or dps, two genes encoding proteins that condense DNA, did not alter the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. Rather a repressor that specifically recognizes sequences in the gyrB promoter region that are also probably essential for transcription, is likely to be responsible for controlling cell cycle expression.
Collapse
Affiliation(s)
- Jennifer C England
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, 90095-1569, USA
| | - James W Gober
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, 90095-1569, USA
| |
Collapse
|
44
|
Zimmerman JM, Battista JR. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 2005; 5:17. [PMID: 15799787 PMCID: PMC1079854 DOI: 10.1186/1471-2180-5-17] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 03/31/2005] [Indexed: 11/18/2022] Open
Abstract
Background Transmission electron microscopy images of Deinococcus radiodurans R1 suggest that the nucleoid of this species exists as a "ring-like" body, and have led to speculation that this structure contributes to the radioresistance of the species. Since extreme radioresistance is characteristic of six other species of Deinococcus, we have attempted to correlate nucleoid morphology and radioresistance by determining whether the genomic DNA of each of these species exhibit similar structures. Results The nucleoid morphologies of seven recognized species of Deinococcus, the radioresistant bacterium Rubrobacter radiotolerans, and the more radiosensitive deinococcal relative Thermus aquaticus were evaluated using epifluorescence and deconvolution techniques. Although the nucleoids of Deinococcus murrayi, Deinococcus proteolyticus, Deinococcus radiophilus, and Deinococcus grandis have structures similar to D. radiodurans, the majority of nucleoids found in Deinococcus radiopugnans and Deinococcus geothermalis lack any specific organization. The nucleoid of R. radiotolerans consists of multiple highly condensed spheres of DNA scattered throughout the cell. The genomic DNA of Thermus aquaticus is uniformly distributed throughout the cell. Conclusion There is no obvious relationship between the shape of a species' nucleoid and extreme radioresistance. However, the genomes of all extremely radioresistance species examined are highly condensed relative to more radiosensitive species. Whether DNA in this tightly packed configuration contributes to the radioresistance of these bacteria remains unknown, but this common structural feature appears to limit diffusion of fragments generated post-irradiation even in cells incapable of repairing strand breaks.
Collapse
Affiliation(s)
- Julie M Zimmerman
- Department of Biological Sciences, Louisiana State University and A&M College, Baton Rouge, Louisiana 70803, USA
| | - John R Battista
- Department of Biological Sciences, Louisiana State University and A&M College, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
45
|
Huang CE, Milutinovich M, Koshland D. Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos Trans R Soc Lond B Biol Sci 2005; 360:537-42. [PMID: 15897179 PMCID: PMC1569475 DOI: 10.1098/rstb.2004.1609] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism of higher order chromosome organization has eluded researchers for over 100 years. A breakthrough occurred with the discovery of multi-subunit protein complexes that contain a core of two molecules from the structural maintenance of chromosome (Smc) family. Smc complexes are important structural components of chromosome organization in diverse aspects of DNA metabolism, including sister chromatid cohesion, condensation, global gene repression, DNA repair and homologous recombination. In these different processes, Smc complexes may facilitate chromosome organization by tethering together two parts of the same or different chromatin strands. The mechanism of tethering by Smc complexes remains to be elucidated, but a number of intriguing topological alternatives are suggested by the unusual structural features of Smc complexes, including their large coiled-coil domains and ATPase activities. Distinguishing between these possibilities will require innovative new approaches.
Collapse
Affiliation(s)
- Catherine E Huang
- Department of Embryology, Carnegie Institution of Washington, 115 W. University Parkway, Baltimore, MD 21210, USA
| | | | | |
Collapse
|
46
|
Abstract
We isolated several related but distinct cDNA clones encoding novel structure proteins (NSP) when screening a cDNA library. Analysis revealed that these cDNAs and several similar ESTs in the public databases are derived from a single gene of 17 exons that span a minimum of 227-kb region. This gene is located at chromosome 17p11.2, a region frequently amplified in human gliomas and osteosarcomas, and involved in Birt-Hogg-Dube syndrome, a tumor-prone syndrome. The major coding sequences shared by all isolated transcripts are predicted to encode SMC (structural maintenance of chromosome)/SbcC ATPase motifs and coiled-coil domains commonly seen in motor or structure proteins. Two 5'-end and two 3'-end variants (type 5alpha/beta and 3alpha/beta, respectively) were identified, making a total of four possible transcripts. Both 5alpha and 5beta variants were detected in human testis mRNA, but only type 5alpha was detectable in RNA samples extracted from HeLa cells. The unique carboxyl-terminus of 3beta contains a Ca(2+)-dependent actin-binding domain. Immunohistochemistry studies revealed that NSPs were mostly localized to nuclei. Northern blot analysis demonstrated two major bands and the expression levels are tremendously high in testis while barely detectable in other normal tissues examined. Interestingly, NSP5alpha3alpha is highly expressed in some tumor cell lines. These results suggest that NSPs represent a new family of structure proteins with a possible role in nuclear dynamics during cell division, and that NSP5alpha3alpha may serve as a tumor marker.
Collapse
Affiliation(s)
- Nianli Sang
- Program of Molecular Biology, Temple University, Philadelphia, PA 19122, USA
- Kimmel Cancer Institute and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107; USA
- Cardeza Foundation for Hematological Research and Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Donna M Fath
- Cardeza Foundation for Hematological Research and Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Program of Molecular Biology, Temple University, Philadelphia, PA 19122, USA
- Kimmel Cancer Institute and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107; USA
- Sbarro Institute for Cancer Research and Molecular Medicine and Department of Biology, College of Science and Technology Temple University, Philadelphia PA 19122, USA
- Correspondence:A Giordano, Temple University, Bio Life Science Bldg., 1900 N. 12th Street, Suite #333, Philadelphia, PA 19122 USA;
| |
Collapse
|
47
|
Morris RL, English CN, Lou JE, Dufort FJ, Nordberg J, Terasaki M, Hinkle B. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos. Dev Biol 2004; 274:56-69. [PMID: 15355788 DOI: 10.1016/j.ydbio.2004.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 11/25/2022]
Abstract
KAP is the non-motor subunit of the heteromeric plus-end directed microtubule (MT) motor protein kinesin-II essential for normal cilia formation. Studies in Chlamydomonas have demonstrated that kinesin-II drives the anterograde intraflagellar transport (IFT) of protein complexes along ciliary axonemes. We used a green fluorescent protein (GFP) chimera of KAP, KAP-GFP, to monitor movements of this kinesin-II subunit in cells of sea urchin blastulae where cilia are retracted and rebuilt with each mitosis. As expected if involved in IFT, KAP-GFP localized to apical cytoplasm, basal bodies, and cilia and became concentrated on basal bodies of newly forming cilia. Surprisingly, after ciliary retraction early in mitosis, KAP-GFP moved into nuclei before nuclear envelope breakdown, was again present in nuclei after nuclear envelope reformation, and only decreased in nuclei as ciliogenesis reinitiated. Nuclear transport of KAP-GFP could be due to a putative nuclear localization signal and nuclear export signals identified in the sea urchin KAP primary sequence. Our observation of a protein involved in IFT being imported into the nucleus after ciliary retraction and again after nuclear envelope reformation suggests KAP115 may serve as a signal to the nucleus to reinitiate cilia formation during sea urchin development.
Collapse
Affiliation(s)
- Robert L Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Schär P, Fäsi M, Jessberger R. SMC1 coordinates DNA double-strand break repair pathways. Nucleic Acids Res 2004; 32:3921-9. [PMID: 15280507 PMCID: PMC506803 DOI: 10.1093/nar/gkh716] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/04/2004] [Accepted: 07/04/2004] [Indexed: 11/12/2022] Open
Abstract
The SMC1/SMC3 heterodimer acts in sister chromatid cohesion, and recent data indicate a function in DNA double-strand break repair (DSBR). Since this role of SMC proteins has remained largely elusive, we explored interactions between SMC1 and the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways for DSBR in Saccharomyces cerevisiae. Analysis of conditional single- and double mutants of smc1-2 with rad52Delta, rad54Delta, rad50Delta or dnl4Delta illustrates a significant contribution of SMC1 to the overall capacity of cells to repair DSBs. smc1 but not smc2 mutants show increased hypersensitivity of HR mutants to ionizing irradiation and to the DNA crosslinking agent cis-platin. Haploid, but not diploid smc1-2 mutants were severely affected in repairing multiple genomic DNA breaks, suggesting a selective role of SMC1 in sister chromatid recombination. smc1-2 mutants were also 15-fold less efficient and highly error-prone in plasmid end-joining through the NHEJ pathway. Strikingly, inactivation of RAD52 or RAD54 fully rescued efficiency and accuracy of NHEJ in the smc1 background. Therefore, we propose coordination of HR and NHEJ processes by Smc1p through interaction with the RAD52 pathway.
Collapse
Affiliation(s)
- Primo Schär
- Institute of Biochemistry and Genetics, DKBW, University of Basel, CH-4058 Basel, Switzerland.
| | | | | |
Collapse
|
49
|
Chiu A, Revenkova E, Jessberger R. DNA Interaction and Dimerization of Eukaryotic SMC Hinge Domains. J Biol Chem 2004; 279:26233-42. [PMID: 15087462 DOI: 10.1074/jbc.m402439200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic SMC1/SMC3 heterodimer is essential for sister chromatid cohesion and acts in DNA repair and recombination. Dimerization depends on the central hinge domain present in all SMC proteins, which is flanked at each side by extended coiled-coil regions that terminate in specific globular domains. Here we report on DNA interactions of the eukaryotic, heterodimeric SMC1/SMC3 hinge regions, using the two known isoforms, SMC1alpha/SMC3 and the meiotic SMC1beta/SMC3. Both dimers bind DNA with a preference for double-stranded DNA and DNA rich in potential secondary structures. Both dimers form large protein-DNA networks and promote reannealing of complementary DNA strands. DNA binding but not dimerization depends on approximately 20 amino acids of transitional sequence into the coiled-coil region. Replacement of three highly conserved glycine residues, thought to be required for dimerization, in one of the two hinge domains still allows formation of a stable dimer, but if two hinge domains are mutated dimerization fails. Single-mutant dimers bind DNA, but hinge monomers do not. Together, we show that eukaryotic hinge dimerization does not require conserved glycines in both hinge domains, that only the transition into the coiled-coil region rather than the entire coiled-coil region is necessary for DNA binding, and that dimerization is required but not sufficient for DNA binding of the eukaryotic hinge heterodimer.
Collapse
Affiliation(s)
- Allen Chiu
- Center for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
50
|
Beenders B, Watrin E, Legagneux V, Kireev I, Bellini M. Distribution of XCAP-E and XCAP-D2 in the Xenopus oocyte nucleus. Chromosome Res 2004; 11:549-64. [PMID: 14516064 DOI: 10.1023/a:1024999316867] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several antibodies were used to examine the distribution of two condensin members, XCAP-E and XCAP-D2, in the nucleus of Xenopus oocytes. XCAP-D2 was found to be associated with the lampbrush chromosomes. The chromosomal regions containing XCAP-D2 correspond precisely to domains of highly compacted chromatin, suggesting a direct contribution of XCAP-D2 in meiotic chromatin organization. In contrast, XCAP-E was found to be absent from chromosomes but was detected at a high concentration in the granular component of nucleoli. The subnucleolar localization of XCAP-E was further confirmed by double labeling using several nucleolar protein markers. The fate of nucleolar XCAP-E was also followed when changes in the nucleoli morphology were artificially induced. The apparent exclusion of XCAP-E from the ribosomal DNA and its tight association with the granular component in all preparations suggest that it might be sequestrated in nucleoli during early stages of meiosis. Interestingly, both XCAP-D2 and XCAP-E were also detected in Cajal bodies, which are organelles suspected to play a role in the assembly/modification of the RNA transcription and processing machinery. The presence of two condensins in CBs might extend such a role of assembly to chromatin macromolecular components as well.
Collapse
Affiliation(s)
- Brent Beenders
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|