1
|
Song Z, Tang H, Gatch A, Sun Y, Ding F. Islet amyloid polypeptide fibril catalyzes amyloid-β aggregation by promoting fibril nucleation rather than direct axial growth. Int J Biol Macromol 2024; 279:135137. [PMID: 39208885 PMCID: PMC11469950 DOI: 10.1016/j.ijbiomac.2024.135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aberrant aggregation of amyloid-β (Aβ) and islet amyloid polypeptide (IAPP) into amyloid fibrils underlies the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes (T2D), respectively. T2D significantly increases AD risk, with evidence suggesting that IAPP and Aβ co-aggregation and cross-seeding might contribute to the cross-talk between two diseases. Experimentally, preformed IAPP fibril seeds can accelerate Aβ aggregation, though the cross-seeding mechanism remains elusive. Here, we computationally demonstrated that Aβ monomer preferred to bind to the elongation ends of preformed IAPP fibrils. However, due to sequence mismatch, the Aβ monomer could not directly grow onto IAPP fibrils by forming multiple stable β-sheets with the exposed IAPP peptides. Conversely, in our control simulations of self-seeding, the Aβ monomer could axially grow on the Aβ fibril, forming parallel in-register β-sheets. Additionally, we showed that the IAPP fibril could catalyze Aβ fibril nucleation by promoting the formation of parallel in-register β-sheets in the C-terminus between bound Aβ peptides. This study enhances our understanding of the molecular interplay between Aβ and IAPP, shedding light on the cross-seeding mechanisms potentially linking T2D and AD. Our findings also underscore the importance of clearing IAPP deposits in T2D patients to mitigate AD risk.
Collapse
Affiliation(s)
- Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States; Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
| | - Adam Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States; School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
2
|
Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid-β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. Aging Dis 2024:AD.2024.0286. [PMID: 38739937 DOI: 10.14336/ad.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aβ) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aβ and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aβ and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aβ, p-Tau in cerebrospinal fluid (CSF) and Aβ & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.
Collapse
Affiliation(s)
| | - Javaria Baig
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Ragonis-Bachar P, Axel G, Blau S, Ben-Tal N, Kolodny R, Landau M. What can AlphaFold do for antimicrobial amyloids? Proteins 2024; 92:265-281. [PMID: 37855235 DOI: 10.1002/prot.26618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-β and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated β-strand sheets forming a cross-β configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-β amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.
Collapse
Affiliation(s)
| | - Gabriel Axel
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Blau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| |
Collapse
|
4
|
Saikia B, Baruah A. Recent advances in de novo computational design and redesign of intrinsically disordered proteins and intrinsically disordered protein regions. Arch Biochem Biophys 2024; 752:109857. [PMID: 38097100 DOI: 10.1016/j.abb.2023.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
In the early 2000s, the concept of "unstructured biology" has emerged to be an important field in protein science by generating various new research directions. Many novel strategies and methods have been developed that are focused on effectively identifying/predicting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs), identifying their potential functions, disorder based drug design etc. Due to the range of functions of IDPs/IDPRs and their involvement in various debilitating diseases they are of contemporary interest to the scientific community. Recent researches are focused on designing/redesigning specific IDPs/IDPRs de novo. These de novo design/redesigns of IDPs/IDPRs are carried out by altering compositional biases and specific sequence patterning parameters. The main focus of these researches is to influence specific molecular functions, phase behavior, cellular phenotypes etc. In this review, we first provide the differences of natively folded and natively unfolded or IDPs with respect to their potential energy landscapes. Here, we provide current understandings on the different computational design strategies and methods that have been utilized in de novo design and redesigns of IDPs and IDPRs. Finally, we conclude the review by discussing the challenges that have been faced during the computational design/design attempts of IDPs/IDPRs.
Collapse
Affiliation(s)
- Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
5
|
Lin X, Zhang H, Liu W, Dong X, Sun Y. Methylene Blue-Doped Carbonized Polymer Dots: A Potent Photooxygenation Scavenger Targeting Alzheimer's β-Amyloid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44062-44074. [PMID: 37682558 DOI: 10.1021/acsami.3c06948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The abnormal aggregation of β-amyloid protein (Aβ) is one of the main pathological hallmarks of Alzheimer's disease (AD), and thus development of potent scavengers targeting Aβ is considered an effective strategy for AD treatment. Herein, photosensitizer-doped carbonized polymer dots (PS-CPDs) were synthesized by a one-step hydrothermal method using photosensitizer (PS) and o-phenylenediamine (oPD) as precursors, and furtherly applied to inhibit Aβ aggregation via photooxygenation. The inhibition efficiency of such PS-CPDs can be adjusted by varying the type of photosensitizer, and among them, methylene blue-doped carbonized polymer dots (MB-CPDs) showed the strongest photooxygenation inhibition capability. The results demonstrated that under 650 nm NIR light irradiation, MB-CPDs (2 μg/mL) produced reactive oxygen species (ROS) to efficiently inhibit Aβ fibrillization and disaggregate mature Aβ fibrils and increased the cultured cell viability from 50% to 83%. In vivo studies confirmed that MB-CPDs extended the lifespan of AD nematodes by 4 days. Notably, the inhibitory capability of MB-CPDs is much stronger than that of MB and previously reported carbonized polymer dots. This work indicated that potent photooxygenation carbon dots can be obtained by using a photosensitizer as one of the precursors, and the results have provided new insights into the design of potent photooxygenation carbon nanomaterials targeting Aβ in AD treatment.
Collapse
Affiliation(s)
- Xiaoding Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Hui Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
6
|
Bajad NG, Kumar A, Singh SK. Recent Advances in the Development of Near-Infrared Fluorescent Probes for the in Vivo Brain Imaging of Amyloid-β Species in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2955-2967. [PMID: 37574911 DOI: 10.1021/acschemneuro.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical regions of the brain of Alzheimer's disease (AD) patients is considered the foremost pathological hallmark of the disease. The early diagnosis of AD is paramount in order to effective management and treatment of the disease. Developing near-infrared fluorescence (NIRF) probes targeting Aβ species is a potential and attractive approach suitable for the early and timely diagnosis of AD. The advantages of the NIRF probes over other tools include real-time detection, higher sensitivity, resolution, comparatively inexpensive experimental setup, and noninvasive nature. Currently, enormous progress is being observed in the development of NIRF probes for the in vivo imaging of Aβ species. Several strategies, i.e., the classical push-pull approach, "turn-on" effect, aggregation-induced emission (AIE), and resonance energy transfer (RET), have been exploited for development. We have outlined and discussed the recently emerged NIRF probes with different design strategies targeting Aβ species for ex vivo and in vivo imaging. We believe that understanding the recent development enables the prospect of the rational design of probes and will pave the way for developing future novel probes for early diagnosis of AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
7
|
Wellawatte GP, Hocky GM, White AD. Neural potentials of proteins extrapolate beyond training data. J Chem Phys 2023; 159:085103. [PMID: 37642255 PMCID: PMC10474891 DOI: 10.1063/5.0147240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
We evaluate neural network (NN) coarse-grained (CG) force fields compared to traditional CG molecular mechanics force fields. We conclude that NN force fields are able to extrapolate and sample from unseen regions of the free energy surface when trained with limited data. Our results come from 88 NN force fields trained on different combinations of clustered free energy surfaces from four protein mapped trajectories. We used a statistical measure named total variation similarity to assess the agreement between reference free energy surfaces from mapped atomistic simulations and CG simulations from trained NN force fields. Our conclusions support the hypothesis that NN CG force fields trained with samples from one region of the proteins' free energy surface can, indeed, extrapolate to unseen regions. Additionally, the force matching error was found to only be weakly correlated with a force field's ability to reconstruct the correct free energy surface.
Collapse
Affiliation(s)
- Geemi P. Wellawatte
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Glen M. Hocky
- Department of Chemistry, Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, USA
| | - Andrew D. White
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
8
|
Pal T, Sahoo S, Prasad Ghanta K, Bandyopadhyay S. Computational Investigation of Conformational Fluctuations of Aβ42 Monomers in Aqueous Ionic Liquid Mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Davidson DS, Kraus JA, Montgomery JM, Lemkul JA. Effects of Familial Alzheimer's Disease Mutations on the Folding Free Energy and Dipole-Dipole Interactions of the Amyloid β-Peptide. J Phys Chem B 2022; 126:7552-7566. [PMID: 36150020 PMCID: PMC9547858 DOI: 10.1021/acs.jpcb.2c03520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Familial Alzheimer's disease (FAD) mutations of the amyloid β-peptide (Aβ) are known to lead to early onset and more aggressive Alzheimer's disease. FAD mutations such as "Iowa" (D23N), "Arctic" (E22G), "Italian" (E22K), and "Dutch" (E22Q) have been shown to accelerate Aβ aggregation relative to the wild-type (WT). The mechanism by which these mutations facilitate increased aggregation is unknown, but each mutation results in a change in the net charge of the peptide. Previous studies have used nonpolarizable force fields to study Aβ, providing some insight into how this protein unfolds. However, nonpolarizable force fields have fixed charges that lack the ability to redistribute in response to changes in local electric fields. Here, we performed polarizable molecular dynamics simulations on the full-length Aβ42 of WT and FAD mutations and calculated folding free energies of the Aβ15-27 fragment via umbrella sampling. By studying both the full-length Aβ42 and a fragment containing mutations and the central hydrophobic cluster (residues 17-21), we were able to systematically study how these FAD mutations impact secondary and tertiary structure and the thermodynamics of folding. Electrostatic interactions, including those between permanent and induced dipoles, affected side-chain properties, salt bridges, and solvent interactions. The FAD mutations resulted in shifts in the electronic structure and solvent accessibility at the central hydrophobic cluster and the hydrophobic C-terminal region. Using umbrella sampling, we found that the folding of the WT and E22 mutants is enthalpically driven, whereas the D23N mutant is entropically driven, arising from a different unfolding pathway and peptide-bond dipole response. Together, the unbiased, full-length, and umbrella sampling simulations of fragments reveal that the FAD mutations perturb nearby residues and others in hydrophobic regions to potentially alter solubility. These results highlight the role electronic polarizability plays in amyloid misfolding and the role of heterogeneous microenvironments that arise as conformational change takes place.
Collapse
Affiliation(s)
- Darcy S Davidson
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joshua A Kraus
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Julia M Montgomery
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Sonar K, Mancera RL. Characterization of the Conformations of Amyloid Beta 42 in Solution That May Mediate Its Initial Hydrophobic Aggregation. J Phys Chem B 2022; 126:7916-7933. [PMID: 36179370 DOI: 10.1021/acs.jpcb.2c04743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrinsically disordered peptides, such as amyloid β42 (Aβ42), lack a well-defined structure in solution. Aβ42 can undergo abnormal aggregation and amyloidogenesis in the brain, forming fibrillar plaques, a hallmark of Alzheimer's disease. The insoluble fibrillar forms of Aβ42 exhibit well-defined, cross β-sheet structures at the molecular level and are less toxic than the soluble, intermediate disordered oligomeric forms. However, the mechanism of initial interaction of monomers and subsequent oligomerization is not well understood. The structural disorder of Aβ42 adds to the challenges of determining the structural properties of its monomers, making it difficult to understand the underlying molecular mechanism of pathogenic aggregation. Certain regions of Aβ42 are known to exhibit helical propensity in different physiological conditions. NMR spectroscopy has shown that the Aβ42 monomer at lower pH can adopt an α-helical conformation and as the pH is increased, the peptide switches to β-sheet conformation and aggregation occurs. CD spectroscopy studies of aggregation have shown the presence of an initial spike in the amount of α-helical content at the start of aggregation. Such an increase in α-helical content suggests a mechanism wherein the peptide can expose critical non-polar residues for interaction, leading to hydrophobic aggregation with other interacting peptides. We have used molecular dynamics simulations to characterize in detail the conformational landscape of monomeric Aβ42 in solution to identify molecular properties that may mediate the early stages of oligomerization. We hypothesized that conformations with α-helical structure have a higher probability of initiating aggregation because they increase the hydrophobicity of the peptide. Although random coil conformations were found to be the most dominant, as expected, α-helical conformations are thermodynamically accessible, more so than β-sheet conformations. Importantly, for the first time α-helical conformations are observed to increase the exposure of aromatic and hydrophobic residues to the aqueous solvent, favoring their hydrophobically driven interaction with other monomers to initiate aggregation. These findings constitute a first step toward characterizing the mechanism of formation of disordered, low-order oligomers of Aβ42.
Collapse
Affiliation(s)
- Krushna Sonar
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, P. O. Box U1987, Perth, Western Australia6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, P. O. Box U1987, Perth, Western Australia6845, Australia
| |
Collapse
|
11
|
Yasar F, Ray AJ, Hansmann UHE. Resolution exchange with tunneling for enhanced sampling of protein landscapes. Phys Rev E 2022; 106:015302. [PMID: 35974556 PMCID: PMC9389597 DOI: 10.1103/physreve.106.015302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Simulations of protein folding and protein association happen on timescales that are orders of magnitude larger than what can typically be covered in all-atom molecular dynamics simulations. Use of low-resolution models alleviates this problem but may reduce the accuracy of the simulations. We introduce a replica-exchange-based multiscale sampling technique that combines the faster sampling in coarse-grained simulations with the potentially higher accuracy of all-atom simulations. After testing the efficiency of our Resolution Exchange with Tunneling (ResET) in simulations of the Trp-cage protein, an often used model to evaluate sampling techniques in protein simulations, we use our approach to compare the landscape of wild-type and A2T mutant Aβ_{1-42} peptides. Our results suggest a mechanism by that the mutation of a small hydrophobic alanine (A) into a bulky polar threonine (T) may interfere with the self-assembly of Aβ fibrils.
Collapse
Affiliation(s)
- Fatih Yasar
- Dept. of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Alan J. Ray
- Dept. of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
12
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
13
|
Paul R, Bera S, Devi M, Paul S. Inhibition of Aβ 16–22 Peptide Aggregation by Small Molecules and Their Permeation through POPC Lipid Bilayer: Insight from Molecular Dynamics Simulation Study. J Chem Inf Model 2022; 62:5193-5207. [DOI: 10.1021/acs.jcim.1c01366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Siddhartha Bera
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Madhusmita Devi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
14
|
Rahman MU, Song K, Da LT, Chen HF. Early aggregation mechanism of Aβ 16-22 revealed by Markov state models. Int J Biol Macromol 2022; 204:606-616. [PMID: 35134456 DOI: 10.1016/j.ijbiomac.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
Aβ16-22 is believed to have critical role in early aggregation of full length amyloids that are associated with the Alzheimer's disease and can aggregate to form amyloid fibrils. However, the early aggregation mechanism is still unsolved. Here, multiple long-term molecular dynamics simulations combining with Markov state model were used to probe the early oligomerization mechanism of Aβ16-22 peptides. The identified dimeric form adopted either globular random-coil or extended β-strand like conformations. The observed dimers of these variants shared many overall conformational characteristics but differed in several aspects at detailed level. In all cases, the most common type of secondary structure was intermolecular antiparallel β-sheets. The inter-state transitions were very frequent ranges from few to hundred nanoseconds. More strikingly, those states which contain fraction of β secondary structure and significant amount of extended coiled structures, therefore exposed to the solvent, were majorly participated in aggregation. The assembly of low-energy dimers, in which the peptides form antiparallel β sheets, occurred by multiple pathways with the formation of an obligatory intermediates. We proposed that these states might facilitate the Aβ16-22 aggregation through a significant component of the conformational selection mechanism, because they might increase the aggregates population by promoting the inter-chain hydrophobic and the hydrogen bond contacts. The formation of early stage antiparallel β sheet structures is critical for oligomerization, and at the same time provided a flat geometry to seed the ordered β-strand packing of the fibrils. Our findings hint at reorganization of this part of the molecule as a potentially critical step in Aβ aggregation and will insight into early oligomerization for large β amyloids.
Collapse
Affiliation(s)
- Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyuan Song
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Center for Bioinformation Technology, Shanghai, 200235, China.
| |
Collapse
|
15
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
16
|
Zheng C, Yu Y, Kuang S, Zhu B, Zhou H, Zhang SQ, Yang J, Shi L, Ran C. β-Amyloid Peptides Manipulate Switching Behaviors of Donor-Acceptor Stenhouse Adducts. Anal Chem 2021; 93:9887-9896. [PMID: 34235921 DOI: 10.1021/acs.analchem.1c01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular switching plays a critical role in biological and displaying systems. Donor-acceptor Stenhouse adducts (DASAs) is a newly re-discovered series of switchable photochromes, and light is the most used approach to control its switching behavior. In this report, we speculated that hydrophobic binding pockets of biologically relevant peptides/proteins could be harnessed to alter its switching behavior without the assistance of light. We designed and synthesized a DASA compound SHA-2, and we demonstrated that the Aβ40 species could stabilize SHA-2 in the linear conformation and decrease the rate of molecular switching via fluorescence spectral studies. Moreover, molecular dynamics simulation revealed that SHA-2 could bind to the hydrophobic fragment of the peptide and resulted in substantial changes in the tertiary structure of Aβ40 monomer. This structural change is likely to impede the aggregation of Aβ40, as evidenced by the results from thioflavin T fluorescence and ProteoStat aggregation detection experiments. We believe that our study opens a new window to alter the switching behavior of DASA via DASA-peptide/protein interactions.
Collapse
Affiliation(s)
- Chao Zheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States.,PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yue Yu
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Shi Kuang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Heng Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Shao-Qing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| |
Collapse
|
17
|
Effects of Curcumin and Ferulic Acid on the Folding of Amyloid-β Peptide. Molecules 2021; 26:molecules26092815. [PMID: 34068636 PMCID: PMC8126156 DOI: 10.3390/molecules26092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
The polyphenols curcumin (CU) and ferulic acid (FA) are able to inhibit the aggregation of amyloid-β (Aβ) peptide with different strengths. CU is a strong inhibitor while FA is a weaker one. In the present study, we examine the effects of CU and FA on the folding process of an Aβ monomer by 1 µs molecular dynamics (MD) simulations. We found that both inhibitors increase the helical propensity and decrease the non-helical propensity of Aβ peptide. They prevent the formation of a dense bulk core and shorten the average lifetime of intramolecular hydrogen bonds in Aβ. CU makes more and longer-lived hydrogen bonds, hydrophobic, π–π, and cation–π interactions with Aβ peptide than FA does, which is in a good agreement with the observed stronger inhibitory activity of CU on Aβ aggregation.
Collapse
|
18
|
Padilla-Zambrano HS, García-Ballestas E, Quiñones-Ossa GA, Sibaja-Perez AE, Agrawal A, Moscote-Salazar LR, Menéndez-González M. The Prion-like Properties of Amyloid-beta Peptide and Tau: Is there Any Risk of Transmitting Alzheimer's Disease During Neurosurgical Interventions? Curr Alzheimer Res 2021; 17:781-789. [PMID: 33280597 DOI: 10.2174/1567205017666201204164220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Recent studies have recognized similarities between the peptides involved in the neuropathology of Alzheimer's disease and prions. The Tau protein and the Amyloid β peptide represent the theoretical pillars of Alzheimer's disease development. It is probable that there is a shared mechanism for the transmission of these substances and the prion diseases development; this presumption is based on the presentation of several cases of individuals without risk factors who developed dementia decades after a neurosurgical procedure. This article aims to present the role of Aβ and Tau, which underlie the pathophysiologic mechanisms involved in the AD and their similarities with the prion diseases infective mechanisms by means of the presentation of the available evidence at molecular (in-vitro), animal, and human levels that support the controversy on whether these diseases might be transmitted in neurosurgical interventions, which may constitute a wide public health issue.
Collapse
Affiliation(s)
- Huber S Padilla-Zambrano
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ezequiel García-Ballestas
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | | | - Andrés E Sibaja-Perez
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Amit Agrawal
- Department of Neurosurgery, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Luis R Moscote-Salazar
- Neurosurgeon-Critical Care, Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena de Indias, Bolivar, Colombia
| | | |
Collapse
|
19
|
Plant isoquinoline alkaloids as potential neurodrugs: A comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chem Biol Interact 2020; 334:109300. [PMID: 33098838 PMCID: PMC7577920 DOI: 10.1016/j.cbi.2020.109300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Herein we present a comparative study of the effects of isoquinoline alkaloids belonging to benzo[c]phenanthridine and berberine families on β-amyloid aggregation. Results obtained using a Thioflavine T (ThT) fluorescence assay and circular dichroism (CD) spectroscopy suggested that the benzo[c]phenanthridine nucleus, present in both sanguinarine and chelerythrine molecules, was directly involved in an inhibitory effect of Aβ1-42 aggregation. Conversely, coralyne, that contains the isomeric berberine nucleus, significantly increased propensity for Aβ1-42 to aggregate. Surface Plasmon Resonance (SPR) experiments provided quantitative estimation of these interactions: coralyne bound to Aβ1-42 with an affinity (KD = 11.6 μM) higher than benzo[c]phenanthridines. Molecular docking studies confirmed that all three compounds are able to recognize Aβ1-42 in different aggregation forms suggesting their effective capacity to modulate the Aβ1-42 self-recognition mechanism. Molecular dynamics simulations indicated that coralyne increased the β-content of Aβ1-42, in early stages of aggregation, consistent with fluorescence-based promotion of the Aβ1-42 self-recognition mechanism by this alkaloid. At the same time, sanguinarine induced Aβ1-42 helical conformation corroborating its ability to delay aggregation as experimentally proved in vitro. The investigated compounds were shown to interfere with aggregation of Aβ1-42 demonstrating their potential as starting leads for the development of therapeutic strategies in neurodegenerative diseases.
Collapse
|
20
|
Mitra A, Sarkar N. Sequence and structure-based peptides as potent amyloid inhibitors: A review. Arch Biochem Biophys 2020; 695:108614. [PMID: 33010227 DOI: 10.1016/j.abb.2020.108614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Misfolded and natively disordered globular proteins tend to aggregate together in an interwoven fashion to form fibrous, proteinaceous deposits referred to as amyloid fibrils. Formation and deposition of such insoluble fibrils are the characteristic features of a broad group of diseases, known as amyloidosis. Some of these proteins are known to cause several degenerative disorders in humans, such as Amyloid-Beta (Aβ) in Alzheimer's disease (AD), human Islet Amyloid Polypeptide (hIAPP, amylin) in type 2 diabetes, α-synuclein (α-syn) in Parkinson's disease (PD) and so on. The fact that these proteins do not share any significant sequence or structural homology in their native states make therapy quite challenging. However, it is observed that aggregation-prone proteins and peptides tend to adopt a similar type of secondary structure during the formation of fibrils. Rationally designed peptides can be a potent inhibitor that has been shown to disrupt the fibril structure by binding specifically to the amyloidogenic region(s) within a protein. The following review will analyze the inhibitory potency of both sequence-based and structure-based small peptides that have been shown to inhibit amyloidogenesis of proteins such as Aβ, human amylin, and α-synuclein.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
21
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Introducing Virtual Oligomerization Inhibition to Identify Potent Inhibitors of Aβ Oligomerization. J Chem Theory Comput 2020; 16:3920-3935. [PMID: 32307994 DOI: 10.1021/acs.jctc.0c00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) oligomers are known as the most toxic form of Aβ peptides, and they are a major contributor to Alzheimer's disease. Therefore, developing antagonist screening methods for the formation of Aβ oligomers is urgent and of great interest. In this study, we introduce virtual oligomerization inhibition (VOI), a novel virtual screening protocol that applies atomistic simulation to quantitatively investigate the ability of a ligand in interfering Aβ oligomerization and the formation of Aβ oligomers. Results from the VOI performance on six known inhibitors of Aβ aggregation (brazilin, curcumin, EGCG, ELND005, resveratrol, and tacrine) are in excellent agreement with the results of expensive experiments. Moreover, VOI can reveal the mechanism and kinetics of the inhibition process at the atomistic level. VOI not only improves the efficiency of the antagonist screening for Aβ oligomerization but also reduces the cost of performing the task. Attractively, the principle of VOI can also be applied to inhibitor screening for the aggregation of other amyloid proteins/peptides.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
22
|
Pilkington AW, Schupp J, Nyman M, Valentine SJ, Smith DM, Legleiter J. Acetylation of Aβ 40 Alters Aggregation in the Presence and Absence of Lipid Membranes. ACS Chem Neurosci 2020; 11:146-161. [PMID: 31834770 DOI: 10.1021/acschemneuro.9b00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the formation of senile plaques comprised of the β-amyloid (Aβ) peptide. Aβ fibrillization is a complex nucleation-dependent process involving a variety of metastable intermediate aggregates and features the formation of inter- and intramolecular salt bridges involving lysine residues, K16 and K28. Cationic lysine residues also mediate protein-lipid interactions via association with anionic lipid headgroups. As several toxic mechanisms attributed to Aβ involve membrane interactions, the impact of acetylation on Aβ40 aggregation in the presence and absence of membranes was determined. Using chemical acetylation, varying mixtures of acetylated and nonacetylated Aβ40 were produced. With increasing acetylation, fibril and oligomer formation decreased, eventually completely arresting fibrillization. In the presence of total brain lipid extract (TBLE) vesicles, acetylation reduced the interaction of Aβ40 with membranes; however, fibrils still formed at near complete levels of acetylation. Additionally, the combination of TBLE and acetylated Aβ promoted annular aggregates. Finally, toxicity associated with Aβ40 was reduced with increasing acetylation in a cell culture assay. These results suggest that in the absence of membranes that the cationic character of lysine plays a major role in fibril formation. However, acetylation promotes unique aggregation pathways in the presence of lipid membranes.
Collapse
Affiliation(s)
- Albert W. Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Jane Schupp
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Morgan Nyman
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - David M. Smith
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
- Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box
9303, Morgantown, West Virginia 26505, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
- Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
- Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box
9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
23
|
Hattori LT, Gutoski M, Vargas Benítez CM, Nunes LF, Lopes HS. A benchmark of optimally folded protein structures using integer programming and the 3D-HP-SC model. Comput Biol Chem 2020; 84:107192. [PMID: 31918170 DOI: 10.1016/j.compbiolchem.2019.107192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
The Protein Structure Prediction (PSP) problem comprises, among other issues, forecasting the three-dimensional native structure of proteins using only their primary structure information. Most computational studies in this area use synthetic data instead of real biological data. However, the closer to the real-world, the more the impact of results and their applicability. This work presents 17 real protein sequences extracted from the Protein Data Bank for a benchmark to the PSP problem using the tri-dimensional Hydrophobic-Polar with Side-Chains model (3D-HP-SC). The native structure of these proteins was found by maximizing the number of hydrophobic contacts between the side-chains of amino acids. The problem was treated as an optimization problem and solved by means of an Integer Programming approach. Although the method optimally solves the problem, the processing time has an exponential trend. Therefore, due to computational limitations, the method is a proof-of-concept and it is not applicable to large sequences. For unknown sequences, an upper bound of the number of hydrophobic contacts (using this model) can be found, due to a linear relationship with the number of hydrophobic residues. The comparison between the predicted and the biological structures showed that the highest similarity between them was found with distance thresholds around 5.2-8.2 Å. Both the dataset and the programs developed will be freely available to foster further research in the area.
Collapse
Affiliation(s)
- Leandro Takeshi Hattori
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil.
| | - Matheus Gutoski
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil
| | - César Manuel Vargas Benítez
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil
| | - Luiz Fernando Nunes
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil.
| | - Heitor Silvério Lopes
- Bioinformatics and Computational Intelligence Laboratory, Federal University of Technology Paraná (UTFPR), Av. 7 de Setembro, 3165, 80230-901 Curitiba (PR), Brazil.
| |
Collapse
|
24
|
Lu G, Xu X, Li G, Sun H, Wang N, Zhu Y, Wan N, Shi Y, Wang G, Li L, Hao H, Ye H. Subresidue-Resolution Footprinting of Ligand-Protein Interactions by Carbene Chemistry and Ion Mobility-Mass Spectrometry. Anal Chem 2020; 92:947-956. [PMID: 31769969 PMCID: PMC7394559 DOI: 10.1021/acs.analchem.9b03827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The knowledge of ligand-protein interactions is essential for understanding fundamental biological processes and for the rational design of drugs that target such processes. Carbene footprinting efficiently labels proteinaceous residues and has been used with mass spectrometry (MS) to map ligand-protein interactions. Nevertheless, previous footprinting studies are typically performed at the residue level, and therefore, the resolution may not be high enough to couple with conventional crystallography techniques. Herein we developed a subresidue footprinting strategy based on the discovery that carbene labeling produces subresidue peptide isomers and the intensity changes of these isomers in response to ligand binding can be exploited to delineate ligand-protein topography at the subresidue level. The established workflow combines carbene footprinting, extended liquid chromatographic separation, and ion mobility (IM)-MS for efficient separation and identification of subresidue isomers. Analysis of representative subresidue isomers located within the binding cleft of lysozyme and those produced from an amyloid-β segment have both uncovered structural information heretofore unavailable by residue-level footprinting. Lastly, a "real-world" application shows that the reactivity changes of subresidue isomers at Phe399 can identify the interactive nuances between estrogen-related receptor α, a potential drug target for cancer and metabolic diseases, with its three ligands. These findings have significant implications for drug design. Taken together, we envision the subresidue-level resolution enabled by IM-MS-coupled carbene footprinting can bridge the gap between structural MS and the more-established biophysical tools and ultimately facilitate diverse applications for fundamental research and pharmaceutical development.
Collapse
Affiliation(s)
- Gaoyuan Lu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Xiaowei Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Gongyu Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Huiyong Sun
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Nian Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Yinxue Zhu
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Ning Wan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53706, United States
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang #24, Nanjing, Jiangsu 210009, China
| |
Collapse
|
25
|
Xing X, Liu C, Yang H, Nouman MF, Ai H. Folding dynamics of Aβ42 monomer at pH 4.0–7.5 with and without physiological salt conditions – does the β1 or β2 region fold first? NEW J CHEM 2020. [DOI: 10.1039/d0nj01090a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The seeding region of Aβ42 monomer is jointly affected by the solution acidity, ionic distribution of the salt, and charged residues.
Collapse
Affiliation(s)
- Xiaofeng Xing
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Chengqiang Liu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | | | - Hongqi Ai
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| |
Collapse
|
26
|
Sukhanova A, Poly S, Bozrova S, Lambert É, Ewald M, Karaulov A, Molinari M, Nabiev I. Nanoparticles With a Specific Size and Surface Charge Promote Disruption of the Secondary Structure and Amyloid-Like Fibrillation of Human Insulin Under Physiological Conditions. Front Chem 2019; 7:480. [PMID: 31417892 PMCID: PMC6683663 DOI: 10.3389/fchem.2019.00480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles attract much interest as fluorescent labels for diagnostic and therapeutic tools, although their applications are often hindered by size- and shape-dependent cytotoxicity. This cytotoxicity is related not only to the leak of toxic metals from nanoparticles into a biological solution, but also to molecular cytotoxicity effects determined by the formation of a protein corona, appearance of an altered protein conformation leading to exposure of cryptic epitopes and cooperative effects involved in the interaction of proteins and peptides with nanoparticles. In the last case, nanoparticles may serve, depending on their nature, as centers of self-association or fibrillation of proteins and peptides, provoking amyloid-like proteinopathies, or as inhibitors of self-association of proteins, or they can self-assemble on biopolymers as on templates. In this study, human insulin protein was used to analyze nanoparticle-induced proteinopathy in physiological conditions. It is known that human insulin may form amyloid fibers, but only under extreme experimental conditions (very low pH and high temperatures). Here, we have shown that the quantum dots (QDs) may induce amyloid-like fibrillation of human insulin under physiological conditions through a complex process strongly dependent on the size and surface charge of QDs. The insulin molecular structure and fibril morphology have been shown to be modified at different stages of its fibrillation, which has been proved by comparative analysis of the data obtained using circular dichroism, dynamic light scattering, amyloid-specific thioflavin T (ThT) assay, transmission electron microscopy, and high-speed atomic force microscopy. We have found important roles of the QD size and surface charge in the destabilization of the insulin structure and the subsequent fibrillation. Remodeling of the insulin secondary structure accompanied by remarkable increase in the rate of formation of amyloid-like fibrils under physiologically normal conditions was observed when the protein was incubated with QDs of exact specific diameter coated with slightly negative specific polyethylene glycol (PEG) derivatives. Strongly negatively or slightly positively charged PEG-modified QDs of the same specific diameter or QDs of bigger or smaller diameters had no effect on insulin fibrillation. The observed effects pave the way to the control of amyloidosis proteinopathy by varying the nanoparticle size and surface charge.
Collapse
Affiliation(s)
- Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France.,Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| | - Simon Poly
- Department of Membrane Biophysics, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Svetlana Bozrova
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| | - Éléonore Lambert
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Maxime Ewald
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Molinari
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France.,Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, Moscow, Russia
| |
Collapse
|
27
|
Abstract
Amyloid precursor A4 (770 amino acids (aa)) dimerizes and aggregates, as do its C-terminal (99 aa) and amyloid Aβ (40,42 aa Aβ40,Aβ42) fragments. The titled question has been discussed extensively, and here it is addressed further using thermodynamic scaling theory to analyze mutational trends in structural factors and kinetics. Special attention is given to Family Alzheimer's disease mutations in C99 outside Aβ42 centered on Aβ46. The scaling analysis is connected to extensive C99 docking simulations which included membranes ( Sun et al. J. Chem. Inf. Model. 2017 , 57 , 1375 - 1387 ), thereby confirming their C99 results and extending them to A4.
Collapse
Affiliation(s)
- James C. Phillips
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
28
|
Mehrazma B, Rauk A. Exploring Amyloid-β Dimer Structure Using Molecular Dynamics Simulations. J Phys Chem A 2019; 123:4658-4670. [PMID: 31082235 DOI: 10.1021/acs.jpca.8b11251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β peptides in the brains of people afflicted by the disease. The exact pathway to this catastrophic event is unknown. In this work, a total of 9.5 μs molecular dynamics simulations have been performed to investigate the structure and dynamics of the smallest form of toxic Aβ oligomers, i.e., the Aβ dimers. This study suggests that specific hydrophobic regions are vital in the aggregation process. Different possible structures for Aβ dimers are reported along with their relative binding affinity. These data may be used to design better Aβ-aggregation inhibitors. The diversity of the dimer structures suggests several aggregation pathways.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry , University of Calgary , Calgary AB , Canada T2N 1N4
| | - Arvi Rauk
- Department of Chemistry , University of Calgary , Calgary AB , Canada T2N 1N4
| |
Collapse
|
29
|
Liu C, Zhao W, Xing X, Shi H, Kang B, Liu H, Li P, Ai H. An Original Monomer Sampling from a Ready‐Made Aβ
42
NMR Fibril Suggests a Turn‐β‐Strand Synergetic Seeding Mechanism. Chemphyschem 2019; 20:1649-1660. [DOI: 10.1002/cphc.201801137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Chengqiang Liu
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Wei Zhao
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Xiaofeng Xing
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Hu Shi
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Baotao Kang
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Haiying Liu
- School of PhysicsUniversity of Jinan Jinan 250022 China
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Hongqi Ai
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| |
Collapse
|
30
|
Conformational Change of Amyloid-β 40 in Association with Binding to GM1-Glycan Cluster. Sci Rep 2019; 9:6853. [PMID: 31048748 PMCID: PMC6497634 DOI: 10.1038/s41598-019-43117-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
Aggregates of amyloid-β (Aβ) peptide are well known to be the causative substance of Alzheimer's disease (AD). Recent studies showed that monosialotetrahexosylganglioside (GM1) clusters induce the pathological aggregation of Aβ peptide responsible for the onset and development of AD. However, the effect of GM1-glycan cluster on Aβ conformations has yet to be clarified. Interactions between Aβ peptide and GM1-glycan cluster is important for the earliest stage of the toxic aggregation on GM1 cluster. Here, we performed all-atom molecular dynamics (MD) simulations of Aβ40 on a recently developed artificial GM1-glycan cluster. The artificial GM1-glycan cluster facilitates the characterization of interactions between Aβ40 and multiple GM1-glycans. We succeeded in observing the binding of Aβ40 to the GM1-glycan cluster in all of our MD simulations. Results obtained from these MD simulations indicate the importance of HHQ (13-15) segment of Aβ40 for the GM1-glycan cluster recognition. This result is consistent with previous experimental studies regarding the glycan recognition of Aβ peptide. The recognition mechanism of HHQ (13-15) segment is mainly explained by non-specific stacking interactions between side-chains of histidine and rings of sugar residues, in which the HHQ regime forms coil and bend structures. Moreover, we found that Aβ40 exhibits helix structures at C-terminal side on the GM1-glycan cluster. The helix formation is the initial stage of the pathological aggregation at ceramide moieties of GM1 cluster. The binding of Lys28 to Neu triggers the helix formation at C-terminus side because the formation of a salt bridge between Lys28 and Neu leads to change of intrachain interactions of Aβ40. Our findings suggest that the pathological helix formation of Aβ40 is initiated at GM1-glycan moieties rather than lipid ceramide moieties.
Collapse
|
31
|
Blinov N, Wishart DS, Kovalenko A. Solvent Composition Effects on the Structural Properties of the Aβ42 Monomer from the 3D-RISM-KH Molecular Theory of Solvation. J Phys Chem B 2019; 123:2491-2506. [PMID: 30811210 DOI: 10.1021/acs.jpcb.9b00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural characterization of amyloid (A)β peptides implicated in Alzheimer's disease is a challenging problem due to their intrinsically disordered nature and their high propensity for aggregation. Only limited information is currently available from experiments on conformational properties and aggregation pathways of the peptides in cellular environments. In silico modeling complements experimental information, providing atomistic insight into structure and dynamics of different Aβ species. All-atom explicit solvent molecular dynamics (MD) simulations with a properly selected force field can deliver reliable structural and dynamic information. In the case of intrinsically disordered Aβ peptides, enhanced sampling simulations beyond the nanosecond time scale are required to obtain statistically meaningful results even for simple solvent conditions. To overcome the challenges of conformational sampling in crowded cellular environments, alternative approaches have to be used, including postprocessing of MD data. In this study, we employ the statistical-mechanical, three-dimensional reference interaction site model with the Kovalenko-Hirata closure integral equation molecular theory of solvation to describe solvent composition effects on the conformational equilibrium in a structural ensemble of the Aβ42 (covering residues 1-42) monomer based on a statistical reweighting technique. The methodology enables a computationally efficient prediction on how different factors in the cellular environment, such as solvent composition, nonpolar solvation, and macromolecular crowding, affect the structural properties of the monomer. Similarities have been identified between changes in the structural ensemble caused by nonpolar solvation and crowded environments modeled by ionic solution with large negative ions. In particular, both solvent conditions reduce the random coil content and enhance the helical structure content of the monomer. In contrast to the previous studies, which reported increased α-helical content of peptides in crowded environments, this work attributes these structural features to the difference in solvent exposure of hydrophilic residues of the monomer for different secondary structure elements, rather than to (entropic) excluded volume effects.
Collapse
Affiliation(s)
- Nikolay Blinov
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| | - David S Wishart
- Departments of Computing Science and Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E8 , Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering , Edmonton , Alberta T6G 1H9 , Canada.,Nanotechnology Research Centre , Edmonton , Alberta T6G 2M9 , Canada
| |
Collapse
|
32
|
Man VH, He X, Derreumaux P, Ji B, Xie XQ, Nguyen PH, Wang J. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Aβ 16-22 Dimer. J Chem Theory Comput 2019; 15:1440-1452. [PMID: 30633867 PMCID: PMC6745714 DOI: 10.1021/acs.jctc.8b01107] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigated the effects of 17 widely used atomistic molecular mechanics force fields (MMFFs) on the structures and kinetics of amyloid peptide assembly. To this end, we performed large-scale all-atom molecular dynamics simulations in explicit water on the dimer of the seven-residue fragment of the Alzheimer's amyloid-β peptide, Aβ16-22, for a total time of 0.34 ms. We compared the effects of these MMFFs by analyzing various global reaction coordinates, secondary structure contents, the fibril population, the in-register and out-of-register architectures, and the fibril formation time at 310 K. While the AMBER94, AMBER99, and AMBER12SB force fields do not predict any β-sheets, the seven force fields, AMBER96, GROMOS45a3, GROMOS53a5, GROMOS53a6, GROMOS43a1, GROMOS43a2, and GROMOS54a7, form β-sheets rapidly. In contrast, the following five force fields, AMBER99-ILDN, AMBER14SB, CHARMM22*, CHARMM36, and CHARMM36m, are the best candidates for studying amyloid peptide assembly, as they provide good balances in terms of structures and kinetics. We also investigated the assembly mechanisms of dimeric Aβ16-22 and found that the fibril formation rate is predominantly controlled by the total β-strand content.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Beihong Ji
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Corresponding Author:
| |
Collapse
|
33
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
34
|
Liu Z, Jiang F, Wu YD. Significantly different contact patterns between Aβ40 and Aβ42 monomers involving the N-terminal region. Chem Biol Drug Des 2018; 94:1615-1625. [PMID: 30381893 DOI: 10.1111/cbdd.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023]
Abstract
Aβ42 peptide, with two additional residues at C-terminus, aggregates much faster than Aβ40. We performed equilibrium replica-exchange molecular dynamics simulations of their monomers using our residue-specific force field. Simulated 3 JHNH α -coupling constants agree excellently with experimental data. Aβ40 and Aβ42 have very similar local conformational features, with considerable β-strand structures in the segments: A2-H6 (A), L17-A21 (B), A30-V36 (C) of both peptides and V39-I41 (D) of Aβ42. Both peptides have abundant A-B and B-C contacts, but Aβ40 has much more contacts between A and C than Aβ42, which may retard its aggregation. Only Aβ42 has considerable A-B-C-D topology. Decreased probability of A-C contact in Aβ42 relates to the competition from C-D contact. Increased A-C contact probability may also explain the slower aggregation of A2T and A2V mutants of Aβ42.
Collapse
Affiliation(s)
- Ziye Liu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
35
|
Kar RK, Brender JR, Ghosh A, Bhunia A. Nonproductive Binding Modes as a Prominent Feature of Aβ 40 Fiber Elongation: Insights from Molecular Dynamics Simulation. J Chem Inf Model 2018; 58:1576-1586. [PMID: 30047732 DOI: 10.1021/acs.jcim.8b00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of amyloid fibers has been implicated in a number of neurodegenerative diseases. The growth of amyloid fibers is strongly thermodynamically favorable, but kinetic traps exist where the incoming monomer binds in an incompatible conformation that blocks further elongation. Unfortunately, this process is difficult to follow experimentally at the atomic level. It is also too complex to simulate in full detail and to date has been explored either through coarse-grained simulations, which may miss many important interactions, or full atomic simulations, in which the incoming peptide is constrained to be near the ideal fiber geometry. Here we use an alternate approach starting from a docked complex in which the monomer is from an experimental NMR structure of one of the major conformations in the unbound ensemble, a largely unstructured peptide with the central hydrophobic region in a 310 helix. A 1000 ns full atomic simulation in explicit solvent shows the formation of a metastable intermediate by sequential, concerted movements of both the fiber and the monomer. A Markov state model shows that the unfolded monomer is trapped at the end of the fiber in a set of interconverting antiparallel β-hairpin conformations. The simulation here may serve as a model for the binding of other non-β-sheet conformations to amyloid fibers.
Collapse
Affiliation(s)
- Rajiv K Kar
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Jeffrey R Brender
- Radiation Biology Branch , National Institutes of Health , Bethesda , Maryland 20814 , United States
| | - Anirban Ghosh
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| |
Collapse
|
36
|
Morris C, Cupples S, Kent TW, Elbassal EA, Wojcikiewicz EP, Yi P, Du D. N-Terminal Charged Residues of Amyloid-β Peptide Modulate Amyloidogenesis and Interaction with Lipid Membrane. Chemistry 2018; 24:9494-9498. [PMID: 29738067 PMCID: PMC6035087 DOI: 10.1002/chem.201801805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/07/2018] [Indexed: 11/08/2022]
Abstract
Interactions of amyloid-β (Aβ) peptides and cellular membranes are proposed to be closely related with Aβ neurotoxicity in Alzheimer's disease. In this study, we systematically investigated the effect of the N-terminal hydrophilic region of Aβ40 on its amyloidogenesis and interaction with supported phospholipid bilayer. Our results show that modulation of the charge properties of the dynamic N-terminal region dramatically influences the aggregation properties of Aβ. Furthermore, our results demonstrate that the N-terminal charged residues play a crucial role in driving the early adsorption and latter remobilization of the peptide on membrane bilayer, and mediating the rigidity and viscoelasticity properties of the bound Aβ40 at the membrane interface. The results provide new mechanistic insight into the early Aβ-membrane interactions and binding, which may be critical for elucidating membrane-mediated Aβ amyloidogenesis in a physiological environment and unravelling the origin of Aβ neurotoxicity.
Collapse
Affiliation(s)
- Clifford Morris
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Shirin Cupples
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Thomas W Kent
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Esmail A Elbassal
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ewa P Wojcikiewicz
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Peng Yi
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, USA
| |
Collapse
|
37
|
Röder K, Wales DJ. Predicting Pathways between Distant Configurations for Biomolecules. J Chem Theory Comput 2018; 14:4271-4278. [DOI: 10.1021/acs.jctc.8b00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
38
|
Abstract
β- N-Methylamino-l-alanine (BMAA) is a neurotoxic agent implicated in ALS as well as Parkinson's and Alzheimer's diseases. It is produced by blue-green algae and could find its way via fish and seafood into the human food supply. Isolation from biological samples yields the compound in monomeric and protein-bound form. It has been suggested that the protein-bound fraction may result from genetic misincorporation into proteins in place of serine. Concomitant misfolding of the mutated proteins may be responsible for the neurological diseases. Recent reports that contradict the misincorporation theory leave unresolved the nature of the protein-bound form of BMAA. We have found from quantum mechanical calculations on model systems that it is possible to bind BMAA with high affinity in a noncovalent fashion to proteins. Because of our interest in Alzheimer's disease, molecular dynamics simulations were applied to search for such binding between BMAA and the β-amyloid peptide and to discover whether replacement of either of its two serine residues could affect its aggregation into neurotoxic oligomers. No stable noncovalently bound complex was found, and it was concluded that incorporation of BMAA in place of serine would not alter the conformational dynamics of the β-amyloid peptide.
Collapse
Affiliation(s)
- Arvi Rauk
- Department of Chemistry , University of Calgary , 2500 University Dr. NW , Calgary , Alberta , Canada T2N 1N4
| |
Collapse
|
39
|
Abstract
The aggregation of the Aβ peptide (Aβ1-42) to form fibrils is a key feature of Alzheimer's disease. The mechanism is thought to be a nucleation stage followed by an elongation process. The elongation stage involves the consecutive addition of monomers to one end of the growing fibril. The aggregation process proceeds in a stop-and-go fashion and may involve off-pathway aggregates, complicating experimental and computational studies. Here we present exploration of a well-defined region in the free and potential energy landscapes for the Aβ17-42 pentamer. We find that the ideal aggregation process agrees with the previously reported dock-lock mechanism. We also analyze a large number of additional stable structures located on the multifunnel energy landscape, which constitute kinetic traps. The key contributors to the formation of such traps are misaligned strong interactions, for example the stacking of F19 and F20, as well as entropic contributions. Our results suggest that folding templates for aggregation are a necessity and that aggregation studies could employ such species to obtain a more detailed description of the process.
Collapse
Affiliation(s)
- Konstantin Röder
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
40
|
Alves NA, Frigori RB. Structural Interconversion in Alzheimer’s Amyloid-β(16–35) Peptide in an Aqueous Solution. J Phys Chem B 2018; 122:1869-1875. [DOI: 10.1021/acs.jpcb.7b12528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nelson A. Alves
- Departamento
de Fı́sica, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão
Preto 14040-901, SP, Brazil
| | - Rafael B. Frigori
- Universidade Tecnológica Federal do Paraná, Rua Cristo Rei 19, Toledo 85902-490, PR, Brazil
| |
Collapse
|
41
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
42
|
Blinov N, Khorvash M, Wishart DS, Cashman NR, Kovalenko A. Initial Structural Models of the Aβ42 Dimer from Replica Exchange Molecular Dynamics Simulations. ACS OMEGA 2017; 2:7621-7636. [PMID: 31457321 PMCID: PMC6645216 DOI: 10.1021/acsomega.7b00805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 05/27/2023]
Abstract
Experimental characterization of the molecular structure of small amyloid (A)β oligomers that are currently considered as toxic agents in Alzheimer's disease is a formidably difficult task due to their transient nature and tendency to aggregate. Such structural information is of importance because it can help in developing diagnostics and an effective therapy for the disease. In this study, molecular simulations and protein-protein docking are employed to explore a possible connection between the structure of Aβ monomers and the properties of the intermonomer interface in the Aβ42 dimer. A structurally diverse ensemble of conformations of the monomer was sampled in microsecond timescale implicit solvent replica exchange molecular dynamics simulations. Representative structures with different solvent exposure of hydrophobic residues and secondary structure content were selected to build structural models of the dimer. Analysis of these models reveals that formation of an intramonomer salt bridge (SB) between Asp23 and Lys28 residues can prevent the building of a hydrophobic interface between the central hydrophobic clusters (CHCs) of monomers upon dimerization. This structural feature of the Aβ42 dimer is related to the difference in packing of hydrophobic residues in monomers with the Asp23-Lys28 SB in on and off states, in particular, to a lower propensity to form hydrophobic contacts between the CHC domain and C-terminal residues in monomers with a formed SB. These findings could have important implications for understanding the difference between aggregation pathways of Aβ monomers leading to neurotoxic oligomers or inert fibrillar structures.
Collapse
Affiliation(s)
- Nikolay Blinov
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- National
Institute for Nanotechnology, National Research
Council of Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Massih Khorvash
- Department
of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - David S. Wishart
- Departments
of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Neil R. Cashman
- Department
of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Andriy Kovalenko
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- National
Institute for Nanotechnology, National Research
Council of Canada, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
43
|
Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Hogiu SW, Kálai T, Hideg K, Yliperttula M, Voss JC. Oligomerization Alters Binding Affinity Between Amyloid Beta and a Modulator of Peptide Aggregation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23974-23987. [PMID: 30214656 PMCID: PMC6130836 DOI: 10.1021/acs.jpcc.7b06164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soluble oligomeric form of the amyloid beta (Aβ) peptide is the major causative agent in the molecular pathogenesis of Alzheimer's disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aβ. Here we introduce the multi-parametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aβ and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aβ toxicity and its progression towards larger oligomeric assemblies. Depending on the oligomeric state of Aβ, distinct binding affinities for SLF are revealed. The Aβ monomer and dimer uniquely possess sub-nanomolar affinity for SLF via a non-specific mode of binding. SLF binding is weaker in oligomeric Aβ, which displays an affinity for SLF on the order of 100 μM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aβ peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aβ interaction and allow us to develop a new general method for examining protein aggregation.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Tatu Rojalin
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Artturi Koivuniemi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Sebastian Wachsmann Hogiu
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Intellectual Ventures/Global Good, Bellevue, WA, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
44
|
Bacci M, Vymětal J, Mihajlovic M, Caflisch A, Vitalis A. Amyloid β Fibril Elongation by Monomers Involves Disorder at the Tip. J Chem Theory Comput 2017; 13:5117-5130. [PMID: 28870064 DOI: 10.1021/acs.jctc.7b00662] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growth of amyloid fibrils from Aβ1-42 peptide, one of the key pathogenic players in Alzheimer's disease, is believed to follow a nucleation-elongation mechanism. Fibril elongation is often described as a "dock-lock" procedure, where a disordered monomer adsorbs to an existing fibril in a relatively fast process (docking), followed by a slower conformational transition toward the ordered state of the template (locking). Here, we use molecular dynamics simulations of an ordered pentamer of Aβ42 at fully atomistic resolution, which includes solvent, to characterize the elongation process. We construct a Markov state model from an ensemble of short trajectories generated by an advanced sampling algorithm that efficiently diversifies a subset of the system without any bias forces. This subset corresponds to selected dihedral angles of the peptide chain at the fibril tip favored to be the fast growing one experimentally. From the network model, we extract distinct locking pathways covering time scales in the high microsecond regime. Slow steps are associated with the exchange of hydrophobic contacts, between nonnative and native intermolecular contacts as well as between intra- and intermolecular ones. The N-terminal segments, which are disordered in fibrils and typically considered inert, are able to shield the lateral interfaces of the pentamer. We conclude by discussing our findings in the context of a refined dock-lock model of Aβ fibril elongation, which involves structural disorder for more than one monomer at the growing tip.
Collapse
Affiliation(s)
- Marco Bacci
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jiří Vymětal
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Maja Mihajlovic
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
45
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38:1205-1235. [PMID: 28713158 PMCID: PMC5589967 DOI: 10.1038/aps.2017.28] [Citation(s) in RCA: 1020] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.
Collapse
Affiliation(s)
- Guo-Fang Chen
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting-Hai Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Yan
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Ren Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
47
|
Roy A, Chandra K, Dolui S, Maiti NC. Envisaging the Structural Elevation in the Early Event of Oligomerization of Disordered Amyloid β Peptide. ACS OMEGA 2017; 2:4316-4327. [PMID: 31457723 PMCID: PMC6641910 DOI: 10.1021/acsomega.7b00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 05/27/2023]
Abstract
In Alzheimer's disease (AD), amyloid β (Aβ) protein plays a detrimental role in neuronal injury and death. Recent in vitro and in vivo studies suggest that soluble oligomers of the Aβ peptide are neurotoxic. Structural properties of the oligomeric assembly, however, are largely unknown. Our present investigation established that the 40-residue-long Aβ peptide (Aβ40) became more helical, ordered, and compact in the oligomeric state, and both the helical and β-sheet components were found to increase significantly in the early event of oligomerization. The band-selective two-dimensional NMR analysis suggested that majority of the residues from sequence 12 to 22 gained a higher-ordered secondary structure in the oligomeric condition. The presence of a significant amount of helical conformation was confirmed by Raman bands at 1650 and 1336 cm-1. Other residues remained mostly in the extended polyproline II (PPII) and less compact β-conformation space. In the event of maturation of the oligomers into an amyloid fiber, both the helical content and the PPII-like structural components declined and ∼72% residues attained a compact β-sheet structure. Interestingly, however, some residues remained in the collagen triple helix/extended 2.51-helix conformation as evidenced by the amide III Raman signature band at 1272 cm-1. Molecular dynamics analysis using an optimized potential for liquid simulation force field with the peptide monomer indicated that some of the residues may have preferences for helical conformation and this possibly contributed in the event of oligomer formation, which eventually became a β-sheet-rich amyloid fiber.
Collapse
Affiliation(s)
- Anupam Roy
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Kousik Chandra
- NMR
Research Centre, Indian Institute of Science, CV Raman Road, Devasandra Layout, Bengaluru, Karnataka 560012, India
| | - Sandip Dolui
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
48
|
Pseudo-peptide amyloid-β blocking inhibitors: molecular dynamics and single molecule force spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1707-1718. [PMID: 28844735 DOI: 10.1016/j.bbapap.2017.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
By combining MD simulations and AFS experimental technique, we demonstrated a powerful approach for rational design and single molecule testing of novel inhibitor molecules which can block amyloid-amyloid binding - the first step of toxic amyloid oligomer formation. We designed and tested novel pseudo-peptide amyloid-β (Aβ) inhibitors that bind to the Aβ peptide and effectively prevent amyloid-amyloid binding. First, molecular dynamics (MD) simulations have provided information on the structures and binding characteristics of the designed pseudo-peptides targeting amyloid fragment Aβ (13-23). The binding affinities between the inhibitor and Aβ as well as the inhibitor to itself have been estimated using Umbrella Sampling calculations. Atomic Force Spectroscopy (AFS) was used to experimentally test several proposed inhibitors in their ability to block amyloid-amyloid binding - the first step of toxic amyloid oligomer formation. The experimental AFS data are in a good agreement with theoretical MD calculations and demonstrate that three proposed pseudo-peptides bind to amyloid fragment with different affinities and all effectively prevent Aβ-Aβ binding in similar way. We propose that the designed pseudo-peptides can be used as potential drug candidates to prevent Aβ toxicity in Alzheimer's disease.
Collapse
|
49
|
Abstract
Previously published experimental studies have suggested that when the 40-residue amyloid beta peptide is encapsulated in a reverse micelle, it folds into a structure that may nucleate amyloid fibril formation (Yeung, P. S.-W.; Axelsen, P. H. J. Am. Chem. Soc. 2012, 134, 6061 ). The factors that induce the formation of this structure have now been identified in a multi-microsecond simulation of the same reverse micelle system that was studied experimentally. Key features of the polypeptide-micelle interaction include the anchoring of a hydrophobic residue cluster into gaps in the reverse micelle surface, the formation of a beta turn at the anchor point that brings N- and C-terminal segments of the polypeptide into proximity, high ionic strength that promotes intramolecular hydrogen bond formation, and deformation of the reverse micelle surface to facilitate interactions with the surface along the entire length of the polypeptide. Together, these features cause the simulation-derived vibrational spectrum to red shift in a manner that reproduces the red-shift previously reported experimentally. On the basis of these findings, a new mechanism is proposed whereby membranes nucleate fibril formation and facilitate the in-register alignment of polypeptide strands that is characteristic of amyloid fibrils.
Collapse
Affiliation(s)
- Gözde Eskici
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | - Paul H Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Jong K, Grisanti L, Hassanali A. Hydrogen Bond Networks and Hydrophobic Effects in the Amyloid β30–35 Chain in Water: A Molecular Dynamics Study. J Chem Inf Model 2017; 57:1548-1562. [DOI: 10.1021/acs.jcim.7b00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- KwangHyok Jong
- Condensed
Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste 34136, Italy
- Department
of Physics, Kim II Sung University, RyongNam Dong, TaeSong District, Pyongyang, D.P.R., Korea
| | - Luca Grisanti
- Condensed
Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste 34136, Italy
| | - Ali Hassanali
- Condensed
Matter and Statistical Physics, International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|