1
|
|
2
|
Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016; 97:186-203. [PMID: 26541745 PMCID: PMC4753080 DOI: 10.1016/j.addr.2015.10.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation and turnover of extracellular matrix is a hallmark of tissue injury, repair and remodeling in human diseases. Hyaluronan is a major component of the extracellular matrix and plays an important role in regulating tissue injury and repair, and controlling disease outcomes. The function of hyaluronan depends on its size, location, and interactions with binding partners. While fragmented hyaluronan stimulates the expression of an array of genes by a variety of cell types regulating inflammatory responses and tissue repair, cell surface hyaluronan provides protection against tissue damage from the environment and promotes regeneration and repair. The interactions of hyaluronan and its binding proteins participate in the pathogenesis of many human diseases. Thus, targeting hyaluronan and its interactions with cells and proteins may provide new approaches to developing therapeutics for inflammatory and fibrosing diseases. This review focuses on the role of hyaluronan in biological and pathological processes, and as a potential therapeutic target in human diseases.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
3
|
Serban MA, Kluge JA, Laha MM, Kaplan DL. Modular elastic patches: mechanical and biological effects. Biomacromolecules 2011; 11:2230-7. [PMID: 20712340 DOI: 10.1021/bm1007772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A modular approach to engineering cross-linked elastic biomaterials is presented for fine-tuning of material mechanical and biological properties. The three components, soluble elastin, hyaluronic acid, and silk fibroin, contribute with different features to the overall properties of the final material system. The elastic biomaterial is chemically cross-linked via interaction between primary amine groups naturally present on the two proteins, silk and elastin, or chemically introduced on hyaluronan and N-succinimide functionalities of the cross-linker. The materials obtained by cross-linking the three components in different ratios have Young's moduli ranging from ∼ 100 to 230 kPa, strain to failure between ∼ 15-40% and ultimate tensile strengths of ∼ 30 kPa. The biological effects and enzymatic degradation rates of the different composites are also different based on material composition. These findings further underline the strength of modular, multicomponent systems in creating a range of biomaterials, targeted tissue engineering, and regenerative medicine applications, with application-tailored mechanical and biological properties.
Collapse
Affiliation(s)
- Monica A Serban
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
4
|
Wu GD, Bowdish ME, Jin YS, Zhu H, Mitsuhashi N, Barsky LW, Barr ML. Contribution of Mesenchymal Progenitor Cells to Tissue Repair in Rat Cardiac Allografts Undergoing Chronic Rejection. J Heart Lung Transplant 2005; 24:2160-9. [PMID: 16364866 DOI: 10.1016/j.healun.2005.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 01/24/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Mesenchymal progenitor cells (MPC) have recently been demonstrated to actively migrate into cardiac allografts during chronic rejection. This study examines the role of MPC in tissue repair of heart allografts in a rat model of chronic rejection. METHODS The potential of a rat MPC line (Ap8c3) to differentiate to myofibroblasts and cardiomyocytes was studied in differentiation cultures. Ap8c3 cells tagged with an enhanced green fluorescent protein (eGFP) reporter gene were engrafted into Fischer 344 (F344) recipients of Lewis (LEW) cardiac allografts. Development of intragraft MPC into scar-forming fibroblasts and cardiomyocytes was studied using immunohistochemistry. RESULTS Ap8c3 cells contain fibroblast progenitors (FP) positive for P07 antibody. Transforming growth factor (TGF)-beta stimulation promoted FP to terminally differentiate into myofibroblasts, which express alpha-smooth muscle actin (alphaSMA). In cardiac differentiation culture, Ap8c3 cells were induced by 5-azatiditin (5-aza) to form tropomyosin+ myotubes, and to express mRNA encoding for cardiac troponin I (TnI) and alpha-myosin heavy chain (alphaMHC). Transfusion of eGFP+ Ap8c3 cells to F344 recipients resulted in migration of eGFP(+) cells into LEW heart allografts, as well as homing of the eGFP+ MPC to bone marrow. The majority of eGFP+ cells in the heart allografts appeared to be vimentin-expressing fibroblasts. Foci of eGFP+ myocardium were also detected in all heart allografts, with eGFP+ cardiomyocytes representing 4.8 +/- 1.2% of the allografted eGFP+ cells. CONCLUSIONS The data suggest that rat MPC participate in tissue repair in heart allografts by giving rise to scar-forming myofibroblasts and cardiomyocytes.
Collapse
Affiliation(s)
- Gordon D Wu
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Boublik J, Park H, Radisic M, Tognana E, Chen F, Pei M, Vunjak-Novakovic G, Freed LE. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. ACTA ACUST UNITED AC 2005; 11:1122-32. [PMID: 16144448 DOI: 10.1089/ten.2005.11.1122] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hybrid cardiac constructs with mechanical properties suitable for in vitro loading studies and in vivo implantation were constructed from neonatal rat heart cells, fibrin (Fn), and biodegradable knitted fabric (Knit). Initial (2-h) constructs were compared with native heart tissue, studied in vitro with respect to mechanical function (stiffness, ultimate tensile strength [UTS], failure strain epsilon(f), strain energy density E) and compositional remodeling (collagen, DNA), and implanted in vivo. For 2-h constructs, stiffness was determined mainly by the Fn and was half as high as that of native heart, whereas UTS, epsilon(f), and E were determined by the Knit and were, respectively, 8-, 7-, and 30-fold higher than native heart. Over 1 week of static in vitro culture, cell-mediated, serum-dependent remodeling was demonstrated by a 5-fold increase in construct collagen content and maintenance of stiffness not observed in cell-free constructs. Cyclic stretch further increased construct collagen content in a manner dependent on loading regimen. The presence of cardiac cells in cultured constructs was demonstrated by immunohistochemistry (troponin I) and Western blot (connexin 43). However, in vitro culture reduced Knit mechanical properties, decreasing UTS, epsilon(f), and E of both constructs and cell-free constructs and motivating in vivo study of the 2-h constructs. Constructs implanted subcutaneously in nude rats for 3 weeks exhibited the continued presence of cardiomyocytes and blood vessel ingrowth by immunostaining for troponin I, connexin 43, and CD-31. Together, the data showed that hybrid cardiac constructs initially exhibited supraphysiologic UTS, epsilon(f), and E, and remodeled in response to serum and stretch in vitro and in an ectopic in vivo model.
Collapse
Affiliation(s)
- Jan Boublik
- Division of Health Sciences and Technology, Center for Space Research, and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Li HD, Spector M, Cui FZ. Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. ACTA ACUST UNITED AC 2005; 11:513-25. [PMID: 15869430 DOI: 10.1089/ten.2005.11.513] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain tissue engineering in the postinjury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. In this article, a hyaluronic acid (HA)-poly-D-lysine (PDL) copolymer hydrogel with an open porous structure and viscoelastic properties similar to neural tissue has been developed for brain tissue engineering. The chemicophysical properties of the hydrogel with HA:PDL ratios of 10:1, 5:1, and 4:1 were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectrometry. Neural cells cultured in the hydrogel were studied by phase-contrast microscope and SEM. The incorporation of PDL peptides into the HA-PDL hydrogel allowed for the modulation of neuronal cell adhesion and neural network formation. Macrophages and multinucleated foreign body giant cells found at the site of implantation of the hydrogel in the rat brain within the first weeks postimplantation decreased in numbers after 6 weeks, consistent with the host response to inert implants in numerous tissues. Of importance was the infiltration of the hydrogel by glial fibrillary acidic protein-positive cells-reactive astrocytes-by immunohistochemistry and the contiguity between the hydrogel and the surrounding tissue demonstrated by SEM. These findings indicated the compatibility of this hydrogel with brain tissue. Collectively, the results demonstrate the promise of an HA-PDL hydrogel as a scaffold material for the repair of defects in the brain.
Collapse
Affiliation(s)
- W M Tian
- Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Shiedlin A, Bigelow R, Christopher W, Arbabi S, Yang L, Maier RV, Wainwright N, Childs A, Miller RJ. Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules 2005; 5:2122-7. [PMID: 15530025 DOI: 10.1021/bm0498427] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium hyaluronate (HA) is widely distributed in extracellular matrixes and can play a role in orchestrating cell function. Consequently, many investigators have looked at the effect of exogenous HA on cell behavior in vitro. HA can be isolated from several sources (e.g., bacterial, rooster comb, umbilical cord) and therefore can possess diverse impurities. This current study compares the measured impurities and the differences in biological activity between HA preparations from these sources. It was demonstrated that nucleic acid and protein content was highest in human umbilical cord and bovine vitreous HA and was low in bacterial and rooster comb HA. Macrophages exposed to human umbilical cord HA produced significantly higher amounts of TNF-alpha relative to control or bacterial-derived HA. These results indicate that the source of HA should be considered due to differences in the amounts and types of contaminants that could lead to widely different behaviors in vitro and in vivo.
Collapse
Affiliation(s)
- Aviva Shiedlin
- Genzyme Corporation, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Simpson MA, Wilson CM, McCarthy JB. Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:849-57. [PMID: 12213713 PMCID: PMC1867271 DOI: 10.1016/s0002-9440(10)64245-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyaluronan (HA), a secreted glycosaminoglycan component of extracellular matrices, is critical for cellular proliferation and motility during development. However, elevated circulating and cell-associated levels correlate with various types of cancer, including prostate. We have previously shown that aggressive PC3M-LN4 prostate tumor cells synthesize excessive HA relative to less aggressive cells, and express correspondingly higher levels of the HA biosynthetic enzymes HAS2 and HAS3. Inhibition of these enzymes by stable transfection of PC3M-LN4 cells with anti-sense HAS2 or HAS3 expression constructs diminishes HA synthesis and surface retention. In this report, we used these HA-deficient cell lines to examine the role of HA in tumorigenicity. Subcutaneous injection of SCID mice with hyaluronan synthase (HAS) antisense-transfected cells produced tumors threefold to fourfold smaller than control transfectants. Tumors from HAS antisense transfectants were histologically HA-deficient relative to controls. HA deficiency corresponded to threefold reduced cell numbers per tumor, but comparable numbers of apoptotic and proliferative cells. Percentages of apoptotic cells in cultured transfectants were identical to those of control cells, but antisense inhibition of HA synthesis effected slower growth rate of cells in culture. Quantification of blood vessel density within tumor sections revealed 70 to 80% diminished vascularity of HAS antisense tumors. Collectively, the results suggest HAS overexpression by prostate tumor cells may facilitate their growth and proliferation in a complex environment by enhancing intrinsic cell growth rates and promoting angiogenesis. Furthermore, this is the first report of a role for inhibition of HA synthesis in reducing tumor growth kinetics.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Markku I Tammi
- Department of Anatomy, University of Kuopio, FIN-70211, Kuopio, Finland
| | | | | |
Collapse
|
10
|
Kruzynska-Frejtag A, Machnicki M, Rogers R, Markwald RR, Conway SJ. Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mech Dev 2001; 103:183-8. [PMID: 11335131 DOI: 10.1016/s0925-4773(01)00356-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Periostin was originally isolated as a osteoblast-specific factor that functions as a cell adhesion molecule for preosteoblasts and is thought to be involved in osteoblast recruitment, attachment and spreading. Additionally, periostin expression has previously been shown to be significantly increased by both transforming growth factor beta-1(TGFbeta1) and bone morphogenetic protein (BMP)-2. Likewise the endocardial cushions that form within embryonic heart tube (embryonic day (E)10-13) are formed by the recruitment, attachment and spreading of endocardial cells into the overlying extracellular matrix, in response to secreted growth factors of the TGFbeta and BMP families. In order to determine whether periostin is similarly involved in heart morphogenesis, in situ hybridization and reverse transcription-polymerase chain reaction were used to detect periostin mRNA expression in the developing mouse heart. We show for the first time that periostin mRNA is expressed in the developing mouse embryonic and fetal heart, and that it is localized to the endocardial cushions that ultimately divide the primitive heart tube into a four-chambered heart.
Collapse
Affiliation(s)
- A Kruzynska-Frejtag
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
11
|
Zhou B, Weigel JA, Fauss L, Weigel PH. Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem 2000; 275:37733-41. [PMID: 10952975 DOI: 10.1074/jbc.m003030200] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rat liver sinusoidal endothelial cells (LECs) express two hyaluronan (HA) receptors, of 175 and 300 kDa, responsible for the endocytic clearance of HA. We have characterized eight monoclonal antibodies (mAbs) raised against the 175-kDa HA receptor partially purified from rat LECs. These mAbs also cross-react with the 300-kDa HA receptor. The 175-kDa HA receptor is a single protein, whereas the 300-kDa species contains three subunits, alpha, beta, and gamma at 260, 230, and 97 kDa, respectively (Zhou, B., Oka, J. A., and Weigel, P. H. (1999) J. Biol. Chem. 274, 33831-33834). The 97-kDa subunit was not recognized by any of the mAbs in Western blots. Based on their cross-reactivity with these mAbs, the 175-, 230-, and 260-kDa proteins appear to be related. Two of the mAbs inhibit (125)I-HA binding and endocytosis by LECs at 37 degrees C. All of these results confirm that the mAbs recognize the bone fide LEC HA receptor. Indirect immunofluoresence shows high protein expression in liver sinusoids, the venous sinuses of the red pulp in spleen, and the medullary sinuses of lymph nodes. Because the tissue distribution for this endocytic HA receptor is not unique to liver, we propose the name HARE (HA receptor for endocytosis).
Collapse
Affiliation(s)
- B Zhou
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | |
Collapse
|