1
|
Strutynskyi R, Strutynska N, Mys L, Goshovska Y, Korkach Y, Fedichkina R, Okhai I, Strutynskyi V, Sagach V. Glutathione Upregulates the Expression of K ATP Channels and Vasorelaxation Responses and Inhibits mPTP Opening and Oxidative Stress in the Heart Mitochondria of Old Rats. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3562847. [PMID: 37265475 PMCID: PMC10232108 DOI: 10.1155/2023/3562847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Background In the present work, we investigated the effect of exogenous glutathione in old rats on the expression of ATP-sensitive potassium (KATP) channels, the mitochondrial permeability transition pore (mPTP) opening in the heart, and the vasorelaxation responses of isolated aortic rings to activation of KATP channels. Methods Experiments were performed on adult (6 months) and old (24 months) male Wistar rats, which were divided into three groups: adult, old, and glutathione-treated old rats. Glutathione was injected intraperitoneally at a dose of 52 mg/kg 1 hour before the studies. The mRNA expression of KATP channels was determined using reverse transcription and real-time polymerase chain reaction analysis. The effect of glutathione administration on mPTP opening, relaxation responses of isolated aortic rings, and oxidative stress markers was studied. Results It was shown that the expression levels of Kir6.1, Kir6.2, and SUR1 subunits of KATP channels and levels of reduced glutathione were significantly increased in glutathione-treated old rats (by 8.3, 2.8, 13.1, and 1.5-fold, respectively), whereas the levels of oxidative stress markers (hydrogen peroxide, diene conjugates, malondialdehyde, and rate of superoxide generation) in heart mitochondria and mPTP opening were significantly reduced. Relaxation of aortic rings was significantly increased in response to the actions of KATP channel openers flocalin and pinacidil in glutathione-treated animals, which was prevented by glibenclamide. Conclusions Thus, the administration of exogenous glutathione to old rats resulted in a significant increase in the expression levels of the Kir6.1, Kir6.2, and SUR1 subunits of KATP channels and a decrease in oxidative stress. This was accompanied by inhibition of mPTP opening and enhancement of vasorelaxation responses to activation of KATP channels.
Collapse
Affiliation(s)
- Ruslan Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Nataliіa Strutynska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Lidiia Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yulia Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Yuliia Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Raisa Fedichkina
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Iryna Okhai
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Vladyslav Strutynskyi
- Department of Immunophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| | - Vadym Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4, Bogomoletz Str., Kyiv 01024, Ukraine
| |
Collapse
|
2
|
Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ. ATP Synthase K +- and H +-fluxes Drive ATP Synthesis and Enable Mitochondrial K +-"Uniporter" Function: II. Ion and ATP Synthase Flux Regulation. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac001. [PMID: 35187492 PMCID: PMC8850977 DOI: 10.1093/function/zqac001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
We demonstrated that ATP synthase serves the functions of a primary mitochondrial K+ "uniporter," i.e., the primary way for K+ to enter mitochondria. This K+ entry is proportional to ATP synthesis, regulating matrix volume and energy supply-vs-demand matching. We show that ATP synthase can be upregulated by endogenous survival-related proteins via IF1. We identified a conserved BH3-like domain of IF1 which overlaps its "minimal inhibitory domain" that binds to the β-subunit of F1. Bcl-xL and Mcl-1 possess a BH3-binding-groove that can engage IF1 and exert effects, requiring this interaction, comparable to diazoxide to augment ATP synthase's H+ and K+ flux and ATP synthesis. Bcl-xL and Mcl-1, but not Bcl-2, serve as endogenous regulatory ligands of ATP synthase via interaction with IF1 at this BH3-like domain, to increase its chemo-mechanical efficiency, enabling its function as the recruitable mitochondrial KATP-channel that can limit ischemia-reperfusion injury. Using Bayesian phylogenetic analysis to examine potential bacterial IF1-progenitors, we found that IF1 is likely an ancient (∼2 Gya) Bcl-family member that evolved from primordial bacteria resident in eukaryotes, corresponding to their putative emergence as symbiotic mitochondria, and functioning to prevent their parasitic ATP consumption inside the host cell.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), 28049 Madrid, Spain
| | - Sandra B Gabelli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
3
|
Mitochondrial K + Transport: Modulation and Functional Consequences. Molecules 2021; 26:molecules26102935. [PMID: 34069217 PMCID: PMC8156104 DOI: 10.3390/molecules26102935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/28/2023] Open
Abstract
The existence of a K+ cycle in mitochondria has been predicted since the development of the chemiosmotic theory and has been shown to be crucial for several cellular phenomena, including regulation of mitochondrial volume and redox state. One of the pathways known to participate in K+ cycling is the ATP-sensitive K+ channel, MitoKATP. This channel was vastly studied for promoting protection against ischemia reperfusion when pharmacologically activated, although its molecular identity remained unknown for decades. The recent molecular characterization of MitoKATP has opened new possibilities for modulation of this channel as a mechanism to control cellular processes. Here, we discuss different strategies to control MitoKATP activity and consider how these could be used as tools to regulate metabolism and cellular events.
Collapse
|
4
|
Pille JA, Riess ML. Potential Effects of Poloxamer 188 on Rat Isolated Brain Mitochondria after Oxidative Stress In Vivo and In Vitro. Brain Sci 2021; 11:brainsci11010122. [PMID: 33477541 PMCID: PMC7831103 DOI: 10.3390/brainsci11010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Outcome after cerebral ischemia is often dismal. Reperfusion adds significantly to the ischemic injury itself. Therefore, new strategies targeting ischemia/reperfusion (I/R) injury are critically needed. Poloxamer (P)188, an amphiphilic triblock copolymer, is a highly promising pharmacological therapeutic as its capability to insert into injured cell membranes has been reported to protect against I/R injury in various models. Although mitochondrial function particularly profits from P188 treatment after I/R, it remains unclear if this beneficial effect occurs directly or indirectly. Here, rat isolated brain mitochondria underwent oxidative stress in vivo by asphyxial cardiac arrest or in vitro by the addition of hydrogen peroxide (H2O2) after isolation. Mitochondrial function was assessed by adenosine triphosphate synthesis, oxygen consumption, and calcium retention capacity. Both asphyxia and H2O2 exposure significantly impaired mitochondrial function. P188 did not preserve mitochondrial function after either injury mechanism. Further research is indicated.
Collapse
Affiliation(s)
- Johannes A Pille
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
5
|
Fan F, Yang L, Li R, Zou X, Li N, Meng X, Zhang Y, Wang X. Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 2020; 129:110458. [PMID: 32603893 DOI: 10.1016/j.biopha.2020.110458] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Salidroside (Sal) is a bioactive extract principally from traditional herbal medicine such as Rhodiola rosea L., which has been commonly used for hundreds of years in Asia countries. The excellent neuroprotective capacity of Sal has been illuminated in recent studies. This work focused on the source, pharmacokinetics, safety and anti-ischemic stroke (IS) effect of Sal, especially emphasizing its mechanism of action and BBB permeability. Extensive databases, including Pubmed, Web of science (WOS), Google Scholar and China National Knowledge Infrastructure (CNKI), were applied to obtain relevant online literatures. Sal exerts powerful therapeutic effects on IS in experimental models either in vitro or in vivo due to its neuroprotection, with significantly diminishing infarct size, preventing cerebral edema and improving neurological function. Also, the findings suggest the underlying mechanisms involve anti-oxidation, anti-inflammation and anti-apoptosis by regulating multiple signaling pathways and key molecules, such as NF-κB, TNF-α and PI3K/Akt pathway. In pharmacokinetics, although showing a rapid absorption and elimination, bioavailability of Sal is elevated under some non-physiological conditions. The component and its metabolite (tyrosol) are capable of distributing to brain tissue and the later keeps a higher level of concentration. Moreover, Sal scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials, but combination of drugs and perinatal use of medicine should be taken more attentions. Finally, as an active ingredient, not only is Sal isolated from diverse plants with limited yield, but also large batches of the products can be harvested by biological and chemical synthesis. With higher efficacy and better safety profiles, Sal could sever as a promising neuroprotectant for preventing and treating IS. Nevertheless, further investigations are still required to explore the pharmacodynamic and pharmacokinetic properties of Sal in the treatment of IS.
Collapse
Affiliation(s)
- Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Zou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Analysis of the Relationship between Type II Diabetes Mellitus and Parkinson's Disease: A Systematic Review. PARKINSONS DISEASE 2019; 2019:4951379. [PMID: 31871617 PMCID: PMC6906831 DOI: 10.1155/2019/4951379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
In the early sixties, a discussion started regarding the association between Parkinson's disease (PD) and type II diabetes mellitus (T2DM). Today, this potential relationship is still a matter of debate. This review aims to analyze both diseases concerning causal relationships and treatments. A total of 104 articles were found, and studies on animal and “in vitro” models showed that T2DM causes neurological alterations that may be associated with PD, such as deregulation of the dopaminergic system, a decrease in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), an increase in the expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes 15 (PED/PEA-15), and neuroinflammation, as well as acceleration of the formation of alpha-synuclein amyloid fibrils. In addition, clinical studies described that Parkinson's symptoms were notably worse after the onset of T2DM, and seven deregulated genes were identified in the DNA of T2DM and PD patients. Regarding treatment, the action of antidiabetic drugs, especially incretin mimetic agents, seems to confer certain degree of neuroprotection to PD patients. In conclusion, the available evidence on the interaction between T2DM and PD justifies more robust clinical trials exploring this interaction especially the clinical management of patients with both conditions.
Collapse
|
7
|
Korotkov SM, Brailovskaya IV, Nesterov VP, Soroko SI. Effects of Pinacidil and Calcium on Succinate-Energized Rat Heart Mitochondria in the Presence of Rotenone. DOKL BIOCHEM BIOPHYS 2019; 487:277-281. [PMID: 31559597 DOI: 10.1134/s1607672919040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/23/2022]
Abstract
The effect of pinacidil was studied on calcium-loaded rat heart mitochondria (RHM) in the presence of succinate and rotenone. In experiments with pinacidil, the swelling of these mitochondria increased in media with NH4NO3 or K-acetate, but the inner membrane potential (ΔΨmito) and the respiration in 3 or 2,4-dinitrophenol-stimulated states of these organelles decreased due to the opening of the mitochondrial permeability transition pore (MPTP) in their inner membrane. These effects were inhibited by cyclosporin A and ADP. It was concluded that the protective effect of pinacidil in the cardiac muscle under ischemia/reperfusion may be associated with both the stimulation of mitochondrial swelling and a decrease in RHM calcium overload resulted in ΔΨmito fall due to mild uncoupling effect of pinacidil.
Collapse
Affiliation(s)
- S M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia.
| | - I V Brailovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
| | - V P Nesterov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
| | - S I Soroko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia
| |
Collapse
|
8
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Feng Y, Liu J, Wang M, Liu M, Shi L, Yuan W, Ye J, Hu D, Wan J. The E23K variant of the Kir6.2 subunit of the ATP-sensitive potassium channel increases susceptibility to ventricular arrhythmia in response to ischemia in rats. Int J Cardiol 2017; 232:192-198. [DOI: 10.1016/j.ijcard.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
|
10
|
Hu Y, Lv X, Zhang J, Meng X. Comparative Study on the Protective Effects of Salidroside and Hypoxic Preconditioning for Attenuating Anoxia-Induced Apoptosis in Pheochromocytoma (PC12) Cells. Med Sci Monit 2016; 22:4082-4091. [PMID: 27794583 PMCID: PMC5091243 DOI: 10.12659/msm.897640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/24/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Hypoxia is an important sign that can result from body injuries or a special condition such as being at a high altitude or deep water diving. In the current studies, hypoxic preconditioning (HPC) plays a key role in reducing hypoxia-induced apoptosis. We aimed to study the pharmacologic preconditioning effects of salidroside versus those of HPC in hypoxia-/anoxia-induced apoptosis in PC12 cells (pheochromocytoma). MATERIAL AND METHODS PC12 cells were treated by different experimental conditions: control condition, hypoxia condition, HPC condition, low-/middle-/high-dose condition of salidroside, cyclosporine A (CsA), and oratractyloside (ATR). The cell viability, lactate dehydrogenase (LDH) activity, apoptosis, mitochondrial membrane potential (MMP), intracellular Ca2+, caspase-3 activity, and expression of Bcl-2 were detected in PC12 cells after the hypoxia treatment. Salidroside, extracted from the traditional Chinese herb Rhodiola rosea L, plays an essential role in reducing hypoxia-induced apoptosis in PC12 cells by the mitochondrial pathway. RESULTS Salidroside decreased the apoptosis and increased the viability of hypoxia-induced PC12 cells more effectively than HPC Moreover, salidroside markedly stabilized MMP and intracellular Ca2+, reduced or inhibited LDH and caspase-3 activity, and up-regulated Bcl-2; CsA and ATR showed corresponding function. CONCLUSIONS Salidroside administration restrains apoptosis induced by hypoxia in PC12 cells. The protective effects are mediated by preservation of mitochondrial integrity and MMP to inhibit the excessive Ca2+ influx and caspase-3 activity and to promote the Bcl-2 expression, providing a potential clinical and effective therapeutic mechanism to reduce deaths from ischemic or hypoxic injury.
Collapse
Affiliation(s)
| | | | - Jing Zhang
- Corresponding Author: Jing Zhang, e-mail:
| | | |
Collapse
|
11
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
12
|
Closure of mitochondrial potassium channels favors opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J Bioenerg Biomembr 2015; 47:243-54. [DOI: 10.1007/s10863-015-9611-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
|
13
|
Lund TM, Ploug KB, Iversen A, Jensen AA, Jansen-Olesen I. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity. J Neurochem 2015; 132:520-31. [PMID: 25330271 DOI: 10.1111/jnc.12975] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 11/30/2022]
Abstract
Glucose is the main energy substrate for neurons, and ketone bodies are known to be alternative substrates. However, the capacity of ketone bodies to support different neuronal functions is still unknown. Thus, a change in energy substrate from glucose alone to a combination of glucose and β-hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β-hydroxybutyrate, whereas a direct effect of the ketone body on transmitter release was absent. However, the presence of β-hydroxybutyrate augmented transmitter release induced by the KATP channel blocker glibenclamide, thus giving an indirect indication of the involvement of KATP channels in the effects of ketone bodies on transmitter release. Energy metabolism and neurotransmission are linked and involve ATP-sensitive potassium (KATP ) channels. However, it is still unclear how and to what degree available energy substrate affects this link. We investigated the effect of changing energy substrate from only glucose to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release.
Collapse
Affiliation(s)
- Trine M Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth B Ploug
- Danish Headache Center, Department of Neurology and Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Anne Iversen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Headache Center, Department of Neurology and Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology and Research Institute, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
14
|
Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2014; 78:23-34. [PMID: 25446182 DOI: 10.1016/j.yjmcc.2014.11.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide. For patients presenting with an acute myocardial infarction, the most effective treatment for limiting myocardial infarct (MI) size is timely reperfusion. However, in addition to the injury incurred during acute myocardial ischemia, the process of reperfusion can itself induce myocardial injury and cardiomyocyte death, termed 'myocardial reperfusion injury', the combination of which can be referred to as acute ischemia-reperfusion injury (IRI). Crucially, there is currently no effective therapy for preventing this form of injury, and novel cardioprotective therapies are therefore required to protect the heart against acute IRI in order to limit MI size and preserve cardiac function. The opening of the mitochondrial permeability transition pore (MPTP) in the first few minutes of reperfusion is known to be a critical determinant of IRI, contributing up to 50% of the final MI size. Importantly, preventing its opening at this time using MPTP inhibitors, such as cyclosporin-A, has been reported in experimental and clinical studies to reduce MI size and preserve cardiac function. However, more specific and novel MPTP inhibitors are required to translate MPTP inhibition as a cardioprotective strategy into clinical practice. In this article, we review the role of the MPTP as a mediator of acute myocardial IRI and as a therapeutic target for cardioprotection. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Sang-Bing Ong
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Parisa Samangouei
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Siavash Beikoghli Kalkhoran
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
15
|
Korotkov SM, Nesterov VP, Brailovskaya IV, Furaev VV, Novozhilov AV. Tl+ induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria. J Bioenerg Biomembr 2013; 45:531-9. [DOI: 10.1007/s10863-013-9526-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|
16
|
Öztürk Yildirim S, Butcher RJ, Şimsek R, El-Khouly A, Şafak C. 2,2,7,7-Tetra-methyl-1,2,3,4,5,6,7,8-octa-hydro-acridine-1,8-dione. Acta Crystallogr Sect E Struct Rep Online 2013; 69:o88-o89. [PMID: 23476469 PMCID: PMC3588388 DOI: 10.1107/s1600536812048957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
The whole molecule of the title compound, C17H21NO2, is generated by twofold rotational symmetry. The N atom and the C and H atoms in position 4 of the pyridine ring lie on the twofold axis. The cyclohexene ring has a sofa conformation with the CH2 C atom adjacent to the dimethyl-substituted C atom displaced by 0.5949 (16) Å from the mean plane of the other five C atoms. In the crystal, weak C-H⋯O inter-actions link the mol-ecules into chains parallel to the a axis. In addition, π-π stacking inter-actions [centroid-centroid distance = 3.8444 (7) Å] contribute to the stabilization of the crystal structure.
Collapse
Affiliation(s)
- Sema Öztürk Yildirim
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| | - Ray J. Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
| | - Rahime Şimsek
- Hacettepe University, Faculty of Pharmacy, Dept. of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey
| | - Ahmed El-Khouly
- Hacettepe University, Faculty of Pharmacy, Dept. of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey
| | - Cihat Şafak
- Hacettepe University, Faculty of Pharmacy, Dept. of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey
| |
Collapse
|
17
|
Oztürk Yildirim S, Butcher RJ, El-Khouly A, Safak C, Simsek R. 3,3,6,6-Tetra-methyl-9-(1-methyl-1H-indol-2-yl)-1,2,3,4,5,6,7,8,9,10-deca-hydro-acridine-1,8-dione. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o3365-6. [PMID: 23476198 PMCID: PMC3588962 DOI: 10.1107/s1600536812045722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 11/10/2022]
Abstract
In the acridine system of the title mol-ecule, C26H30N2O2, both cyclo-hex-2-enone rings adopt sofa conformations. The indole ring system is essentially planar, with a maximum deviation of 0.017 (2) Å for a bridgehead C atom. An intra-molecular C-H⋯O hydrogen bond occurs. The mol-ecules assemble into C(6) chains in the crystal by way of N-H⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Sema Oztürk Yildirim
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA ; Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| | | | | | | | | |
Collapse
|
18
|
Korotkov SM, Emel'yanova LV, Brailovskaya IV, Nesterov VP. Effects of pinacidil and calcium on isolated rat heart mitochondria. DOKL BIOCHEM BIOPHYS 2012; 443:113-7. [PMID: 22562638 DOI: 10.1134/s1607672912020147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Indexed: 11/23/2022]
Affiliation(s)
- S M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Morisa Toreza 44, St. Petersburg, 194223 Russia
| | | | | | | |
Collapse
|
19
|
Ohmasa F, Saito M, Oiwa H, Tsounapi P, Shomori K, Kitatani K, Dimitriadis F, Kinoshita Y, Satoh K. Pharmacological preconditioning of ATP-sensitive potassium channel openers on acute urinary retention-induced bladder dysfunction in the rat. BJU Int 2012; 110:E245-52. [DOI: 10.1111/j.1464-410x.2012.10965.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Griffiths EJ. Mitochondria and heart disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:249-67. [PMID: 22399426 DOI: 10.1007/978-94-007-2869-1_11] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria play a key role in the normal functioning of the heart, and in the pathogenesis and development of various types of heart disease. Physiologically, mitochondrial ATP supply needs to be matched to the often sudden changes in ATP demand of the heart, and this is mediated to a large extent by the mitochondrial Ca(2+) transport pathways allowing elevation of mitochondrial [Ca(2+)] ([Ca(2+)](m)). In turn this activates dehydrogenase enzymes to increase NADH and hence ATP supply. Pathologically, [Ca(2+)](m) is also important in generation of reactive oxygen species, and in opening of the mitochondrial permeability transition pore (MPTP); factors involved in both ischaemia-reperfusion injury and in heart failure. The MPTP has proved a promising target for protective strategies, with inhibitors widely used to show cardioprotection in experimental, and very recently human, studies. Similarly mitochondrially-targeted antioxidants have proved protective in various animal models of disease and await clinical trials. The mitochondrial Ca(2+) transport pathways, although in theory promising therapeutic targets, cannot yet be targeted in human studies due to non-specific effects of drugs used experimentally to inhibit them. Finally, specific mitochondrial cardiomyopathies due to mutations in mtDNA have been identified, usually in a gene for a tRNA, which, although rare, are almost always very severe once the mutation has exceeded its threshold.
Collapse
|
21
|
Mitochondrial calcium transport in the heart: Physiological and pathological roles. J Mol Cell Cardiol 2009; 46:789-803. [DOI: 10.1016/j.yjmcc.2009.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
|
22
|
Hausenloy DJ, Ong SB, Yellon DM. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 2009; 104:189-202. [PMID: 19242644 DOI: 10.1007/s00395-009-0010-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 01/25/2009] [Accepted: 01/27/2009] [Indexed: 12/19/2022]
Abstract
The experimental evidence supporting the mitochondrial permeability transition pore (mPTP) as a major mediator of lethal myocardial reperfusion injury and therefore a critical target for cardioprotection is persuasive. Although, its molecular identity eludes investigators, it is generally accepted that mitochondrial cyclophilin-D, the target for the inhibitory effects of cyclosporine-A on the mPTP, is a regulatory component of the mPTP. Animal myocardial infarction studies and a recent clinical proof-of-concept study have demonstrated that pharmacologically inhibiting its opening at the onset of myocardial reperfusion reduces myocardial infarct size in the region of 30-50%. Interestingly, the inhibition of mPTP opening at this time appears to underpin the infarct-limiting effects of the endogenous cardioprotective strategies of ischemic preconditioning (IPC) and postconditioning (IPost). However, the mechanism underlying this inhibitory action of IPC and IPost on mPTP opening is unclear. The objectve of this review article will be to explore the potential mechanisms which link IPC and IPost to mPTP inhibition in the reperfused heart.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Institute and Center for Cardiology, University College London Hospitals and Medical School, Grafton Way, London, UK.
| | | | | |
Collapse
|
23
|
Law JKY, Yeung CK, Hofmann B, Ingebrandt S, Rudd JA, Offenhäusser A, Chan M. The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes. Physiol Meas 2009; 30:155-67. [DOI: 10.1088/0967-3334/30/2/004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Gözde Gündüz M, Evrim Doğan A, Şimşek R, Erol K, Şafak C. Substituted 9-aryl-1,8-acridinedione derivatives and their effects on potassium channels. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9129-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Skalska J, Piwońska M, Wyroba E, Surmacz L, Wieczorek R, Koszela-Piotrowska I, Zielińska J, Bednarczyk P, Dołowy K, Wilczynski GM, Szewczyk A, Kunz WS. A novel potassium channel in skeletal muscle mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:651-9. [PMID: 18515063 DOI: 10.1016/j.bbabio.2008.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 05/07/2008] [Accepted: 05/12/2008] [Indexed: 11/30/2022]
Abstract
In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.
Collapse
Affiliation(s)
- Jolanta Skalska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Protective role of pinacidil against adrenaline-induced myocardium injury in guinea pig liver mitochondria. Open Life Sci 2007. [DOI: 10.2478/s11535-007-0039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe investigated the role of the ATP-sensitive potassium channel opener pinacidil and blocker glibenclamide on guinea pig liver mitochondrial function, and a possible significance of pinacidil in the pharmacological treatment during myocardium dystrophy. First, a series of experiments was performed to determine the effect of pinacidil and glibenclamide on mitochondrial oxygen consumption. We found that pinacidil increased the rate of mitochondrial respiration for FAD-generated substrate (succinate oxidation), but was most effective for α-ketoglutarate oxidation with enhancement of respiratory control ratio. Oxidation of FAD-generated substrate inhibited efficiency of phosphorylation for α-ketoglutarate oxidation in pinacidil-treated animals. Glibenclamide decreased the rate of respiration with the lowest value of efficiency of phosphorylation, especially for α-ketoglutarate oxidation. A second series of experiments was performed to determine the effects of pinacidil and glibenclamide on oxidative phosphorylation during adrenaline-induced myocardium dystrophy. The increase in respiratory control ratio and efficiency of phosphorylation for α-ketoglutarate oxidation was greater than for succinate oxidation in mitochondria of pinacidil-pretreated animals during myocardium dystrophy. Inhibitory analysis with malonate suggested that endogenous succinate increased oxidation of NADH-generated substrates in mitochondria. Pinacidil is mainly involved in the adrenaline-induced alterations of mitochondrial function due to elevation of phosphorylation efficiency for α-ketoglutarate oxidation and a decreased level of lipid peroxidation.
Collapse
|
27
|
Simşek R, Ozkan M, Kismetli E, Uma S, Safak C. Some arylacridine derivatives possessing potassium channel opening activity. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2004; 59:939-43. [PMID: 15598428 DOI: 10.1016/j.farmac.2004.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
In this study, six new 2,2,7,7-tetramethyl-9-aryl-2,3,4,5,6,7,9,10-octahydro-1,8-acridinedione derivatives (1-6) were synthesised and their functional effects on vascular potassium channels and mechanism of induced relaxations on phenylephrine-induced contractile responses in isolated rat mesenteric arteries were investigated. Pinacidil was used as standard potassium channel opener. Compounds 1, 2, 5, 6 and pinacidil induced concentration-dependent relaxation response of vessel rings previously contracted with phenylephrine.
Collapse
Affiliation(s)
- Rahime Simşek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
28
|
Huizar JF, Gonzalez LA, Alderman J, Smith HS. Sulfonylureas attenuate electrocardiographic ST-segment elevation during an acute myocardial infarction in diabetics. J Am Coll Cardiol 2003; 42:1017-21. [PMID: 13678923 DOI: 10.1016/s0735-1097(03)00916-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The aim of this study was to determine whether sulfonylureas attenuate ST-segment elevation in diabetics during acute myocardial infarction (AMI). BACKGROUND Sulfonylureas block adenosine triphosphate-sensitive potassium channels found in the pancreas and heart. Animal studies have demonstrated that opening of these cardiac channels results in ST-segment elevation during AMI, and pretreatment with sulfonylureas blunts these ST-segment changes. METHODS We performed a retrospective study of diabetic patients hospitalized with AMI over a four-year period in Framingham, Massachusetts. Electrocardiograms obtained on arrival were analyzed for standard ST-segment criteria for thrombolytic therapy (>1 mm in two or more contiguous leads). Results were compared between the study group (40 patients taking sulfonylureas) and control group (48 patients taking alternative hypoglycemic agent). RESULTS Demographics were similar for both groups apart from a female preponderance in the study group. A significantly higher percentage of patients in the study group did not meet ST-segment criteria for thrombolytic therapy as compared with the control group (53% vs. 29%, p = 0.02). This difference was most prominent in patients with peak creatinine phosphokinase levels between 500 and 1,000 mg/dl (86% vs. 22%, p = 0.04). The magnitude of ST-segment elevation and the frequency of thrombolytic therapy were significantly lower in the sulfonylurea group than in the control group (1.1 +/- 1.0 mm vs. 2.1 +/- 2.7 mm, p = 0.02 and 20% vs. 40%, p = 0.04, respectively). CONCLUSIONS Sulfonylurea therapy appears to attenuate the magnitude of ST-segment elevation during an AMI, resulting in failure to meet criteria for thrombolytic therapy and as a consequence leading to inappropriate withholding therapy in this subset of diabetic patients.
Collapse
Affiliation(s)
- Jose F Huizar
- MetroWest Medical Center, Framingham, Massachusetts, USA.
| | | | | | | |
Collapse
|
29
|
Garlid KD, Dos Santos P, Xie ZJ, Costa ADT, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:1-21. [PMID: 14507424 DOI: 10.1016/s0005-2728(03)00109-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, 1719 SW 10th Avenue, PO Box 751, Portland, OR 97207, USA.
| | | | | | | | | |
Collapse
|
30
|
Davies JE, Digerness SB, Goldberg SP, Killingsworth CR, Katholi CR, Brookes PS, Holman WL. Intra-myocyte ion homeostasis during ischemia-reperfusion injury: effects of pharmacologic preconditioning and controlled reperfusion. Ann Thorac Surg 2003; 76:1252-8; discussion 1258. [PMID: 14530020 DOI: 10.1016/s0003-4975(03)00889-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND This study determines whether controlled reperfusion or diazoxide improves intramyocyte Na(+) homeostasis using a porcine model of severe ischemia-reperfusion injury. METHODS Three groups (n = 10 pigs per group) had 75 minutes of left anterior descending artery occlusion during bypass. Group 1 had no treatment (control group), group 2 had controlled reperfusion (500 mL warm cardioplegia) (controlled reperfusion group), and group 3 had diazoxide (50 micromol/L before left anterior descending artery occlusion) (diazoxide group). Biopsies were taken from the left anterior descending artery region before ischemia and at 3, 5, and 10 minutes postreperfusion. Intra-myocyte Na(+) and water contents were determined using atomic absorption spectroscopy, and Na(+) concentrations were calculated. RESULTS Intra-myocyte Na(+) increased for the diazoxide group pigs at 3-minutes postreperfusion (21.9 +/- 2.9 vs 34.0 +/- 3.4 micromol/mL; p = 0.02), but decreased to 19.9 +/- 3.2 micromol/mL at 10 minutes postreperfusion (p = 1.0 vs baseline). At 10 minutes postreperfusion, intra-myocyte Na(+) in the controlled reperfusion group was lower than baseline (22.3 +/- 2.7 vs 17.2 +/- 3.1 micromol/mL; p < 0.001). Intra-myocyte Na(+) at 10 minutes postreperfusion for the diazoxide and controlled reperfusion groups was lower than for the control group (p < 0.05). CONCLUSIONS Diazoxide and controlled reperfusion improved intra-myocyte Na(+) homeostasis after severe ischemia-reperfusion injury.
Collapse
Affiliation(s)
- James E Davies
- Department of Surgery, Birmingham, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Berkan O, Saraç B, Simşek R, Yildirim S, Sarioğlu Y, Safak C. Vasorelaxing properties of some phenylacridine type potassium channel openers in isolated rabbit thoracic arteries. Eur J Med Chem 2002; 37:519-23. [PMID: 12204478 DOI: 10.1016/s0223-5234(02)01374-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, 12 new 2,2,7,7-tetramethyl-9-aryl-2,3,4,5,6,7,9,10-octahydro-1,8-acridindione derivatives were synthesised and their effects on vascular potassium channels and mechanism of induced relaxations on phenylephrine-induced contractile responses in isolated rabbit thoracic arteries was investigated. Pinacidil was used as standard potassium channel openers in this study. Compounds 1-12 and pinacidil exerted concentration-dependent relaxation responses precontracted phenylephrine in the aortic rings with the efficacy order: 11>pinacidil>7>2>8>3>1>4>10>6>9>5>12.
Collapse
Affiliation(s)
- Ocal Berkan
- Department of Cardiovascular Surgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Crestanello JA, Doliba NM, Babsky AM, Doliba NM, Niibori K, Whitman GJR, Osbakken MD. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload. J Surg Res 2002; 103:243-51. [PMID: 11922741 DOI: 10.1006/jsre.2001.6361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. METHODS Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. RESULTS IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. CONCLUSIONS The cardioprotective effect of IPC results, in part, from preserving mitochondrial function during reperfusion and increasing mitochondrial tolerance to Ca(2+) loading at end-RP. Activation of mitochondrial K(ATP) channels by IPC and their improvement in Ca(2+) homeostasis during RP may be the mechanism underlying this protection.
Collapse
Affiliation(s)
- Juan A Crestanello
- Division of Cardiothoracic Surgery, University of Maryland Medical System, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Crestanello JA, Doliba NM, Babsky AM, Doliba NM, Niibori K, Osbakken MD, Whitman GJR. Mitochondrial function during ischemic preconditioning. Surgery 2002; 131:172-8. [PMID: 11854695 DOI: 10.1067/msy.2002.119490] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background. Ischemic preconditioning (IPC) protects the myocardium from ischemia reperfusion injury. The effect of IPC on the mitochondria is not well known. However, one of the mechanisms postulated in IPC (the opening of the mitochondrial K(ATP) channels) is likely to result in changes in mitochondrial function. Therefore, the purpose of this study was to determine the effect of IPC on mitochondrial function during ischemia reperfusion. Methods. Isolated rat hearts (n = 6/group) were subjected to (1) 30 minutes of equilibration, 25 minutes of ischemia, and 30 minutes of reperfusion (RP) (control group) or (2) 10 minutes of equilibration, two-5 minute episodes of IPC (each followed by 5 minutes of re-equilibration), 25 minutes of ischemia, and 30 minutes of RP (IPC group). Left ventricular rate pressure product (RPP) was measured. At end-equilibration (end-EQ) and at end-reperfusion (end-RP) mitochondria were isolated. Mitochondrial respiratory function (state 2, 3, and 4), respiratory control index (RCI), rate of oxidative phosphorylation (ADP/Delta t), and ADP:O ratio were measured by polarography with the use of NADH- or FADH-dependent substrates. Results. IPC improved recovery of RPP at end-RP (72% +/- 5% in IPC vs 30% +/- 4% in control, P <.05). Ischemia reperfusion (IR) decreased state 3, ADP/Delta t, and RCI in both groups compared with end-EQ. IPC improved state 3 (47 +/- 3 in IPC vs 37 +/- 2 ng-atoms O/min/mg protein in control), ADP/Delta t (17 +/- 1 in IPC vs 13 +/- 1 nmol/s/mg protein in control), and RCI (3.7 +/- 0.1 in IPC vs 2.1 +/- 0.2 in control) at end-RP compared with control with the use of NADH-dependent substrate (P <.05 vs control). IPC also improved state 3 (85 +/- 6 in IPC vs 71 +/- 4 ng-atoms O/min/mg protein in control), ADP/Delta t (18 +/- 2 in IPC vs 12 +/- 1 nmol/s/mg protein in control), RCI (2 +/- 0.1 in IPC vs 1.5 +/- 0.1 in control), and ADP:O ratios (1.4 +/- 0.04 in IPC vs 1.7 +/- 0.09 in control) at end-RP compared with control with the use of FADH-dependent substrate (P <.05 vs control). Conclusions. The cardioprotective effects of IPC can be attributed at least in part to the preservation of mitochondrial function during reperfusion.
Collapse
Affiliation(s)
- Juan A Crestanello
- Division of Cardiothoracic Surgery, University of Maryland Medical System, Baltimore, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Xu M, Wang Y, Ayub A, Ashraf M. Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol Heart Circ Physiol 2001; 281:H1295-303. [PMID: 11514300 DOI: 10.1152/ajpheart.2001.281.3.h1295] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial membrane potential (DeltaPsi(m)) is severely compromised in the myocardium after ischemia-reperfusion and triggers apoptotic events leading to cell demise. This study tests the hypothesis that mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel activation prevents the collapse of DeltaPsi(m) in myocytes during anoxia-reoxygenation (A-R) and is responsible for cell protection via inhibition of apoptosis. After 3-h anoxia and 2-h reoxygenation, the cultured myocytes underwent extensive damage, as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis, and decreased ATP concentration. Mitochondria in A-R myocytes were swollen and fuzzy as shown after staining with Mito Tracker Orange CMTMRos and in an electron microscope and exhibited a collapsed DeltaPsi(m), as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Cytochrome c was released from mitochondria into the cytosol as demonstrated by cytochrome c immunostaining. Activation of mitoK(ATP) channel with diazoxide (100 micromol/l) resulted in a significant protection against mitochondrial damage, ATP depletion, cytochrome c loss, and stabilized DeltaPsi(m). This protection was blocked by 5-hydroxydecanoate (500 micromol/l), a mitoK(ATP) channel-selective inhibitor, but not by HMR-1098 (30 micromol/l), a putative sarcolemmal K(ATP) channel-selective inhibitor. Dissipation of DeltaPsi(m) also leads to opening of mitochondrial permeability transition pore, which was prevented by cyclosporin A. The data support the hypothesis that A-R disrupts DeltaPsi(m) and induces apoptosis, which are prevented by the activation of the mitoK(ATP) channel. This further emphasizes the therapeutic significance of mitoK(ATP) channel agonists in the prevention of ischemia-reperfusion cell injury.
Collapse
Affiliation(s)
- M Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0529, USA
| | | | | | | |
Collapse
|