1
|
Hiraoka H, Wang J, Nakano T, Hirano Y, Yamazaki S, Hiraoka Y, Haraguchi T. ATP levels influence cell movement during the mound phase in Dictyostelium discoideum as revealed by ATP visualization and simulation. FEBS Open Bio 2022; 12:2042-2056. [PMID: 36054629 PMCID: PMC9623536 DOI: 10.1002/2211-5463.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Cell migration plays an important role in multicellular organism development. The cellular slime mold Dictyostelium discoideum is a useful model organism for the study of cell migration during development. Although cellular ATP levels are known to determine cell fate during development, the underlying mechanism remains unclear. Here, we report that ATP-rich cells efficiently move to the central tip region of the mound against rotational movement during the mound phase. A simulation analysis based on an agent-based model reproduces the movement of ATP-rich cells observed in the experiments. These findings indicate that ATP-rich cells have the ability to move against the bulk flow of cells, suggesting a mechanism by which high ATP levels determine the cell fate of differentiation.
Collapse
Affiliation(s)
- Haruka Hiraoka
- Graduate School of Frontier BiosciencesOsaka UniversityJapan,Graduate School of ScienceNagoya UniversityJapan
| | - Jiewen Wang
- Graduate School of InformaticsOsaka Metropolitan UniversityJapan
| | - Tadashi Nakano
- Graduate School of InformaticsOsaka Metropolitan UniversityJapan
| | - Yasuhiro Hirano
- Graduate School of Frontier BiosciencesOsaka UniversityJapan
| | | | - Yasushi Hiraoka
- Graduate School of Frontier BiosciencesOsaka UniversityJapan
| | | |
Collapse
|
2
|
Arias Del Angel JA, Nanjundiah V, Benítez M, Newman SA. Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo 2020; 11:21. [PMID: 33062243 PMCID: PMC7549232 DOI: 10.1186/s13227-020-00165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
3
|
Hayakawa M, Hiraiwa T, Wada Y, Kuwayama H, Shibata T. Polar pattern formation induced by contact following locomotion in a multicellular system. eLife 2020; 9:53609. [PMID: 32352381 PMCID: PMC7213982 DOI: 10.7554/elife.53609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Biophysical mechanisms underlying collective cell migration of eukaryotic cells have been studied extensively in recent years. One mechanism that induces cells to correlate their motions is contact inhibition of locomotion, by which cells migrating away from the contact site. Here, we report that tail-following behavior at the contact site, termed contact following locomotion (CFL), can induce a non-trivial collective behavior in migrating cells. We show the emergence of a traveling band showing polar order in a mutant Dictyostelium cell that lacks chemotactic activity. We find that CFL is the cell-cell interaction underlying this phenomenon, enabling a theoretical description of how this traveling band forms. We further show that the polar order phase consists of subpopulations that exhibit characteristic transversal motions with respect to the direction of band propagation. These findings describe a novel mechanism of collective cell migration involving cell-cell interactions capable of inducing traveling band with polar order.
Collapse
Affiliation(s)
- Masayuki Hayakawa
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Yuko Wada
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
4
|
Kumagai Y, Nio-Kobayashi J, Ishida-Ishihara S, Tachibana H, Omori R, Enomoto A, Ishihara S, Haga H. The intercellular expression of type-XVII collagen, laminin-332, and integrin-β1 promote contact following during the collective invasion of a cancer cell population. Biochem Biophys Res Commun 2019; 514:1115-1121. [PMID: 31101337 DOI: 10.1016/j.bbrc.2019.05.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Cancer cells can invade as a population in various cancer tissues. This phenomenon is called collective invasion, which is associated with the metastatic potential and prognosis of cancer patients. The collectiveness of cancer cells is necessary for collective invasion. However, the mechanism underlying the generation of collectiveness by cancer cells is not well known. In this study, the phenomenon of contact following, where neighboring cells move in the same direction via intercellular adhesion, was investigated. An experimental system was created to observe the two-dimensional invasion using a collagen gel overlay to study contact following in collective invasion. The role of integrin-β1, one of the major extracellular matrix (ECM) receptors, in contact following was examined through the experimental system. Integrin-β1 was localized to the intercellular site in squamous carcinoma cells. Moreover, the intercellular adhesion and contact following were suppressed by treatment of an integrin-β1 inhibitory antibody. ECM proteins such as laminin-332 and type-XVII collagen were also localized to the intercellular site and critical for contact following. Collectively, it was demonstrated that the activity of integrin-β1 and expression of ECM proteins in the intercellular site promote contact following in the collective invasion of a cancer cell population.
Collapse
Affiliation(s)
- Yuji Kumagai
- Division of Life Science, Graduate School of Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, 060-0810, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15-W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Sumire Ishida-Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, 060-0810, Japan
| | - Hiromi Tachibana
- Division of Life Science, Graduate School of Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, 060-0810, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20-W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, 060-0810, Japan; Soft Matter GI-CoRE, Hokkaido University, N21-W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, 060-0810, Japan; Soft Matter GI-CoRE, Hokkaido University, N21-W11, Kita-ku, Sapporo, 001-0021, Japan.
| |
Collapse
|
5
|
Fujimori T, Nakajima A, Shimada N, Sawai S. Tissue self-organization based on collective cell migration by contact activation of locomotion and chemotaxis. Proc Natl Acad Sci U S A 2019; 116:4291-4296. [PMID: 30782791 PMCID: PMC6410881 DOI: 10.1073/pnas.1815063116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain largely undefined. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning; however, in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoeba Dictyostelium discoideum where the organizing center or the "tip" self-organizes as a result of sorting of differentiating prestalk and prespore cells. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode of Dictyostelium cell migration that is strictly directed by cell-cell contact. The cell-cell contact signal is mediated by E-set Ig-like domain-containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of the SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude toward the contact signal as well as to chemotax toward cAMP; however, when given both signals, prestalk cells orient toward the chemoattractant, whereas prespore cells choose the contact signal. These data suggest a model of cell sorting by competing juxtacrine and diffusive cues, each with potential to drive its own mode of collective cell migration.
Collapse
Affiliation(s)
- Taihei Fujimori
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Akihiko Nakajima
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Nao Shimada
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan;
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
6
|
Coordination of cell migration mediated by site-dependent cell-cell contact. Proc Natl Acad Sci U S A 2018; 115:10678-10683. [PMID: 30275335 PMCID: PMC6196508 DOI: 10.1073/pnas.1807543115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Contact inhibition of locomotion (CIL), the repulsive response of cells upon cell-cell contact, has been the predominant paradigm for contact-mediated responses. However, it is difficult for CIL alone to account for the complex behavior of cells within a multicellular environment, where cells often migrate in cohorts such as sheets, clusters, and streams. Although cell-cell adhesion and mechanical interactions play a role, how individual cells coordinate their migration within a multicellular environment remains unclear. Using micropatterned substrates to guide cell migration and manipulate cell-cell contact, we show that contacts between different regions of cells elicit different responses. Repulsive responses were limited to interaction with the head of a migrating cell, while contact with the tail of a neighboring cell promoted migration toward the tail. The latter behavior, termed contact following of locomotion (CFL), required the Wnt signaling pathway. Inhibition of the Wnt pathway disrupted not only CFL but also collective migration of epithelial cells, without affecting the migration of individual cells. In contrast, inhibition of myosin II with blebbistatin disrupted the migration of both individual epithelial cells and collectives. We propose that CFL, in conjunction with CIL, plays a major role in guiding and coordinating cell migration within a multicellular environment.
Collapse
|
7
|
Akiyama M, Sushida T, Ishida S, Haga H. Mathematical model of collective cell migrations based on cell polarity. Dev Growth Differ 2017; 59:471-490. [DOI: 10.1111/dgd.12381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Masakazu Akiyama
- Research Institute for Electronic Science Hokkaido University N12‐W7, Kita‐ku Sapporo Hokkaido 060‐0812 Japan
| | - Takamichi Sushida
- Research Institute for Electronic Science Hokkaido University N12‐W7, Kita‐ku Sapporo Hokkaido 060‐0812 Japan
| | - Sumire Ishida
- Division of Life Science Graduate School of Life ScienceHokkaido UniversityN10‐W8, Kita‐ku Sapporo Hokkaido 060‐0810 Japan
| | - Hisashi Haga
- Transdisciplinary Life Science Course Faculty of Advanced Life Science Hokkaido University N10‐W8, Kita‐ku Sapporo Hokkaido 060‐0810 Japan
| |
Collapse
|
8
|
Hirose S, Santhanam B, Katoh-Kurosawa M, Shaulsky G, Kuspa A. Allorecognition, via TgrB1 and TgrC1, mediates the transition from unicellularity to multicellularity in the social amoeba Dictyostelium discoideum. Development 2015; 142:3561-70. [PMID: 26395484 DOI: 10.1242/dev.123281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/27/2015] [Indexed: 01/22/2023]
Abstract
The social amoeba Dictyostelium discoideum integrates into a multicellular organism when individual starving cells aggregate and form a mound. The cells then integrate into defined tissues and develop into a fruiting body that consists of a stalk and spores. Aggregation is initially orchestrated by waves of extracellular cyclic adenosine monophosphate (cAMP), and previous theory suggested that cAMP and other field-wide diffusible signals mediate tissue integration and terminal differentiation as well. Cooperation between cells depends on an allorecognition system comprising the polymorphic adhesion proteins TgrB1 and TgrC1. Binding between compatible TgrB1 and TgrC1 variants ensures that non-matching cells segregate into distinct aggregates prior to terminal development. Here, we have embedded a small number of cells with incompatible allotypes within fields of developing cells with compatible allotypes. We found that compatibility of the allotype encoded by the tgrB1 and tgrC1 genes is required for tissue integration, as manifested in cell polarization, coordinated movement and differentiation into prestalk and prespore cells. Our results show that the molecules that mediate allorecognition in D. discoideum also control the integration of individual cells into a unified developing organism, and this acts as a gating step for multicellularity.
Collapse
Affiliation(s)
- Shigenori Hirose
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Balaji Santhanam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mariko Katoh-Kurosawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Kuwayama H, Ishida S. Biological soliton in multicellular movement. Sci Rep 2014; 3:2272. [PMID: 23893301 PMCID: PMC3725511 DOI: 10.1038/srep02272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/03/2013] [Indexed: 11/10/2022] Open
Abstract
Solitons have been observed in various physical phenomena. Here, we show that the distinct characteristics of solitons are present in the mass cell movement of non-chemotactic mutants of the cellular slime mould Dictyostelium discoideum. During starvation, D. discoideum forms multicellular structures that differentiate into spore or stalk cells and, eventually, a fruiting body. Non-chemotactic mutant cells do not form multicellular structures; however, they do undergo mass cell movement in the form of a pulsatile soliton-like structure (SLS). We also found that SLS induction is mediated by adhesive cell-cell interactions. These observations provide novel insights into the mechanisms of biological solitons in multicellular movement.
Collapse
Affiliation(s)
- Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Tennodai, 1-1-1, Ibaraki 305-8572, Japan.
| | | |
Collapse
|
10
|
Gautrais J, Jost C, Soria M, Campo A, Motsch S, Fournier R, Blanco S, Theraulaz G. Analyzing fish movement as a persistent turning walker. J Math Biol 2008; 58:429-45. [PMID: 18587541 DOI: 10.1007/s00285-008-0198-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/30/2008] [Indexed: 11/26/2022]
Affiliation(s)
- Jacques Gautrais
- C. R. Cognition Animale, CNRS UMR 5169, Univ. P. Sabatier, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
During starvation-induced Dictyostelium development, up to several hundred thousand amoeboid cells aggregate, differentiate and form a fruiting body. The chemotactic movement of the cells is guided by the rising phase of the outward propagating cAMP waves and results in directed periodic movement towards the aggregation centre. In the mound and slug stages of development, cAMP waves continue to play a major role in the coordination of cell movement, cell-type-specific gene expression and morphogenesis; however, in these stages where cells are tightly packed, cell-cell adhesion/contact-dependent signalling mechanisms also play important roles in these processes.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee DD1 5EH, UK.
| |
Collapse
|
12
|
Dallon JC, Othmer HG. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J Theor Biol 2004; 231:203-22. [PMID: 15380385 PMCID: PMC6457452 DOI: 10.1016/j.jtbi.2004.06.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/28/2004] [Accepted: 06/22/2004] [Indexed: 11/26/2022]
Abstract
How the collective motion of cells in a biological tissue originates in the behavior of a collection of individuals, each of which responds to the chemical and mechanical signals it receives from neighbors, is still poorly understood. Here we study this question for a particular system, the slug stage of the cellular slime mold Dictyostelium discoideum (Dd). We investigate how cells in the interior of a migrating slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force. Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational results shed light on experimental results concerning the total force exerted by a migrating slug. The model predicts that only cells in contact with the substrate contribute to the translational motion of the slug. Since the model is not based specifically on the mechanical properties of Dd cells, the results suggest that this behavior will be found in many developing systems.
Collapse
Affiliation(s)
- John C Dallon
- Department of Mathematics, Brigham Young University, 312 TMCB, Provo, UT 84602-6539, USA.
| | | |
Collapse
|
13
|
Umeda T, Inouye K. Cell sorting by differential cell motility: a model for pattern formation in Dictyostelium. J Theor Biol 2004; 226:215-24. [PMID: 14643191 DOI: 10.1016/j.jtbi.2003.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the slug stage of the cellular slime mold Dictyostelium discoideum, prespore cells and four types of prestalk cells show a well-defined spatial distribution in a migrating slug. We have developed a continuous mathematical model for the distribution pattern of these cell types based on the balance of force in individual cells. In the model, cell types are assumed to have different properties in cell motility, i.e. different motive force, the rate of resistance against cell movement, and diffusion coefficient. Analysis of the stationary solution of the model shows that combination of these parameters and slug speed determines the three-dimensional shape of a slug and cell distribution pattern within it. Based on experimental data of slug motive force and velocity measurements, appropriate sets of parameters were chosen so that the cell-type distribution at stationary state matches the distribution in real slugs. With these parameters, we performed numerical calculation of the model in two-dimensional space using a moving particle method. The results reproduced many of the basic features of slug morphogenesis, i.e. cell sorting, translocation of the prestalk region, elongation of the slug, and its steady migration.
Collapse
Affiliation(s)
- Tamiki Umeda
- Department of Marine Engineering, Faculty of Maritime Sciences, Kobe University, Higashinada-ku, Kobe 658-0022, Japan.
| | | |
Collapse
|