1
|
Qiu Y, Zhao D, Butenschön VM, Bauer AT, Schneider SW, Skolnik EY, Hammes HP, Wieland T, Feng Y. Nucleoside diphosphate kinase B deficiency causes a diabetes-like vascular pathology via up-regulation of endothelial angiopoietin-2 in the retina. Acta Diabetol 2016; 53:81-9. [PMID: 25900369 DOI: 10.1007/s00592-015-0752-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 11/25/2022]
Abstract
AIMS Nucleoside diphosphate kinase B (NDPKB) is capable of maintaining the cellular nucleotide triphosphate pools. It might therefore supply UTP for the formation of UDP-GlcNAc from glucose. As NDPKB contributes to vascular dysfunction, we speculate that NDPKB might play a role in microangiopathies, such as diabetic retinopathy (DR). Therefore, we investigated the impact of NDPKB on retinal vascular damage using NDPKB(-/-) mice during development of DR and its possible mechanisms. METHODS Pericyte loss and acellular capillary (AC) formation were assessed in streptozotocin-induced diabetic NDPKB(-/-) and wild-type (WT) mice. Expression of angiopoietin-2 (Ang2) and protein N-acetylglucosamine modification (GlcNAcylation) were assessed by western blot and/or immunofluorescence in the diabetic retinas as well as in endothelial cells depleted of NDPKB by siRNA and stimulated with high glucose. RESULTS Similar to diabetic WT retinas, non-diabetic NDPKB(-/-) retinas showed a significant decrease in pericyte coverage in comparison with non-diabetic WT retinas. Hyperglycemia further aggravates pericyte loss in diabetic NDPKB(-/-) retinas. AC formation was detected in the diabetic NDPKB(-/-) retinas. Similar to hyperglycemia, NDPKB deficiency induced Ang2 expression and protein GlcNAcylation that were not further altered in the diabetic retinas. In cultured endothelial cells, stimulation with high glucose and NDPKB depletion comparably increased Ang2 expression and protein GlcNAcylation. CONCLUSIONS Our data identify NDPKB as a protective factor in the retina, which controls Ang2 expression and the hexosamine pathway. NDPKB-deficient mice are a suitable model for studying mechanisms underlying diabetic retinal vascular damage.
Collapse
Affiliation(s)
- Yi Qiu
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Di Zhao
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Vicki-Marie Butenschön
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Alexander T Bauer
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stefan W Schneider
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Edward Y Skolnik
- Division of Nephrology, New York University Langone Medical Center, 560 1st Ave, New York, NY, 10016, USA
| | - Hans-Peter Hammes
- 5th Medical Clinic, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Wieland
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Yuxi Feng
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany.
| |
Collapse
|
2
|
Alves CH, Pellissier LP, Wijnholds J. The CRB1 and adherens junction complex proteins in retinal development and maintenance. Prog Retin Eye Res 2014; 40:35-52. [PMID: 24508727 DOI: 10.1016/j.preteyeres.2014.01.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/30/2022]
Abstract
The early developing retinal neuroepithelium is composed of multipotent retinal progenitor cells that differentiate in a time specific manner, giving rise to six major types of neuronal and one type of glial cells. These cells migrate and organize in three distinct nuclear layers divided by two plexiform layers. Apical and adherens junction complexes have a crucial role in this process by the establishment of polarity and adhesion. Changes in these complexes disturb the spatiotemporal aspects of retinogenesis, leading to retinal degeneration resulting in mild or severe impairment of retinal function and vision. In this review, we summarize the mouse models for the different members of the apical and adherens junction protein complexes and describe the main features of their retinal phenotypes. The knowledge acquired from the different mutant animals for these proteins corroborate their importance in retina development and maintenance of normal retinal structure and function. More recently, several studies have tried to unravel the connection between the apical proteins, important cellular signaling pathways and their relation in retina development. Still, the mechanisms by which these proteins function remain largely unknown. Here, we hypothesize how the mammalian apical CRB1 complex might control retinogenesis and prevents onset of Leber congenital amaurosis or retinitis pigmentosa.
Collapse
Affiliation(s)
- Celso Henrique Alves
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Lucie P Pellissier
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys. PLoS One 2013; 8:e74439. [PMID: 24040246 PMCID: PMC3764107 DOI: 10.1371/journal.pone.0074439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/01/2013] [Indexed: 11/27/2022] Open
Abstract
Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper.
Collapse
|
4
|
Lad EM, Cheshier SH, Kalani MYS. Wnt-signaling in retinal development and disease. Stem Cells Dev 2010; 18:7-16. [PMID: 18690791 DOI: 10.1089/scd.2008.0169] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt-signaling pathway is a known regulator of stem cell maintenance, cellular proliferation and differentiation, and cancer development in various tissues. Wnt proteins play a central role during various stages of retinal development; retinal field establishment, retinal and hyaloid vasculogenesis, cornea and lens development, eye field formation, and maintenance of retinal stem cell and neuronal specification in many species are Wnt-regulated processes. Uncontrolled Wnt signaling may cause retinal diseases such as familial exudative vitroretinopathy, retinitis pigmentosa, and Norrie's disease, further underscoring the importance of the Wnt-signaling pathway in the retina. This review summarizes major developments and discoveries regarding the role of the Wnt-signaling pathway as it pertains to retinal development and disease.
Collapse
Affiliation(s)
- Eleonora M Lad
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
5
|
Serb JM, Orr MC, West Greenlee MH. Using evolutionary conserved modules in gene networks as a strategy to leverage high throughput gene expression queries. PLoS One 2010; 5:e12525. [PMID: 20824082 PMCID: PMC2932711 DOI: 10.1371/journal.pone.0012525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/04/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. METHODOLOGY/PRINCIPAL FINDINGS Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. CONCLUSIONS/SIGNIFICANCE We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will facilitate the use of prior biological knowledge to develop rational systems-based hypotheses.
Collapse
Affiliation(s)
- Jeanne M Serb
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, United States of America.
| | | | | |
Collapse
|
6
|
Yi H, Nakamura REI, Mohamed O, Dufort D, Hackam AS. Characterization of Wnt signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci 2008; 48:5733-41. [PMID: 18055826 DOI: 10.1167/iovs.07-0097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The Wnt pathway is an essential signaling cascade that regulates multiple processes in developing and adult tissues, including differentiation, cellular survival, and stem cell proliferation. The authors recently demonstrated altered expression of Wnt pathway genes during photoreceptor death in rd1 mice, suggesting an involvement for Wnt signaling in the disease process. In this study, the authors investigated the role of Wnt signaling in retinal degeneration. METHODS The Wnt signaling reporter mouse line Tcf-LacZ was crossed with retinal degeneration rd1 mice, and beta-galactosidase expression was used to localize Wnt signaling during photoreceptor death. To analyze the role of Wnt signaling activation, primary mixed retinal cultures were prepared, and XTT and TUNEL assays were used to quantify cell death. Luciferase reporter assays were used to measure Wnt signaling. RESULTS The canonical Wnt signaling pathway was activated in Müller glia and the ganglion cell layer during rod photoreceptor degeneration in rd1/Tcf-LacZ mice. Wnt signaling was confirmed in cultured primary Müller glia. Furthermore, Wnt signaling activators protected photoreceptors in primary retinal cultures from H(2)O(2)-induced oxidative stress. The Wnt ligands Wnt5a, Wnt5b, Wnt10a, and Wnt13 were expressed in the degenerating retina and are candidate Wnt signaling activators in vivo. CONCLUSIONS This study is the first demonstration that Wnt signaling is activated in the degenerating retina and that it protects retinal cultures from oxidative stress. These data suggest that Wnt signaling is a component of the glial protective response during photoreceptor injury. Therefore, inducing Wnt activation, alone or in combination with growth factors, may increase the threshold for apoptosis and halt or delay further photoreceptor degeneration.
Collapse
Affiliation(s)
- Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, FL 33136, USA
| | | | | | | | | |
Collapse
|
7
|
Calza S, Raffelsberger W, Ploner A, Sahel J, Leveillard T, Pawitan Y. Filtering genes to improve sensitivity in oligonucleotide microarray data analysis. Nucleic Acids Res 2007; 35:e102. [PMID: 17702762 PMCID: PMC2018638 DOI: 10.1093/nar/gkm537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/29/2007] [Accepted: 07/03/2007] [Indexed: 12/13/2022] Open
Abstract
Many recent microarrays hold an enormous number of probe sets, thus raising many practical and theoretical problems in controlling the false discovery rate (FDR). Biologically, it is likely that most probe sets are associated with un-expressed genes, so the measured values are simply noise due to non-specific binding; also many probe sets are associated with non-differentially-expressed (non-DE) genes. In an analysis to find DE genes, these probe sets contribute to the false discoveries, so it is desirable to filter out these probe sets prior to analysis. In the methodology proposed here, we first fit a robust linear model for probe-level Affymetrix data that accounts for probe and array effects. We then develop a novel procedure called FLUSH (Filtering Likely Uninformative Sets of Hybridizations), which excludes probe sets that have statistically small array-effects or large residual variance. This filtering procedure was evaluated on a publicly available data set from a controlled spiked-in experiment, as well as on a real experimental data set of a mouse model for retinal degeneration. In both cases, FLUSH filtering improves the sensitivity in the detection of DE genes compared to analyses using unfiltered, presence-filtered, intensity-filtered and variance-filtered data. A freely-available package called FLUSH implements the procedures and graphical displays described in the article.
Collapse
Affiliation(s)
- Stefano Calza
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Wolfgang Raffelsberger
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Jose Sahel
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Thierry Leveillard
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
8
|
Azadi S, Paquet-Durand F, Medstrand P, van Veen T, Ekström PAR. Up-regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and theta in the degenerating rd1 mouse retina. Mol Cell Neurosci 2006; 31:759-73. [PMID: 16503160 DOI: 10.1016/j.mcn.2006.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/16/2005] [Accepted: 01/06/2006] [Indexed: 11/18/2022] Open
Abstract
The rd1 mouse serves as a model for inherited photoreceptor degeneration: retinitis pigmentosa. Microarray techniques were employed to compare the transcriptomes of rd1 and congenic wild-type retinas at postnatal day 11, when degenerative processes have started but most photoreceptors are still present. Of the several genes that were differentially expressed, focus was put on those associated with the protein kinase C (PKC) signaling pathway, in particular PKCdelta, mu and theta. Microarray identified these as being up-regulated in the rd1 retina, which was confirmed by QRT-PCR. Western blotting and immunostaining, using antibodies against either total or phosphorylated variants of the PKC isoforms, revealed increased expression and phosphorylation of PKCdelta, mu and theta in the rd1 retina at the protein level as well. Our results suggest that these PKC isoforms are involved in rd1 degeneration.
Collapse
Affiliation(s)
- Seifollah Azadi
- Department of Ophthalmology, Lund University, BMC-B13, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
9
|
Hauck SM, Ekström PAR, Ahuja-Jensen P, Suppmann S, Paquet-Durand F, van Veen T, Ueffing M. Differential modification of phosducin protein in degenerating rd1 retina is associated with constitutively active Ca2+/calmodulin kinase II in rod outer segments. Mol Cell Proteomics 2005; 5:324-36. [PMID: 16253986 DOI: 10.1074/mcp.m500217-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinitis pigmentosa comprises a heterogeneous group of incurable progressive blinding diseases with unknown pathogenic mechanisms. The retinal degeneration 1 (rd1) mouse is a retinitis pigmentosa model that carries a mutation in a rod photoreceptor-specific phosphodiesterase gene, leading to rapid degeneration of these cells. Elucidation of the molecular differences between rd1 and healthy retinae is crucial for explaining this degeneration and could assist in suggesting novel therapies. Here we used high resolution proteomics to compare the proteomes of the rd1 mouse retina and its congenic, wild-type counterpart at postnatal day 11 when photoreceptor death is profound. Over 3000 protein spots were consistently resolved by two-dimensional gel electrophoresis and subjected to a rigorous filtering procedure involving computer-based spot analyses. Five proteins were accepted as being differentially expressed in the rd1 model and subsequently identified by mass spectrometry. The difference in one such protein, phosducin, related to an altered modification pattern in the rd1 retina rather than to changed expression levels. Additional experiments showed phosducin in healthy retinae to be highly phosphorylated in the dark- but not in the light-adapted phase. In contrast, rd1 phosducin was highly phosphorylated irrespective of light status, indicating a dysfunctional rd1 light/dark response. The increased rd1 phosducin phosphorylation coincided with increased activation of calcium/calmodulin-activated protein kinase II, which is known to utilize phosducin as a substrate. Given the increased rod calcium levels present in the rd1 mutation, calcium-evoked overactivation of this kinase may be an early and long sought for step in events leading to photoreceptor degeneration in the rd1 mouse.
Collapse
Affiliation(s)
- Stefanie M Hauck
- GSF-National Research Centre for Environment and Health, Institute of Human Genetics, Neuherberg 85764, Germany
| | | | | | | | | | | | | |
Collapse
|