1
|
Xie MX, Rao JH, Tian XY, Liu JK, Li X, Chen ZY, Cao Y, Chen AN, Shu HH, Zhang XL. ATF4 inhibits TRPV4 function and controls itch perception in rodents and nonhuman primates. Pain 2024; 165:1840-1859. [PMID: 38422489 DOI: 10.1097/j.pain.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Yu Tian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Kun Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zi-Yi Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, China
| | - An-Nan Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Hai-Hua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Chu YP, Jin LW, Wang LC, Ho PC, Wei WY, Tsai KJ. Transthyretin attenuates TDP-43 proteinopathy by autophagy activation via ATF4 in FTLD-TDP. Brain 2023; 146:2089-2106. [PMID: 36355566 PMCID: PMC10411944 DOI: 10.1093/brain/awac412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43) proteinopathies are accompanied by the pathological hallmark of cytoplasmic inclusions in the neurodegenerative diseases, including frontal temporal lobar degeneration-TDP and amyotrophic lateral sclerosis. We found that transthyretin accumulates with TDP-43 cytoplasmic inclusions in frontal temporal lobar degeneration-TDP human patients and transgenic mice, in which transthyretin exhibits dramatic expression decline in elderly mice. The upregulation of transthyretin expression was demonstrated to facilitate the clearance of cytoplasmic TDP-43 inclusions through autophagy, in which transthyretin induces autophagy upregulation via ATF4. Of interest, transthyretin upregulated ATF4 expression and promoted ATF4 nuclear import, presenting physical interaction. Neuronal expression of transthyretin in frontal temporal lobar degeneration-TDP mice restored autophagy function and facilitated early soluble TDP-43 aggregates for autophagosome targeting, ameliorating neuropathology and behavioural deficits. Thus, transthyretin conducted two-way regulations by either inducing autophagy activation or escorting TDP-43 aggregates targeted autophagosomes, suggesting that transthyretin is a potential modulator therapy for neurological disorders caused by TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Yuan-Ping Chu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, CA, USA
| | - Liang-Chao Wang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Choi M, Mukherjee S, Yun JW. Colchicine stimulates browning via antagonism of GABA receptor B and agonism of β3-adrenergic receptor in 3T3-L1 white adipocytes. Mol Cell Endocrinol 2022; 552:111677. [PMID: 35598717 DOI: 10.1016/j.mce.2022.111677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Colchicine has been used for therapeutic purposes and has attracted considerable attention because of its association with tubulin and the inhibition of small tubular polymerization. Although several studies have examined the possible preventive role of colchicine in metabolic diseases, its role in adipocytes is largely unknown. This study examined the novel functional role of colchicine in adipocytes demonstrating that colchicine stimulates browning in cultured white adipocytes. Colchicine stimulates browning by increasing the brown- and beige fat-specific markers in 3T3-L1 white adipocytes. Interestingly, colchicine decreased the expression of the main lipolytic proteins (ATGL, p-HSL) while it activated Ces3, suggesting a possibility for supplying essential fatty acids for inducing thermogenesis. Molecular docking analysis showed that colchicine has a strong affinity against GABA-BR and β3-AR, and its binding activity with GABA-BR (-26.52 kJ/mol) was stronger than β3-AR (-20.71 kJ/mol). Mechanistic studies were conducted by treating the cells separately with agonists and antagonists of GABA-BR and β3-AR to understand the molecular mechanism underlying the browning effect of colchicine. The results showed that colchicine stimulates browning via the antagonism of GABA-BR and the agonism of β3-AR in 3T3-L1 white adipocytes. The colchicine-mediated activation of β3-AR stimulated the PKA/p38 MAPK signaling pathway, where consequently ATF2 acted as a positive regulator, but AFT4 was a negative regulator for the induction of browning.
Collapse
Affiliation(s)
- MinJi Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Laboratory of Metabolic Signaling,Institute of Bioengineering, School of Life Sciences, EPFL, CH-1015 Lausanne, Switzerland.
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
4
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
5
|
Mechanisms and Regulation of Neuronal GABA B Receptor-Dependent Signaling. Curr Top Behav Neurosci 2020; 52:39-79. [PMID: 32808092 DOI: 10.1007/7854_2020_129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed throughout the central nervous system where they play an important role in regulating neuronal excitability and synaptic transmission. GABABRs are G protein-coupled receptors that mediate slow and sustained inhibitory actions via modulation of several downstream effector enzymes and ion channels. GABABRs are obligate heterodimers that associate with diverse arrays of proteins to form modular complexes that carry out distinct physiological functions. GABABR-dependent signaling is fine-tuned and regulated through a multitude of mechanisms that are relevant to physiological and pathophysiological states. This review summarizes the current knowledge on GABABR signal transduction and discusses key factors that influence the strength and sensitivity of GABABR-dependent signaling in neurons.
Collapse
|
6
|
Papon MA, Le Feuvre Y, Barreda-Gómez G, Favereaux A, Farrugia F, Bouali-Benazzouz R, Nagy F, Rodríguez-Puertas R, Landry M. Spinal Inhibition of GABAB Receptors by the Extracellular Matrix Protein Fibulin-2 in Neuropathic Rats. Front Cell Neurosci 2020; 14:214. [PMID: 32765223 PMCID: PMC7378325 DOI: 10.3389/fncel.2020.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain. We demonstrate that fibulin-2 hampers GABAB activation, presumably through decreasing agonist-induced conformational changes. Fibulin-2 regulates the GABAB-mediated presynaptic inhibition of neurotransmitter release and weakens the GABAB-mediated inhibitory effect in neuronal cell culture. In the dorsal spinal cord of neuropathic rats, fibulin-2 is overexpressed and colocalized with B1a. Fibulin-2 may thus interact with presynaptic GABAB receptors, including those on nociceptive afferents. By applying anti-fibulin-2 siRNA in vivo, we enhanced the antinociceptive effect of intrathecal baclofen in neuropathic rats, thus demonstrating that fibulin-2 limits the action of GABAB agonists in vivo. Taken together, our data provide an example of an endogenous regulation of GABAB receptor by extracellular matrix proteins and demonstrate its functional impact on pathophysiological processes of pain sensitization.
Collapse
Affiliation(s)
- Marie-Amélie Papon
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Yves Le Feuvre
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Alexandre Favereaux
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Fanny Farrugia
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Frédéric Nagy
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Marc Landry
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| |
Collapse
|
7
|
Activating Transcription Factor 4 (ATF4) Regulates Neuronal Activity by Controlling GABA BR Trafficking. J Neurosci 2018; 38:6102-6113. [PMID: 29875265 DOI: 10.1523/jneurosci.3350-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Activating Transcription Factor 4 (ATF4) has been postulated as a key regulator of learning and memory. We previously reported that specific hippocampal ATF4 downregulation causes deficits in synaptic plasticity and memory and reduction of glutamatergic functionality. Here we extend our studies to address ATF4's role in neuronal excitability. We find that long-term ATF4 knockdown in cultured rat hippocampal neurons significantly increases the frequency of spontaneous action potentials. This effect is associated with decreased functionality of metabotropic GABAB receptors (GABABRs). Knocking down ATF4 results in significant reduction of GABABR-induced GIRK currents and increased mIPSC frequency. Furthermore, reducing ATF4 significantly decreases expression of membrane-exposed, but not total, GABABR 1a and 1b subunits, indicating that ATF4 regulates GABABR trafficking. In contrast, ATF4 knockdown has no effect on surface expression of GABABR2s, several GABABR-coupled ion channels or β2 and γ2 GABAARs. Pharmacologic manipulations confirmed the relationship between GABABR functionality and action potential frequency in our cultures. Specifically, the effects of ATF4 downregulation cited above are fully rescued by transcriptionally active, but not by transcriptionally inactive, shRNA-resistant, ATF4. We previously reported that ATF4 promotes stabilization of the actin-regulatory protein Cdc42 by a transcription-dependent mechanism. To test the hypothesis that this action underlies the mechanism by which ATF4 loss affects neuronal firing rates and GABABR trafficking, we downregulated Cdc42 and found that this phenocopies the effects of ATF4 knockdown on these properties. In conclusion, our data favor a model in which ATF4, by regulating Cdc42 expression, affects trafficking of GABABRs, which in turn modulates the excitability properties of neurons.SIGNIFICANCE STATEMENT GABAB receptors (GABABRs), the metabotropic receptors for the inhibitory neurotransmitter GABA, have crucial roles in controlling the firing rate of neurons. Deficits in trafficking/functionality of GABABRs have been linked to a variety of neurological and psychiatric conditions, including epilepsy, anxiety, depression, schizophrenia, addiction, and pain. Here we show that GABABRs trafficking is influenced by Activating Transcription Factor 4 (ATF4), a protein that has a pivotal role in hippocampal memory processes. We found that ATF4 downregulation in hippocampal neurons reduces membrane-bound GABABR levels and thereby increases intrinsic excitability. These effects are mediated by loss of the small GTPase Cdc42 following ATF4 downregulation. These findings reveal a critical role for ATF4 in regulating the modulation of neuronal excitability by GABABRs.
Collapse
|
8
|
TERUNUMA M. Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:390-411. [PMID: 30541966 PMCID: PMC6374141 DOI: 10.2183/pjab.94.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.
Collapse
Affiliation(s)
- Miho TERUNUMA
- Division of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Wright R, Newey SE, Ilie A, Wefelmeyer W, Raimondo JV, Ginham R, Mcllhinney RAJ, Akerman CJ. Neuronal Chloride Regulation via KCC2 Is Modulated through a GABA B Receptor Protein Complex. J Neurosci 2017; 37:5447-5462. [PMID: 28450542 PMCID: PMC5452337 DOI: 10.1523/jneurosci.2164-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
GABAB receptors are G-protein-coupled receptors that mediate inhibitory synaptic actions through a series of downstream target proteins. It is increasingly appreciated that the GABAB receptor forms part of larger signaling complexes, which enable the receptor to mediate multiple different effects within neurons. Here we report that GABAB receptors can physically associate with the potassium-chloride cotransporter protein, KCC2, which sets the driving force for the chloride-permeable ionotropic GABAA receptor in mature neurons. Using biochemical, molecular, and functional studies in rodent hippocampus, we show that activation of GABAB receptors results in a decrease in KCC2 function, which is associated with a reduction in the protein at the cell surface. These findings reveal a novel "crosstalk" between the GABA receptor systems, which can be recruited under conditions of high GABA release and which could be important for the regulation of inhibitory synaptic transmission.SIGNIFICANCE STATEMENT Synaptic inhibition in the brain is mediated by ionotropic GABAA receptors (GABAARs) and metabotropic GABAB receptors (GABABRs). To fully appreciate the function and regulation of these neurotransmitter receptors, we must understand their interactions with other proteins. We describe a novel association between the GABABR and the potassium-chloride cotransporter protein, KCC2. This association is significant because KCC2 sets the intracellular chloride concentration found in mature neurons and thereby establishes the driving force for the chloride-permeable GABAAR. We demonstrate that GABABR activation can regulate KCC2 at the cell surface in a manner that alters intracellular chloride and the reversal potential for the GABAAR. Our data therefore support an additional mechanism by which GABABRs are able to modulate fast synaptic inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachel Ginham
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - R A Jeffrey Mcllhinney
- Medical Research Council Anatomical Neuropharmacology Unit, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | | |
Collapse
|
10
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Functions of kinesin superfamily proteins in neuroreceptor trafficking. BIOMED RESEARCH INTERNATIONAL 2015; 2015:639301. [PMID: 26075252 PMCID: PMC4449888 DOI: 10.1155/2015/639301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022]
Abstract
Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate receptors to and from synapses is a key molecular event underlying many forms of synaptic plasticity. Kainate receptors are another type of glutamate receptors playing important roles in synaptic transmission. In addition, GABA receptors also play important roles in modulating the synaptic plasticity. Kinesin superfamily proteins (also known as KIFs) transport various cargos in both anterograde and retrograde directions through the interaction with different adaptor proteins. Recent studies indicate that KIFs regulate the trafficking of NMDA receptors, AMPA receptors, kainate receptors, and GABA receptors and thus play important roles in neuronal activity. Here we review the essential functions of KIFs in the trafficking of neuroreceptor and synaptic plasticity.
Collapse
|
12
|
Bjordal M, Arquier N, Kniazeff J, Pin JP, Léopold P. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 2014; 156:510-21. [PMID: 24485457 DOI: 10.1016/j.cell.2013.12.024] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/07/2013] [Accepted: 11/15/2013] [Indexed: 01/18/2023]
Abstract
The brain is the central organizer of food intake, matching the quality and quantity of the food sources with organismal needs. To ensure appropriate amino acid balance, many species reject a diet lacking one or several essential amino acids (EAAs) and seek out a better food source. Here, we show that, in Drosophila larvae, this behavior relies on innate sensing of amino acids in dopaminergic (DA) neurons of the brain. We demonstrate that the amino acid sensor GCN2 acts upstream of GABA signaling in DA neurons to promote avoidance of the EAA-deficient diet. Using real-time calcium imaging in larval brains, we show that amino acid imbalance induces a rapid and reversible activation of three DA neurons that are necessary and sufficient for food rejection. Taken together, these data identify a central amino-acid-sensing mechanism operating in specific DA neurons and controlling food intake.
Collapse
Affiliation(s)
- Marianne Bjordal
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nathalie Arquier
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Université Montpellier 1 & 2, 34094 Montpellier, France
| | - Jean Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Université Montpellier 1 & 2, 34094 Montpellier, France
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France; INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France.
| |
Collapse
|
13
|
Xu C, Zhang W, Rondard P, Pin JP, Liu J. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 2014; 5:12. [PMID: 24575041 PMCID: PMC3920572 DOI: 10.3389/fphar.2014.00012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, cell-surface expression and localization, crosstalk with other receptors, or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.
Collapse
Affiliation(s)
- Chanjuan Xu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Universités de Montpellier I & II Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
14
|
Effect of GABAB receptor antagonist (CGP35348) on learning and memory in albino mice. ScientificWorldJournal 2014; 2014:983651. [PMID: 24574938 PMCID: PMC3916030 DOI: 10.1155/2014/983651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/27/2013] [Indexed: 01/01/2023] Open
Abstract
The present study was designed to demonstrate the potential effect of CGP 35348 (GABAB receptor antagonist) on the learning, memory formation, and neuromuscular coordination in albino mouse. Mice were intrapertoneally injected with 1 mg CGP 35348/mL of distilled water/Kg body weight, while the control animals were injected with equal volume of saline solution. A battery of neurological tests was applied following the intrapertoneal injections. Results of rota rod indicated that CGP 35348 had no effect on neuromuscular coordination in both male (P = 0.528) and female (P = 0.125) albino mice. CGP 35348 treated females demonstrated poor exploratory behavior during open filed for several parameters (time mobile (P = 0.04), time immobile (P = 0.04), rotations (P = 0.04), and anticlockwise rotations (P = 0.038)). The results for Morris water maze (MWM) retention phase indicated that CGP 35348 treated male mice took shorter latency to reach the hidden platform (P = 0.04) than control indicating improved memory. This observation was complemented by the swim strategies used by mice during training days in MWM as CGP 35348 treated males used more direct and focal approach to reach the platform as the training proceeded.
Collapse
|
15
|
Zhang P, Sun Q, Zhao C, Ling S, Li Q, Chang YZ, Li Y. HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4. Cell Signal 2013; 26:556-63. [PMID: 24308964 DOI: 10.1016/j.cellsig.2013.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 10/26/2022]
Abstract
Histone deacetylase 4 (HDAC4) is involved in the regulation of many fundamental cell processes such as proliferation, differentiation, and survival via the modification of their substrates or protein-protein interactions. In this study, we found that HDAC4 could be upregulated under ER stress. There exists a direct interaction between HDAC4 and activating transcription factor 4 (ATF4). In vitro, overexpression of HDAC4 caused the retention of ATF4 in cytoplasm and inhibition of ATF4 transcriptional activity. ER stress could promote cell apoptosis through the upregulation of ATF4 levels and its target genes such as CHOP and TRB3. This effect was exacerbated by downregulation of HDAC4 levels. These results demonstrated that HDAC4 played an important role in the regulation of ER stress-induced apoptosis through interacting with ATF4 and inhibiting its transcriptional activity.
Collapse
Affiliation(s)
- Pengfei Zhang
- Key Lab of Physiology, Biochemistry & Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Qiao Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Chenyang Zhao
- Key Lab of Physiology, Biochemistry & Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang 050024, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Yan-Zhong Chang
- Key Lab of Physiology, Biochemistry & Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China.
| |
Collapse
|
16
|
Gaiarsa JL, Porcher C. Emerging neurotrophic role of GABAB receptors in neuronal circuit development. Front Cell Neurosci 2013; 7:206. [PMID: 24282395 PMCID: PMC3824957 DOI: 10.3389/fncel.2013.00206] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/18/2013] [Indexed: 12/22/2022] Open
Abstract
The proper development of highly organized structures in the central nervous system is a complex process during which key events – neurogenesis, migration, growth, differentiation, and synaptogenesis – have to take place in an appropriate manner to create functional neuronal networks. It is now well established that GABA, the main inhibitory neurotransmitter in the adult mammalian brain, plays more than a classical inhibitory role and can function as an important developmental signal early in life. GABA binds to chloride-permeable ionotropic GABAA receptors and to G-protein-coupled GABAB receptors (GABAB-Rs). Although most of the trophic actions of GABA have been attributed to the activation of GABAA receptors, recent advances show that GABAB-Rs also regulate fundamental steps of network development. This review summarizes some of the recent progress about the neurotrophic role of GABAB-Rs to neuronal development.
Collapse
Affiliation(s)
- Jean-Luc Gaiarsa
- Institut National de la Santé et de la Recherche Médicale U-901 Marseille, France ; Aix-Marseille Université, UMR S901 Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | | |
Collapse
|
17
|
Torres-Peraza JF, Engel T, Martín-Ibáñez R, Sanz-Rodríguez A, Fernández-Fernández MR, Esgleas M, Canals JM, Henshall DC, Lucas JJ. Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain 2013; 136:1161-76. [DOI: 10.1093/brain/awt044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Bradshaw NJ, Porteous DJ. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2012; 62:1230-41. [PMID: 21195721 PMCID: PMC3275753 DOI: 10.1016/j.neuropharm.2010.12.027] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 12/18/2022]
Abstract
In the decade since Disrupted in Schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecular pathways with potential for pharmaceutical intervention. Amongst these are proteins involved in neuronal migration (e.g. APP, Dixdc1, LIS1, NDE1, NDEL1), neural progenitor proliferation (GSK3β), neurosignalling (Girdin, GSK3β, PDE4) and synaptic function (Kal7, TNIK). Furthermore, emerging evidence of genetic association (NDEL1, PCM1, PDE4B) and copy number variation (NDE1) implicate several DISC1-binding partners as risk factors for schizophrenia in their own right. Thus, a picture begins to emerge of DISC1 as a key hub for multiple critical developmental pathways within the brain, disruption of which can lead to a variety of psychiatric illness phenotypes.
Collapse
Key Words
- disc1
- schizophrenia
- neurodevelopment
- signalling
- synapse
- association studies
- app, amyloid precursor protein
- atf4, activating transcription factor 4
- bace1, β-site app-cleaving enzyme-1
- bbs4, bardet–biedl syndrome 4
- cep290, centrosomal protein 290 kda
- cnv, copy number variation
- cre, camp response element
- dbz, disc1-binding zinc finger
- disc1, disrupted in schizophrenia 1
- dixdc1, dishevelled-axin domain containing-1
- fez1, fasciculation and elongation protein zeta 1
- glur, glutamate receptor
- gsk3β, glycogen synthase kinase 3β
- kal7, kalirin-7
- lef/tcf, lymphoid enhancer factor/t cell factor
- lis1, lissencephaly 1
- mtor, mammalian target of rapamycin
- nde1, nuclear distribution factor e homologue 1 or nuclear distribution element 1
- ndel1, nde-like 1
- nrg, neuregulin
- pacap, pituitary adenylate cyclase-activating polypeptide
- pcm1, pericentriolar material 1
- pcnt, pericentrin
- pde4, phosphodiesterase 4
- pi3 k, phosphatidylinositiol 3-kinase
- psd, post-synaptic density
- rac1, ras-related c3 botulinum toxin substrate 1
- tnik, traf2 and nck interacting kinase
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, Midlothian EH4 2XU, UK
| | | |
Collapse
|
19
|
Jiang X, Su L, Zhang Q, He C, Zhang Z, Yi P, Liu J. GABAB receptor complex as a potential target for tumor therapy. J Histochem Cytochem 2012; 60:269-79. [PMID: 22266766 DOI: 10.1369/0022155412438105] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system. Metabotropic GABA(B) receptors are heterodimeric G-protein-coupled receptors (GPCRs) consisting of GABA(B1) and GABA(B2) subunits. The intracellular C-terminal domains of GABA(B) receptors are involved in heterodimerization, oligomerization, and association with other proteins, which results in a large receptor complex. Multiple splice variants of the GABA(B1) subunit have been identified in which GABA(B1a) and GABA(B1b) are the most abundant isoforms in the nervous system. Isoforms GABA(B1c) through GABA(B1n) are minor isoforms and are detectable only at mRNA levels. Some of the minor isoforms have been detected in peripheral tissues and encode putative soluble proteins with C-terminal truncations. Interestingly, increased expression of GABA(B) receptors has been detected in several human cancer cells and tissues. Moreover, GABA(B) receptor agonist baclofen inhibited tumor growth in rat models. GABA(B) receptor activation not only induces suppressing the proliferation and migration of various human tumor cells but also results in inactivation of CREB (cAMP-responsive element binding protein) and ERK in tumor cells. Their structural complexity makes it possible to disrupt the functions of GABA(B) receptors in various ways, raising GABA(B) receptor diversity as a potential therapeutic target in some human cancers.
Collapse
Affiliation(s)
- Xinnong Jiang
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
PHD1 interacts with ATF4 and negatively regulates its transcriptional activity without prolyl hydroxylation. Exp Cell Res 2011; 317:2789-99. [PMID: 21951999 DOI: 10.1016/j.yexcr.2011.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 09/04/2011] [Accepted: 09/09/2011] [Indexed: 12/21/2022]
Abstract
Cellular response to hypoxia plays an important role in both circulatory and pulmonary diseases and cancer. Hypoxia-inducible factors (HIFs) are major transcription factors regulating the response to hypoxia. The α-subunits of HIFs are hydroxylated by members of the prolyl-4-hydroxylase domain (PHD) family, PHD1, PHD2, and PHD3, in an oxygen-dependent manner. Here, we report on the identification of ATF4 as a protein interacting with PHD1 as well as PHD3, but not with PHD2. The central region of ATF4 including the Zipper II domain, ODD domain and β-TrCP recognition motif were involved in the interaction with PHD1. Coexistence of PHD1 stabilized ATF4, as opposed to the destabilization of ATF4 by PHD3. Moreover, coexpression of ATF4 destabilized PHD3, whereas PHD1 stability was not affected by the presence of ATF4. Mutations to alanine of proline residues in ATF4 that satisfied hydroxylation consensus by PHDs did not affect binding activity of ATF4 to PHD1 and PHD3. Furthermore, in vitro prolyl hydroxylation assay clearly indicated that ATF4 did not serve as a substrate of both PHD1 and PHD3. Coexpression of PHD1 or PHD3 with ATF4 repressed the transcriptional activity of ATF4. These results suggest that PHD1 and PHD3 control the transactivation activity of ATF4.
Collapse
|
22
|
Contribution of metabotropic GABA(B) receptors to neuronal network construction. Pharmacol Ther 2011; 132:170-9. [PMID: 21718720 DOI: 10.1016/j.pharmthera.2011.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/05/2023]
Abstract
In the 1980s, Bowery and colleagues discovered the presence of a novel, bicuculline-resistant and baclofen-sensitive type of GABA receptor on peripheral nerve terminals, the GABA(B) receptor. Since this pioneering work, GABA(B) receptors have been identified in the Central Nervous System (CNS), where they provide an important inhibitory control of postsynaptic excitability and presynaptic transmitter release. GABA(B) receptors have been implicated in a number of important processes in the adult brain such as the regulation of synaptic plasticity and modulation of rhythmic activity. As a result of these studies, several potential therapeutic applications of GABA(B) receptor ligands have been identified. Recent advances have further shown that GABA(B) receptors play more than a classical inhibitory role in adult neurotransmission, and can in fact function as an important developmental signal early in life. Here we summarize current knowledge on the contribution of GABA(B) receptors to the construction and function of developing neuronal networks.
Collapse
|
23
|
Frank CL, Ge X, Xie Z, Zhou Y, Tsai LH. Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis. J Biol Chem 2010; 285:33324-33337. [PMID: 20724472 PMCID: PMC2963346 DOI: 10.1074/jbc.m110.140699] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Organogenesis is a highly integrated process with a fundamental requirement for precise cell cycle control. Mechanistically, the cell cycle is composed of transitions and thresholds that are controlled by coordinated post-translational modifications. In this study, we describe a novel mechanism controlling the persistence of the transcription factor ATF4 by multisite phosphorylation. Proline-directed phosphorylation acted additively to regulate multiple aspects of ATF4 degradation. Stabilized ATF4 mutants exhibit decreased β-TrCP degron phosphorylation, β-TrCP interaction, and ubiquitination, as well as elicit early G1 arrest. Expression of stabilized ATF4 also had significant consequences in the developing neocortex. Mutant ATF4 expressing cells exhibited positioning and differentiation defects that were attributed to early G1 arrest, suggesting that neurogenesis is sensitive to ATF4 dosage. We propose that precise regulation of the ATF4 dosage impacts cell cycle control and impinges on neurogenesis.
Collapse
Affiliation(s)
- Christopher L Frank
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research
| | - Xuecai Ge
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research
| | - Zhigang Xie
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research; Departments of Neurosurgery and Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ying Zhou
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research
| | - Li-Huei Tsai
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
24
|
Cryan JF, Slattery DA. GABAB Receptors and Depression: Current Status. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:427-51. [DOI: 10.1016/s1054-3589(10)58016-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Lasarge CL, Bañuelos C, Mayse JD, Bizon JL. Blockade of GABA(B) receptors completely reverses age-related learning impairment. Neuroscience 2009; 164:941-7. [PMID: 19723562 PMCID: PMC2874897 DOI: 10.1016/j.neuroscience.2009.08.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/21/2009] [Accepted: 08/22/2009] [Indexed: 11/16/2022]
Abstract
Impaired cognitive functions are well-described in the aging process. GABA(B) antagonists can facilitate learning and memory in young subjects, but these agents have not been well-characterized in aging. Here we show a complete reversal of olfactory discrimination learning deficits in cognitively-impaired aged Fischer 344 rats using the GABA(B) antagonist CGP55845, such that drug treatment restored performance to that on par with young and cognitively-unimpaired aged subjects. There was no evidence that this improved learning was due to enhanced olfactory detection abilities produced by the drug. These results highlight the potential of targeting GABA(B) receptors to ameliorate age-related cognitive deficits and demonstrate the utility of olfactory discrimination learning as a preclinical model for testing novel therapies to improve cognitive functions in aging.
Collapse
Affiliation(s)
- C L Lasarge
- Department of Psychology and Faculty of Neuroscience, Texas A&M University, College Station, TX 77843-4235, USA
| | | | | | | |
Collapse
|
26
|
Sunyer B, Shim KS, An G, Höger H, Lubec G. Hippocampal levels of phosphorylated protein kinase A (phosphor-S96) are linked to spatial memory enhancement by SGS742. Hippocampus 2009; 19:90-8. [PMID: 18727045 DOI: 10.1002/hipo.20484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cognitive enhancement by the GABA (B) receptor antagonist SGS742 has been well-documented, but mechanisms of action are not fully elucidated. Previous work has proposed involvement of somatostatin-14 and protein kinase C in cognitive enhancement; phospho-protein kinase A (p-PKA), fyn, and phospho-fyn are known signaling systems for spatial memory. It was the aim of the study to determine hippocampal levels of these proteins following SGS742-treatment and to correlate them with the outcome from the Morris water maze (MWM), represented by the parameter "time spent in the target quadrant" during the probe trial. OF1 mice were used for the experiments and divided into four groups: intraperitoneal SGS742 and saline solution treatment, both, tested in the MWM, and two yoked controls. Six hours following the probe trial, hippocampal protein levels were determined by immunoblotting. In the MWM, time spent in the target quadrant was significantly enhanced by SGS742 treatment. p-PKA levels were significantly increased only in the SGS742-treated group tested in the MWM as compared to saline treatment. In yoked controls, no significant differences in p-PKA levels between SGS742 and saline treatment were observed. Somatostatin-14 levels were significantly increased in both SGS742-treated groups. No statistically significant changes of other protein levels were observed. We propose that GABA (B) antagonism represented by SGS742 treatment led to cognitive enhancement involving p-PKA, because yoked controls treated with SGS742 were comparable to yoked saline-treated controls. The finding that somatostatin-14 was also induced in the SGS742-treated yoked controls points to a drug side effect, and therefore the role of somatostatin-14 for cognitive enhancement remains open.
Collapse
Affiliation(s)
- Berta Sunyer
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
27
|
Richer M, David M, Villeneuve LR, Trieu P, Ethier N, Pétrin D, Mamarbachi AM, Hébert TE. GABA-B(1) receptors are coupled to the ERK1/2 MAP kinase pathway in the absence of GABA-B(2) subunits. J Mol Neurosci 2008; 38:67-79. [PMID: 19052921 DOI: 10.1007/s12031-008-9163-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/06/2008] [Indexed: 01/22/2023]
Abstract
In the current model of gamma-aminobutyric acid (GABA) B receptor function, there is a requirement for GABA-B(1/2) heterodimerisation for targetting to the cell surface. However, different lines of evidence suggest that the GABA-B(1) subunit can form a functional receptor in the absence of GABA-B(2). We observed coupling of endogenous GABA-B(1) receptors in the DI-TNC1 glial cell line to the ERK pathway in response to baclofen even though these cells do not express GABA-B(2). GABA-B(1A) receptors were also able to mediate a rapid, transient, and dose-dependent activation of the ERK1/2 MAP kinase pathway when transfected alone into HEK 293 cells. The response was abolished by G(i/o) and MEK inhibition, potentiated by inhibitors of phospholipase C and protein kinase C and did not involve PI-3-kinase activity. Finally, using bioluminescence resonance energy transfer and co-immunoprecipitation, we show the existence of homodimeric GABA-B(1A) receptors in transfected HEK293 cells. Altogether, our observations show that GABA-B(1A) receptors are able to activate the ERK1/2 pathway despite the absence of surface targetting partner GABA-B(2) in both HEK 293 cells and the DI-TNC1 cell line.
Collapse
Affiliation(s)
- Maxime Richer
- Département de biochimie and Groupe de recherche universitaire sur le médicament (GRUM), Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sunyer B, Diao WF, Kang SU, An G, Boddul S, Lubec G. Cognitive Enhancement by SGS742 in OF1 Mice Is Linked to Specific Hippocampal Protein Expression. J Proteome Res 2008; 7:5237-53. [DOI: 10.1021/pr800594b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berta Sunyer
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Wei-Fei Diao
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sung Ung Kang
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gunyong An
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sanjay Boddul
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons. Proc Natl Acad Sci U S A 2008; 105:17175-80. [PMID: 18957537 DOI: 10.1073/pnas.0803906105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signals received at distal synapses of neurons must be conveyed to the nucleus to initiate the changes in transcription that underlie long-lasting synaptic plasticity. The presence of importin nuclear transporters and of select transcription factors at synapses raises the possibility that importins directly transport transcription factors from synapse to nucleus to modulate gene expression. Here, we show that cyclic AMP response element binding protein 2 (CREB2)/activating transcription factor 4 (ATF4), a transcriptional repressor that modulates long-term synaptic plasticity and memory, localizes to distal dendrites of rodent hippocampal neurons and neurites of Aplysia sensory neurons (SNs) and binds to specific importin alpha isoforms. Binding of CREB2 to importin alpha is required for its transport from distal dendrites to the soma and for its translocation into the nucleus. CREB2 accumulates in the nucleus during long-term depression (LTD) but not long-term potentiation of rodent hippocampal synapses, and during LTD but not long-term facilitation (LTF) of Aplysia sensory-motor synapses. Time-lapse microscopy of CREB2 tagged with a photoconvertible fluorescent protein further reveals retrograde transport of CREB2 from distal neurites to the nucleus of Aplysia SN during phenylalanine-methionine-arginine-phenylalanine-amide (FMRFamide)-induced LTD. Together, our findings indicate that CREB2 is a novel cargo of importin alpha that translocates from distal synaptic sites to the nucleus after stimuli that induce LTD of neuronal synapses.
Collapse
|
30
|
Qu M, Tang F, Wang L, Yan H, Han Y, Yan J, Yue W, Zhang D. Associations of ATF4 gene polymorphisms with schizophrenia in male patients. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:732-6. [PMID: 18163433 DOI: 10.1002/ajmg.b.30675] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activating transcription factor 4 (ATF4) is considered as a positional candidate gene for schizophrenia due to its location at chromosome 22q13, a region linked to schizophrenia. Furthermore, as protein interaction partner of ATF4, disrupted in schizophrenia 1 (DISC1) and its signal pathway implicated in the pathophysiology of schizophrenia have been widely supported by a number of genetic and neurobiological studies. Our aim was to investigate whether ATF4 is associated with schizophrenia in case-control samples of Han Chinese subjects consisting of 352 schizophrenia patients and 357 healthy controls. We detected 18 single nucleotide polymorphisms (SNPs) in ATF4 locus, two of which were analyzed, including one insertion at the putative core promoter region (rs17001266, -/C) and one nonsynonymous variant in exon 1 (rs4894, C/A, Pro22Gln). Allele distributions of two SNPs showed significant associations with schizophrenia in male subjects (respectively, rs17001266: P = 0.021, OR = 1.58, 95% CI = 1.07-2.33; rs4894: P = 0.004, OR = 1.78, 95% CI = 1.19-2.67), but not in female subjects as well as the entire population. Two haplotypes CC and -A constructed of rs17001266-rs4894 also revealed significant associations with schizophrenia in male group (global P = 0.0097). These findings support that ATF4 gene may be involved in susceptibility to schizophrenia with sex-dependent effect in the Chinese Han population and suggest that further functional assays are needed to verify their relevance to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Mei Qu
- Key Laboratory for Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Boivin B, Vaniotis G, Allen BG, Hébert TE. G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res 2008; 28:15-28. [PMID: 18437627 DOI: 10.1080/10799890801941889] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signaling from internalizing and endosomal receptors has almost become a classic GPCR paradigm in the last several years. However, it has become clear in recent years that GPCRs also elicit signals when resident at other subcellular sites including the endoplasmic reticulum, Golgi apparatus, and the nucleus. In this review we discuss the nature, function, and trafficking of nuclear GPCR signaling complexes, as well as potential sources of endogenous and exogenous ligands. Finally, we pose a series of questions that will need to be answered in the coming years to confirm and extend this as a new paradigm for GPCR signaling.
Collapse
Affiliation(s)
- Benoit Boivin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | |
Collapse
|
32
|
Vidal RL, Ramírez A, Castro M, Concha II, Couve A. Marlin-1 is expressed in testis and associates to the cytoskeleton and GABAB receptors. J Cell Biochem 2008; 103:886-95. [PMID: 17668444 DOI: 10.1002/jcb.21456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marlin-1 is a GABA(B) receptor and Jak tyrosine kinase-binding protein that also associates with RNA and microtubules. In humans and rodents, expression of Marlin-1 is predominantly restricted to the brain, but expression in lymphoid cells has also been reported. Here, we have studied the distribution of Marlin-1 in testis and spermatozoa. Our results indicate that Marlin-1 is highly expressed in testis. The protein is abundant in spermatogonia, spermatocytes, spermatozoa, and Sertoli cells. We also have studied the subcellular distribution in spermatozoa. Marlin-1 is present in the tail and to a lesser degree in the head of the sperm cell. Finally, we have explored two protein interactions. Our findings demonstrate that Marlin-1 associates with a microtubule fraction and with GABA(B) receptors in testis suggesting that the set of protein interactions of Marlin-1 are conserved in different tissues.
Collapse
Affiliation(s)
- René L Vidal
- Institute of Biochemistry, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | | | | | | | | |
Collapse
|
33
|
Sunyer B, Shim KS, Höger H, Lubec G. The Cognitive Enhancer SGS742 Does not Involve Major Known Signaling Cascades in OF1 Mice. Neurochem Res 2008; 33:1384-92. [DOI: 10.1007/s11064-008-9596-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/10/2008] [Indexed: 11/25/2022]
|
34
|
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
35
|
Tu H, Rondard P, Xu C, Bertaso F, Cao F, Zhang X, Pin JP, Liu J. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal 2007; 19:1996-2002. [PMID: 17582742 DOI: 10.1016/j.cellsig.2007.05.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 05/20/2007] [Indexed: 11/23/2022]
Abstract
gamma-aminobutyric acid type B (GABA(B)) receptor is an allosteric complex made of two subunits, GABA(B1) and GABA(B2). GABA(B2) plays a major role in the coupling to G protein whereas GABA(B1) binds GABA. It has been shown that GABA(B) receptor activates ERK(1/2) in neurons of the central nervous system, but the molecular mechanisms underlying this event are poorly characterized. Here, we demonstrate that activation of GABA(B) receptor by either GABA or the selective agonist baclofen induces ERK(1/2) phosphorylation in cultured cerebellar granule neurons. We also show that CGP7930, a positive allosteric regulator specific of GABA(B2), alone can induce the phosphorylation of ERK(1/2). PTX, a G(i/o) inhibitor, abolishes both baclofen and CGP7930-mediated-ERK(1/2) phosphorylation. Moreover, both baclofen and CGP7930 induce ERK-dependent CREB phosphorylation. Furthermore, by using LY294002, a PI-3 kinase inhibitor, and a C-term of GRK-2 that has been reported to sequester Gbetagamma subunits, we demonstrate the role of Gbetagamma in GABA(B) receptor-mediated-ERK(1/2) phosphorylation. In conclusion, the activation of GABA(B) receptor leads to ERK(1/2) phosphorylation via the coupling of GABA(B2) to G(i/o) and by releasing Gbetagamma subunits which in turn induce the activation of CREB. These findings suggest a role of GABA(B) receptor in long-term change in the central nervous system.
Collapse
Affiliation(s)
- Haijun Tu
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics, Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kantamneni S, Corrêa SAL, Hodgkinson GK, Meyer G, Vinh NN, Henley JM, Nishimune A. GISP: a novel brain-specific protein that promotes surface expression and function of GABA(B) receptors. J Neurochem 2007; 100:1003-17. [PMID: 17241134 PMCID: PMC3315443 DOI: 10.1111/j.1471-4159.2006.04271.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic transmission depends on the regulated surface expression of neurotransmitter receptors, but many of the cellular processes required to achieve this remain poorly understood. To better define specific mechanisms for the GABA(B) receptor (GABA(B)R) trafficking, we screened for proteins that bind to the carboxy-terminus of the GABA(B1) subunit. We report the identification and characterization of a novel 130-kDa protein, GPCR interacting scaffolding protein (GISP), that interacts directly with the GABA(B1) subunit via a coiled-coil domain. GISP co-fractionates with GABA(B)R and with the postsynaptic density and co-immunoprecipitates with GABA(B1) and GABA(B2) from rat brain. In cultured hippocampal neurons, GISP displays a punctate dendritic distribution and has an overlapping localization with GABA(B)Rs. When co-expressed with GABA(B)Rs in human embryonic kidney cells, GISP promotes GABA(B)R surface expression and enhances both baclofen-evoked extracellular signal-regulated kinase (ERK) phosphorylation and G-protein inwardly rectifying potassium channel (GIRK) currents. These results suggest that GISP is involved in the forward trafficking and stabilization of functional GABA(B)Rs.
Collapse
|
37
|
Kornau HC. GABAB receptors and synaptic modulation. Cell Tissue Res 2006; 326:517-33. [PMID: 16932937 DOI: 10.1007/s00441-006-0264-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 05/31/2006] [Indexed: 12/18/2022]
Abstract
GABA(B) receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABA(B) receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABA(B) receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABA(B) receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hans-Christian Kornau
- Center for Molecular Neurobiology (ZMNH), University of Hamburg, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
38
|
Matthews DB, Bhave SV, Belknap JK, Brittingham C, Chesler EJ, Hitzemann RJ, Hoffmann PL, Lu L, McWeeney S, Miles MF, Tabakoff B, Williams RW. Complex Genetics of Interactions of Alcohol and CNS Function and Behavior. Alcohol Clin Exp Res 2006; 29:1706-19. [PMID: 16205371 DOI: 10.1097/01.alc.0000179209.44407.df] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This work summarizes the proceedings of a symposium at the 2004 RSA Meeting in Vancouver, Canada. The organizers were R. W. Williams and D. B. Matthews; the Chair was M. F. Miles. The presentations were (1) WebQTL: A resource for analysis of gene expression variation and the genetic dissection of alcohol related phenotypes, by E. J. Chesler, (2) The marriage of microarray and qtl analyses: what's to gain, by J. K. Belknap, (3) Use of WebQTL to identify QTLs associated with footshock stress and ethanol related behaviors, by D. B. Matthews, (4) A high throughput strategy for the detection of quantitative trait genes, by R. J. Hitzemann, and (5) The use of gene arrays in conjunction with transgenic and selected animals to understand anxiety in alcoholism, by. B. Tabakoff.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bettler B, Tiao JYH. Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 2006; 110:533-43. [PMID: 16644017 DOI: 10.1016/j.pharmthera.2006.03.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/23/2006] [Indexed: 12/14/2022]
Abstract
GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). While native studies predicted pharmacologically distinct GABAB receptor subtypes, molecular studies failed to identify the expected receptor varieties. Mouse genetic experiments therefore addressed whether the cloned receptors can account for the classical electrophysiological, biochemical and behavioral GABAB responses or whether additional receptors exist. Among G-protein coupled receptors, GABAB receptors are unique in that they require 2 distinct subunits for functioning. This atypical receptor structure triggered a large body of work that investigated the regulation of receptor assembly and trafficking. With the availability of molecular tools, substantial progress was also made in the analysis of the receptor protein distribution in neuronal compartments. Here, we review recent studies that shed light on the molecular diversity, the subcellular distribution and the cell surface dynamics of GABAB receptors.
Collapse
Affiliation(s)
- Bernhard Bettler
- Institute of Physiology, Department of Clinical-Biological Sciences, Pharmazentrum, Klingelbergstrasse 50-70, University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
40
|
Barrett LE, Van Bockstaele EJ, Y. Sul J, Takano H, Haydon PG, Eberwine JH. Elk-1 associates with the mitochondrial permeability transition pore complex in neurons. Proc Natl Acad Sci U S A 2006; 103:5155-60. [PMID: 16549787 PMCID: PMC1458810 DOI: 10.1073/pnas.0510477103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The nuclear transcription factor E-26-like protein 1 (Elk-1) is thought to impact neuronal differentiation [Sharrocks, A. D. (2001) Nat. Rev. Mol. Cell Biol. 2, 827-837], cell proliferation [Sharrocks, A. D. (2002) Biochem. Soc. Trans. 30, 1-9], tumorigenesis [Chai, Y. L., Chipitsyna, G., Cui, J., Liao, B., Liu, S., Aysola, K., Yezdani, M., Reddy, E. S. P. & Rao, V. N. (2001) Oncogene 20, 1357-1367], and apoptosis [Shao, N., Chai, Y., Cui, J., Wang, N., Aysola, K., Reddy, E. S. P. & Rao, V. N. (1998) Oncogene 17, 527-532]. In addition to its nuclear localization, Elk-1 is found throughout the cytoplasm, including localization in neuronal dendrites [Sgambato, V., Vanhoutte, P., Pages, C., Rogard, M., Hipskind, R., Besson, M. J. & Caboche, J. (1998) J. Neurosci. 18, 214-226], raising the possibility that Elk-1 may have alternative extranuclear functions in neurons. Using coimmunoprecipitation and reciprocal coimmunoprecipitation from adult rat brain, we found an association between Elk-1 protein and the mitochondrial permeability transition pore complex (PTP), a structure involved in both apoptotic and necrotic cell death. Electron microscopy in adult rat brain sections confirmed this association with mitochondria. Elk-1 was also identified from purified mitochondrial fractions by using Western blotting, and Elk-1 increased its association with mitochondria following proapoptotic stimuli. Consistent with a role for Elk-1 in neuron viability, overexpression of Elk-1 in primary neurons decreased cell viability, whereas Elk-1 siRNA-mediated knockdown increased cell viability. This decrease in viability induced by Elk-1 overexpression was blocked with application of a PTP inhibitor. These results show an association of the nuclear transcription factor Elk-1 with the mitochondrial PTP and suggest an additional extranuclear function for Elk-1 in neurons.
Collapse
Affiliation(s)
| | - E. J. Van Bockstaele
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | - J. H. Eberwine
- Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Sato I, Arima H, Ozaki N, Watanabe M, Goto M, Hayashi M, Banno R, Nagasaki H, Oiso Y. Insulin inhibits neuropeptide Y gene expression in the arcuate nucleus through GABAergic systems. J Neurosci 2006; 25:8657-64. [PMID: 16177033 PMCID: PMC6725519 DOI: 10.1523/jneurosci.2739-05.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide Y (NPY) in the arcuate nucleus is an orexigenic hormone of which levels are regulated by humoral as well as neural signals. In this study, we examined the regulation of NPY gene expression in the arcuate nucleus in hypothalamic organotypic cultures. Dexamethasone (DEX) (10(-9) to 10(-7) M) significantly increased NPY mRNA expression, and the effects were not influenced by coincubation with the sodium channel blocker tetrodotoxin (TTX), indicating that the action of DEX is independent of action potentials. Conversely, insulin (10(-11) to 10(-9) M) significantly inhibited NPY expression stimulated by DEX, and the inhibitory action of insulin was abolished in the presence of TTX. Because GABA and its receptors are expressed in the arcuate nucleus in vivo, we examined whether GABAergic systems were involved in the insulin action. The GABAB agonist baclofen significantly inhibited NPY expression stimulated by DEX, and the inhibitory action of insulin was completely abolished in the presence of either the GABAA antagonist bicuculline or the GABAB antagonist CGP35348 (p-3-aminopropyl-p-diethoxymethyl phosphoric acid). Furthermore, increases in the GABA-synthesizing enzyme glutamic acid decarboxylase 65 (GAD65) mRNA expression preceded decreases in NPY mRNA expression in the arcuate nucleus in the cultures. Experiments in vivo also demonstrated that increases in GAD65 mRNA expression in the arcuate nucleus preceded decreases in the NPY mRNA expression in a fasting-refeeding paradigm and that intracerebroventricular injection of insulin increased GAD65 mRNA expression in the arcuate nucleus in fasted rats. These data suggest that insulin inhibits NPY gene expression in the arcuate nucleus through GABAergic systems.
Collapse
Affiliation(s)
- Ikuko Sato
- Department of Endocrinology and Diabetes, Field of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Slattery DA, Cryan JF. The role of GABAB receptors in depression and antidepressant-related behavioural responses. Drug Dev Res 2006. [DOI: 10.1002/ddr.20110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
McCarson KE, Duric V, Reisman SA, Winter M, Enna SJ. GABA(B) receptor function and subunit expression in the rat spinal cord as indicators of stress and the antinociceptive response to antidepressants. Brain Res 2005; 1068:109-17. [PMID: 16368079 DOI: 10.1016/j.brainres.2005.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 11/02/2005] [Accepted: 11/06/2005] [Indexed: 02/05/2023]
Abstract
Experiments were undertaken to examine whether once daily i.p. administration of either of two antidepressants used for the treatment of neuropathic pain, amitriptyline (10 mg/kg) and fluoxetine (5 mg/kg), to rats for 7 days modifies GABA(B) receptor function and subunit expression in the lumbar spinal cord. The results indicate that, as previously reported for desipramine, both amitriptyline and fluoxetine increase the pain threshold to a thermal stimulus, the expression of GABA(B(1)) subunits, and baclofen-stimulated [35S]GTPgammaS binding, a measure of GABA(B) receptor function. The effects of antidepressant administration on GABA(B(1b)) and GABA(B(2)) subunit expression in spinal cord are more variable than for GABA(B(1a)). It was also discovered that repeated daily exposure to a thermal stimulus or immobilization stress increases GABA(B(1a)) expression in the lumbar spinal cord, with no commensurate change in thermal pain threshold or GABA(B) receptor sensitivity. These results support a relationship between GABA(B) receptors and the action of antidepressants. The findings demonstrate that drug-induced increases in GABA(B) receptor function can occur independently of any change in GABA(B) receptor subunit expression and are consistent with the notion that GABA(B) receptor subunits have multiple functions, only one of which is dimerization to form GABA(B) receptors. The data also suggest that GABA(B) subunit gene expression may serve as a preclinical marker of antidepressant efficacy and of drug- or stress-induced modifications in central nervous system activity.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
44
|
Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, Darnell RB, Jan YN, Jan LY. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 2005; 123:105-18. [PMID: 16213216 DOI: 10.1016/j.cell.2005.07.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 07/03/2005] [Accepted: 07/28/2005] [Indexed: 01/22/2023]
Abstract
Synaptic plasticity, the cellular correlate for learning and memory, involves signaling cascades in the dendritic spine. Extensive studies have shown that long-term potentiation (LTP) of the excitatory postsynaptic current (EPSC) through glutamate receptors is induced by activation of N-methyl-D-asparate receptor (NMDA-R)--the coincidence detector--and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Here we report that the same signaling pathway in the postsynaptic CA1 pyramidal neuron also causes LTP of the slow inhibitory postsynaptic current (sIPSC) mediated by metabotropic GABA(B) receptors (GABA(B)-Rs) and G protein-activated inwardly rectifying K(+) (GIRK) channels, both residing in dendritic spines as well as shafts. Indicative of intriguing differences in the regulatory mechanisms for excitatory and inhibitory synaptic plasticity, LTP of sIPSC but not EPSC was abolished in mice lacking Nova-2, a neuronal-specific RNA binding protein that is an autoimmune target in paraneoplastic opsoclonus myoclonus ataxia (POMA) patients with latent cancer, reduced inhibitory control of movements, and dementia.
Collapse
Affiliation(s)
- Cindy Shen Huang
- Howard Hughes Medical Institute and Departments of Physiology and Biochemistry, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kozell LB, Hitzemann R, Buck KJ. Acute Alcohol Withdrawal is Associated with c-Fos Expression in the Basal Ganglia and Associated Circuitry: C57BL/6J and DBA/2J Inbred Mouse Strain Analyses. Alcohol Clin Exp Res 2005; 29:1939-48. [PMID: 16340450 DOI: 10.1097/01.alc.0000187592.57853.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The DBA/2J (D2) and C57BL/6J (B6) mouse strains are the most widely studied genetic models of severe and mild acute alcohol withdrawal, respectively. Previous studies have identified quantitative trait loci and genes involved in risk for acute ethanol withdrawal using mapping populations derived from the D2 and B6 strains, but the brain region(s) and circuit(s) by which these genes and their protein products influence ethanol physiological dependence and associated withdrawal remain to be elucidated. METHODS B6 and D2 were administered a sedative-hypnotic dose of ethanol (4 g/kg) or saline (control) and returned to their home cages where they were left undisturbed for 7 hr, which has been shown in previous studies to correspond to peak acute ethanol withdrawal severity. The mice were then euthanized and assessed for their numbers of c-Fos immunoreactive neurons across 26 brain regions. The question addressed was whether or not ethanol-withdrawn D2 and B6 mice differed in c-Fos induction (neural activation) within circuitry that could explain the severe ethanol withdrawal of the D2 strain and the mild ethanol withdrawal in B6 strain mice. RESULTS At peak acute ethanol-withdrawal ethanol-withdrawn D2 and B6 mice differed in neural activation within the basal ganglia, including the subthalamic nucleus and the two major output nuclei of the basal ganglia (the medial globus pallidus and the substantia nigra pars reticulata). Genotype-dependent c-Fos induction was also apparent in associated circuitry including the lateral septum, the ventral tegmental area, the nucleus accumbens core, the dorsolateral caudate putamen, the substantia nigra pars compacta, the cingulate and entorhinal cortices, and the ventral pallidum. D2 and B6 mice showed comparable neural activation in the bed nucleus of the stria terminalis, and the nucleus accumbens shell. CONCLUSIONS The present studies are the first to use immediate early gene product expression to assess the pattern of neural activation associated with acute ethanol withdrawal. Our results point to the involvement of an extended basal ganglia circuit in genetically determined differences in acute ethanol withdrawal. Based on these data, we suggest that quantitative trait genes (QTGs) involved in acute ethanol withdrawal exert their effects on this phenotype via one or more of the brain regions and circuits identified. As more information becomes available that integrates neural circuit and QTG analyses, the precise mechanisms by which QTGs affect ethanol physiological dependence and associated withdrawal will become apparent.
Collapse
Affiliation(s)
- Laura B Kozell
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | | |
Collapse
|
46
|
Helm KA, Haberman RP, Dean SL, Hoyt EC, Melcher T, Lund PK, Gallagher M. GABAB receptor antagonist SGS742 improves spatial memory and reduces protein binding to the cAMP response element (CRE) in the hippocampus. Neuropharmacology 2005; 48:956-64. [PMID: 15857622 DOI: 10.1016/j.neuropharm.2005.01.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/06/2005] [Accepted: 01/20/2005] [Indexed: 11/19/2022]
Abstract
Memory storage in the brain requires protein synthesis initiated through signaling pathways that control transcription. Such mechanisms are under active investigation for therapies in disorders involving cognitive dysfunction. Long-term memory can be improved by inhibiting activation or reducing expression of transcription factors such as ATF4/CREB2 and some C/EBP family members which appear to serve as memory suppressors. Here, we provide evidence that GABAB receptor antagonists may enhance cognition, at least in part, by this mechanism. We tested a GABAB receptor antagonist, SGS742 (CGP36742), on hippocampal-dependent memory and hippocampal nuclear CRE-binding activity in rats. As a result, acute in vivo administration of SGS742 both improved memory and reduced total hippocampal CRE-binding activity of which a large proportion in the basal state could be immunoneutralized with CREB2 antibodies. Consistent with its activity on information storage mechanisms, acute SGS742 effectively improved long-term memory in retrograde protocols, in which drug was given at times when memory formation can be interrupted by blocking new protein production. In conclusion, GABAB antagonists may provide a pharmacological therapy for cognitive impairment, sharing mechanistic features with genetic approaches to reduce CREB2 activity and to augment long-term memory.
Collapse
Affiliation(s)
- K A Helm
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles St., 102 Ames Hall, Baltimore, MD 21218, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hunsberger JG, Bennett AH, Selvanayagam E, Duman RS, Newton SS. Gene profiling the response to kainic acid induced seizures. ACTA ACUST UNITED AC 2005; 141:95-112. [PMID: 16165245 DOI: 10.1016/j.molbrainres.2005.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 07/07/2005] [Accepted: 08/07/2005] [Indexed: 01/19/2023]
Abstract
Kainic acid activates non-N-methyl-d-aspartate (NMDA) glutamate receptors where it increases synaptic activity resulting in seizures, neurodegeneration, and remodeling. We performed microarray analysis on rat hippocampal tissue following kainic acid treatment in order to study the signaling mechanisms underlying these diverse processes in an attempt to increase our current understanding of mechanisms contributing to such fundamental processes as neuronal protection and neuronal plasticity. The kainic acid-treated rats used in our array experiments demonstrated severe seizure behavior that was also accompanied by neuronal degeneration which is suggested by fluoro-jade B staining and anti-caspase-3 immunohistochemistry. The gene profile revealed 36 novel kainic acid regulated genes along with additional genes previously reported. The functional roles of these novel genes are discussed. These genes mainly have roles in transcription and to a lesser extent have roles in cell death, extracellular matrix remodeling, cell cycle progression, neuroprotection, angiogenesis, and synaptic signaling. Gene regulation was confirmed via quantitative real time polymerase chain reaction and in situ hybridization.
Collapse
Affiliation(s)
- Joshua G Hunsberger
- Yale University School of Medicine, 34 Park Street, CMHC, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
48
|
Sauter K, Grampp T, Fritschy JM, Kaupmann K, Bettler B, Mohler H, Benke D. Subtype-selective Interaction with the Transcription Factor CCAAT/Enhancer-binding Protein (C/EBP) Homologous Protein (CHOP) Regulates Cell Surface Expression of GABAB Receptors. J Biol Chem 2005; 280:33566-72. [PMID: 16081421 DOI: 10.1074/jbc.m503482200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic gamma-aminobutyric acid, type B (GABA(B)) receptors mediate the slow component of GABAergic transmission in the brain. Functional GABA(B) receptors are heterodimers of the two subunits GABA(B1) and GABA(B2), of which GABA(B1) exists in two main isoforms, GABA(B1a) and GABA(B1b). The significance of the structural heterogeneity of GABA(B) receptors, the mechanism leading to their differential targeting in neurons as well as the regulation of cell surface numbers of GABA(B) receptors, is poorly understood. To gain insights into these processes, we searched for proteins interacting with the C-terminal domain of GABA(B2). Here, we showed that the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) directly interacts with GABA(B) receptors in a subtype-selective manner to regulate cell surface expression of GABA(B1a)/GABA(B2) receptors upon co-expression in HEK 293 cells. The interaction of CHOP with GABA(B1a)/GABA(B2) receptors resulted in their intracellular accumulation and in a reduced number of cell surface receptors. This regulation required the interaction of CHOP via two distinct domains with the heterodimeric receptor; its C-terminal leucine zipper associates with the leucine zipper present in the C-terminal domain of GABA(B2), and its N-terminal domain associates with an as yet unidentified site on GABA(B1a). In conclusion, the data indicated a subtype-selective regulation of cell surface receptors by interaction with the transcription factor CHOP.
Collapse
Affiliation(s)
- Kathrin Sauter
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Swtizerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Ghorbel MT, Becker KG, Henley JM. Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen. Physiol Genomics 2005. [PMID: 15784695 DOI: 10.1152/physiol] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) play a critical role in inhibitory synaptic transmission in the hippocampus. However, little is known about a possible long-term effect requiring transcriptional changes. Here, using microarray technology and RT-PCR of RNA from cultured rat embryonic hippocampal neurones, we report the profile of genes that are up- or downregulated by activation of GABA(B)Rs by baclofen but are not changed by baclofen in the presence of the GABA(B)R antagonist CGP-55845A. Our data show, for the first time, regulation of transcription of defined mRNAs after specific GABA(B) receptor activation. The identified genes can be grouped into those encoding signal transduction, endocytosis/trafficking, and structural classes of proteins. For example, butyrylcholinesterase, brain-derived neurotrophic factor, and COPS5 (Jab1) genes were upregulated, whereas Rab8 interacting protein and Rho GTPase-activating protein 4 were downregulated. These results provide important baseline genomic data for future studies aimed at investigating the long-term effects of GABA(B)R activation in neurones such as their roles in neuronal growth, pathway formation and stabilization, and synaptic plasticity.
Collapse
Affiliation(s)
- Mohamed T Ghorbel
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | |
Collapse
|
50
|
Ghorbel MT, Becker KG, Henley JM. Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen. Physiol Genomics 2005; 22:93-8. [PMID: 15784695 PMCID: PMC1563181 DOI: 10.1152/physiolgenomics.00202.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) play a critical role in inhibitory synaptic transmission in the hippocampus. However, little is known about a possible long-term effect requiring transcriptional changes. Here, using microarray technology and RT-PCR of RNA from cultured rat embryonic hippocampal neurones, we report the profile of genes that are up- or downregulated by activation of GABA(B)Rs by baclofen but are not changed by baclofen in the presence of the GABA(B)R antagonist CGP-55845A. Our data show, for the first time, regulation of transcription of defined mRNAs after specific GABA(B) receptor activation. The identified genes can be grouped into those encoding signal transduction, endocytosis/trafficking, and structural classes of proteins. For example, butyrylcholinesterase, brain-derived neurotrophic factor, and COPS5 (Jab1) genes were upregulated, whereas Rab8 interacting protein and Rho GTPase-activating protein 4 were downregulated. These results provide important baseline genomic data for future studies aimed at investigating the long-term effects of GABA(B)R activation in neurones such as their roles in neuronal growth, pathway formation and stabilization, and synaptic plasticity.
Collapse
Affiliation(s)
- Mohamed T Ghorbel
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | |
Collapse
|