1
|
Optimized Protocol for the Isolation of Extracellular Vesicles from the Parasitic Worm Schistosoma mansoni with Improved Purity, Concentration, and Yield. J Immunol Res 2022; 2022:5473763. [PMID: 35434142 PMCID: PMC9012646 DOI: 10.1155/2022/5473763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
In the past decade, the interest in helminth-derived extracellular vesicles (EVs) increased owing to their role in pathogen-host communication. However, the availability of EVs from these parasitic worms is often limited due to the restricted occurrence and culturing possibilities of these organisms. Schistosoma mansoni is one of several helminths that have been shown to release EVs affecting the immune response of their host. Further investigation of mechanisms underlying these EV-induced effects warrants separation of EVs from other components of the helminth excretory/secretory products. However, isolation of high-purity EVs often come to the expense of reduced EV yield. We therefore aimed to develop an optimized protocol for isolation of EVs from S. mansoni schistosomula and adult worms with respect to purity, concentration, and yield. We tested the use of small (1.7 ml) iodixanol density gradients and demonstrated that this enabled western blot-based analysis of the EV marker protein tetraspanin-2 (TSP-2) in gradient fractions without additional concentration steps. Moreover, the concentration and yield of EVs obtained with small iodixanol gradients were higher compared to medium-sized (4.3 ml) or conventional large-sized (12 ml) gradients. Additionally, we provide evidence that iodixanol is preferred over sucrose as medium for the small density gradients, because EVs in iodixanol gradients reached equilibrium much faster (2 hours) and iodixanol but not sucrose was suitable for purification of schistosomula EVs. Finally, we demonstrate that the small iodixanol gradients were able to separate adult worm EVs from non-EV contaminants such as the blood digestion product hemozoin. Our optimized small iodixanol density gradient allows to simultaneously separate and concentrate EVs while reducing handling time and EV loss and can be applied for EVs from helminths and other limited EV sources.
Collapse
|
2
|
Marinko JT, Wright MT, Schlebach JP, Clowes KR, Heintzman DR, Plate L, Sanders CR. Glycosylation limits forward trafficking of the tetraspan membrane protein PMP22. J Biol Chem 2021; 296:100719. [PMID: 33933451 PMCID: PMC8191293 DOI: 10.1016/j.jbc.2021.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot–Marie–Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.
Collapse
Affiliation(s)
- Justin T Marinko
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Katherine R Clowes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Sci Rep 2018; 8:6965. [PMID: 29725038 PMCID: PMC5934470 DOI: 10.1038/s41598-018-25118-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/11/2018] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease associated with the misfolding and aggregation of alpha-synuclein (aSyn). The molecular underpinnings of PD are still obscure, but nutrition may play an important role in the prevention, onset, and disease progression. Dietary (poly)phenols revert and prevent age-related cognitive decline and neurodegeneration in model systems. However, only limited attempts were made to evaluate the impact of digestion on the bioactivities of (poly)phenols and determine their mechanisms of action. This constitutes a challenge for the development of (poly)phenol-based nutritional therapies. Here, we subjected (poly)phenols from Arbutus unedo to in vitro digestion and tested the products in cell models of PD based on the cytotoxicity of aSyn. The (poly)phenol-digested metabolites from A. unedo leaves (LPDMs) effectively counteracted aSyn and H2O2 toxicity in yeast and human cells, improving viability by reducing aSyn aggregation and inducing its clearance. In addition, LPDMs modulated pathways associated with aSyn toxicity, such as oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial impairment, and SIR2 expression. Overall, LPDMs reduced aSyn toxicity, enhanced the efficiency of ER-associated protein degradation by the proteasome and autophagy, and reduced oxidative stress. In total, our study opens novel avenues for the exploitation of (poly)phenols in nutrition and health.
Collapse
|
4
|
Boyarchuk E, Robin P, Fritsch L, Joliot V, Ait-Si-Ali S. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry. J Vis Exp 2016. [PMID: 27286495 DOI: 10.3791/53924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Skeletal muscle terminal differentiation starts with the commitment of pluripotent mesodermal precursor cells to myoblasts. These cells have still the ability to proliferate or they can differentiate and fuse into multinucleated myotubes, which maturate further to form myofibers. Skeletal muscle terminal differentiation is orchestrated by the coordinated action of various transcription factors, in particular the members of the Muscle Regulatory Factors or MRFs (MyoD, Myogenin, Myf5, and MRF4), also called the myogenic bHLH transcription factors family. These factors cooperate with chromatin-remodeling complexes within elaborate transcriptional regulatory network to achieve skeletal myogenesis. In this, MyoD is considered the master myogenic transcription factor in triggering muscle terminal differentiation. This notion is strengthened by the ability of MyoD to convert non-muscle cells into skeletal muscle cells. Here we describe an approach used to identify MyoD protein partners in an exhaustive manner in order to elucidate the different factors involved in skeletal muscle terminal differentiation. The long-term aim is to understand the epigenetic mechanisms involved in the regulation of skeletal muscle genes, i.e., MyoD targets. MyoD partners are identified by using Tandem Affinity Purification (TAP-Tag) from a heterologous system coupled to mass spectrometry (MS) characterization, followed by validation of the role of relevant partners during skeletal muscle terminal differentiation. Aberrant forms of myogenic factors, or their aberrant regulation, are associated with a number of muscle disorders: congenital myasthenia, myotonic dystrophy, rhabdomyosarcoma and defects in muscle regeneration. As such, myogenic factors provide a pool of potential therapeutic targets in muscle disorders, both with regard to mechanisms that cause disease itself and regenerative mechanisms that can improve disease treatment. Thus, the detailed understanding of the intermolecular interactions and the genetic programs controlled by the myogenic factors is essential for the rational design of efficient therapies.
Collapse
Affiliation(s)
- Ekaterina Boyarchuk
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Philippe Robin
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Lauriane Fritsch
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Véronique Joliot
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité;
| | - Slimane Ait-Si-Ali
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité;
| |
Collapse
|
5
|
Boldt K, van Reeuwijk J, Lu Q, Koutroumpas K, Nguyen TMT, Texier Y, van Beersum SEC, Horn N, Willer JR, Mans DA, Dougherty G, Lamers IJC, Coene KLM, Arts HH, Betts MJ, Beyer T, Bolat E, Gloeckner CJ, Haidari K, Hetterschijt L, Iaconis D, Jenkins D, Klose F, Knapp B, Latour B, Letteboer SJF, Marcelis CL, Mitic D, Morleo M, Oud MM, Riemersma M, Rix S, Terhal PA, Toedt G, van Dam TJP, de Vrieze E, Wissinger Y, Wu KM, Apic G, Beales PL, Blacque OE, Gibson TJ, Huynen MA, Katsanis N, Kremer H, Omran H, van Wijk E, Wolfrum U, Kepes F, Davis EE, Franco B, Giles RH, Ueffing M, Russell RB, Roepman R. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun 2016; 7:11491. [PMID: 27173435 PMCID: PMC4869170 DOI: 10.1038/ncomms11491] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023] Open
Abstract
Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. Mutations in proteins that localize to primary cilia cause devastating diseases, yet the primary cilium is a poorly understood organelle. Here the authors use interaction proteomics to identify a network of human ciliary proteins that provides new insights into several biological processes and diseases.
Collapse
Affiliation(s)
- Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Jeroen van Reeuwijk
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Qianhao Lu
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.,Cell Networks, Bioquant, Ruprecht-Karl University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Konstantinos Koutroumpas
- Institute of Systems and Synthetic Biology, Genopole, CNRS, Université d'Evry, 91030 Evry, France
| | - Thanh-Minh T Nguyen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Yves Texier
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany.,Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science, 81377 Munich, Germany
| | - Sylvia E C van Beersum
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Nicola Horn
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Jason R Willer
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27701, USA
| | - Dorus A Mans
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gerard Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Ideke J C Lamers
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Heleen H Arts
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Matthew J Betts
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.,Cell Networks, Bioquant, Ruprecht-Karl University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Tina Beyer
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Emine Bolat
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholz Association, Otfried-Müller Strasse 23, 72076 Tuebingen, Germany
| | - Khatera Haidari
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Lisette Hetterschijt
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Daniela Iaconis
- Telethon Institute of Genetics and Medicine, TIGEM 80078, Italy
| | - Dagan Jenkins
- Molecular Medicine Unit and Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Franziska Klose
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Barbara Knapp
- Cell and Matrix Biology, Inst. of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Brooke Latour
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Carlo L Marcelis
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Dragana Mitic
- Cambridge Cell Networks Ltd, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, TIGEM 80078, Italy.,Department of Translational Medicine Federico II University, 80131 Naples, Italy
| | - Machteld M Oud
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Moniek Riemersma
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Susan Rix
- Molecular Medicine Unit and Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Grischa Toedt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Teunis J P van Dam
- Centre for Molecular and Biomolecular Informatics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Yasmin Wissinger
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Ka Man Wu
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gordana Apic
- Cambridge Cell Networks Ltd, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Philip L Beales
- Molecular Medicine Unit and Birth Defects Research Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Oliver E Blacque
- School of Biomolecular &Biomed Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27701, USA
| | - Hannie Kremer
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, 48149 Muenster, Germany
| | - Erwin van Wijk
- Department of Otorhinolaryngology and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Uwe Wolfrum
- Cell and Matrix Biology, Inst. of Zoology, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - François Kepes
- Institute of Systems and Synthetic Biology, Genopole, CNRS, Université d'Evry, 91030 Evry, France
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27701, USA
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, TIGEM 80078, Italy.,Department of Translational Medicine Federico II University, 80131 Naples, Italy
| | - Rachel H Giles
- Department of Nephrology and Hypertension, Regenerative Medicine Center, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Marius Ueffing
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, 72074 Tuebingen, Germany
| | - Robert B Russell
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.,Cell Networks, Bioquant, Ruprecht-Karl University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | | |
Collapse
|
6
|
Melani RD, Seckler HS, Skinner OS, Do Vale LHF, Catherman AD, Havugimana PC, Valle de Sousa M, Domont GB, Kelleher NL, Compton PD. CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis. J Vis Exp 2016:53597. [PMID: 26967310 DOI: 10.3791/53597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses.
Collapse
Affiliation(s)
- Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Institute of Chemistry, Proteomics Unit, Federal University of Rio de Janeiro
| | - Henrique S Seckler
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Owen S Skinner
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Luis H F Do Vale
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Department of Cell Biology, Brazilian Center for Protein Research, Laboratory of Biochemistry and Protein Chemistry, University of Brasilia
| | - Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Pierre C Havugimana
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Marcelo Valle de Sousa
- Department of Cell Biology, Brazilian Center for Protein Research, Laboratory of Biochemistry and Protein Chemistry, University of Brasilia
| | - Gilberto B Domont
- Institute of Chemistry, Proteomics Unit, Federal University of Rio de Janeiro
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University;
| |
Collapse
|
7
|
Abstract
Protein misfolding, aggregation, and accumulation are a common hallmark in various neurodegenerative diseases. Invariably, the process of protein aggregation is associated with both a loss of the normal biological function of the protein and a gain of toxic function that ultimately leads to cell death. The precise origin of protein cytotoxicity is presently unclear but the predominant theory posits that smaller oligomeric species are more toxic than larger aggregated forms. While there is still no consensus on this subject, this is a central question that needs to be addressed in order to enable the design of novel and more effective therapeutic strategies. Accordingly, the development and utilization of approaches that allow the biochemical characterization of the formed oligomeric species in a given cellular or animal model will enable the correlation with cytotoxicity and other parameters of interest.Here, we provide a detailed description of a low-cost protocol for the analysis of protein oligomeric species from both yeast and mammalian cell lines models, based on their separation according to sedimentation velocity using high-speed centrifugation in sucrose gradients. This approach is an adaptation of existing protocols that enabled us to overcome existing technical issues and obtain reliable results that are instrumental for the characterization of the types of protein aggregates formed by different proteins of interest in the context of neurodegenerative disorders.
Collapse
|
8
|
Thompson PJ, Dulberg V, Moon KM, Foster LJ, Chen C, Karimi MM, Lorincz MC. hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells. PLoS Genet 2015; 11:e1004933. [PMID: 25611934 PMCID: PMC4303303 DOI: 10.1371/journal.pgen.1004933] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 01/23/2023] Open
Abstract
Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. Retroelements, including endogenous retroviruses (ERVs), pose a significant threat to genome stability. In mouse embryonic stem (ES) cells, the enzyme SETDB1 safeguards the genome against transcription of specific ERVs by depositing a repressive mark H3K9 trimethylation (H3K9me3). Although SETDB1 is recruited to ERVs by its binding partner KAP1, the molecular basis of this silencing pathway is not clear. Using biochemical and genetic approaches, we identified hnRNP K as a novel component of this silencing pathway that facilitates the recruitment of SETDB1 to ERVs to promote their repression. HnRNP K binds to ERV sequences via KAP1 and subsequently promotes SETDB1 binding. Together, our results reveal a novel function for hnRNP K in transcriptional silencing of ERVs and demonstrate a new regulatory mechanism governing the deposition of H3K9me3 by SETDB1 in ES cells.
Collapse
Affiliation(s)
- Peter J. Thompson
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vered Dulberg
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Chen
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad M. Karimi
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C. Lorincz
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
9
|
Bhatnagar S, Gazin C, Chamberlain L, Ou J, Zhu X, Tushir JS, Virbasius CM, Lin L, Zhu LJ, Wajapeyee N, Green MR. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 2014; 516:116-20. [PMID: 25470042 PMCID: PMC4269325 DOI: 10.1038/nature13955] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/09/2014] [Indexed: 12/15/2022]
Abstract
The TRIM37 (or MUL) gene is located in the 17q23 chromosomal region, which is amplified in up to ~40% of breast cancers1. TRIM37 contains a RING finger domain, a hallmark of E3 ubiquitin ligases2, but its protein substrate(s) is unknown. Here we report that TRIM37 mono-ubiquitinates histone H2A, a chromatin modification associated with transcriptional repression3. We find that in human breast cancer cell lines containing amplified 17q23, TRIM37 is upregulated and, reciprocally, the major H2A ubiquitin ligase RNF23,4 (also called RING1B) is downregulated. Genome-wide chromatin immunoprecipitation (ChIP)-chip experiments in 17q23-amplified breast cancer cells identified many genes, including multiple tumour suppressors, whose promoters were bound by TRIM37 and enriched for ubiquitinated H2A (H2A-ub). However, unlike RNF2, which is a subunit of Polycomb repressive complex 1 (PRC1)3–5, we find that TRIM37 associates with Polycomb repressive complex 2 (PRC2). TRIM37, PRC2 and PRC1 are co-bound to specific target genes resulting in their transcriptional silencing. RNA interference (RNAi)-mediated knockdown of TRIM37 results in loss of H2A-ub, dissociation of PRC1 and PRC2 from target promoters, and transcriptional reactivation of silenced genes. Knockdown of TRIM37 in human breast cancer cells containing amplified 17q23 substantially decreases tumour growth in mouse xenografts. Conversely, ectopic expression of TRIM37 renders non-transformed cells tumorigenic. Collectively, our results reveal TRIM37 as an oncogenic H2A ubiquitin ligase that is overexpressed in a subset of breast cancers and promotes transformation by facilitating silencing of tumour suppressors and other genes.
Collapse
Affiliation(s)
- Sanchita Bhatnagar
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Claude Gazin
- CEA/DSV/iRCM/LEFG, Genopole G2, and Université Paris Diderot, 91057 Evry, France
| | - Lynn Chamberlain
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jianhong Ou
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Xiaochun Zhu
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jogender S Tushir
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, USA
| | - Ching-Man Virbasius
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ling Lin
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Lihua J Zhu
- 1] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael R Green
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
10
|
Zondler L, Miller-Fleming L, Repici M, Gonçalves S, Tenreiro S, Rosado-Ramos R, Betzer C, Straatman KR, Jensen PH, Giorgini F, Outeiro TF. DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease. Cell Death Dis 2014; 5:e1350. [PMID: 25058424 PMCID: PMC4123098 DOI: 10.1038/cddis.2014.307] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disorder characterized by the loss of neurons in the substantia nigra pars compacta and the presence of Lewy bodies in surviving neurons. These intracellular protein inclusions are primarily composed of misfolded α-synuclein (aSyn), which has also been genetically linked to familial and sporadic forms of PD. DJ-1 is a small ubiquitously expressed protein implicated in several pathways associated with PD pathogenesis. Although mutations in the gene encoding DJ-1 lead to familial early-onset PD, the exact mechanisms responsible for its role in PD pathogenesis are still elusive. Previous work has found that DJ-1--which has protein chaperone-like activity--modulates aSyn aggregation. Here, we investigated possible physical interactions between aSyn and DJ-1 and any consequent functional and pathological relevance. We found that DJ-1 interacts directly with aSyn monomers and oligomers in vitro, and that this also occurs in living cells. Notably, several PD-causing mutations in DJ-1 constrain this interaction. In addition, we found that overexpression of DJ-1 reduces aSyn dimerization, whereas mutant forms of DJ-1 impair this process. Finally, we found that human DJ-1 as well as yeast orthologs of DJ-1 reversed aSyn-dependent cellular toxicity in Saccharomyces cerevisiae. Taken together, these data suggest that direct interactions between DJ-1 and aSyn constitute the basis for a neuroprotective mechanism and that familial mutations in DJ-1 may contribute to PD by disrupting these interactions.
Collapse
Affiliation(s)
- L Zondler
- Department of NeuroDegeneration and Restorative Research, University Medical Center Göttingen, Göttingen, Germany
| | - L Miller-Fleming
- 1] Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal [2] Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - M Repici
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - S Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - S Tenreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - R Rosado-Ramos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - C Betzer
- Danish Research Institute of Translational Neuroscience - Dandrite, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - K R Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester LE1 7RH, UK
| | - P H Jensen
- Danish Research Institute of Translational Neuroscience - Dandrite, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - F Giorgini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - T F Outeiro
- 1] Department of NeuroDegeneration and Restorative Research, University Medical Center Göttingen, Göttingen, Germany [2] Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Tenreiro S, Reimão-Pinto MM, Antas P, Rino J, Wawrzycka D, Macedo D, Rosado-Ramos R, Amen T, Waiss M, Magalhães F, Gomes A, Santos CN, Kaganovich D, Outeiro TF. Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson's disease. PLoS Genet 2014; 10:e1004302. [PMID: 24810576 PMCID: PMC4014446 DOI: 10.1371/journal.pgen.1004302] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/28/2014] [Indexed: 12/02/2022] Open
Abstract
Alpha-synuclein (aSyn) is the main component of proteinaceous inclusions known as Lewy bodies (LBs), the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Although aSyn is phosphorylated at low levels under physiological conditions, it is estimated that ∼90% of aSyn in LBs is phosphorylated at S129 (pS129). Nevertheless, the significance of pS129 in the biology of aSyn and in PD pathogenesis is still controversial. Here, we harnessed the power of budding yeast in order to assess the implications of phosphorylation on aSyn cytotoxicity, aggregation and sub-cellular distribution. We found that aSyn is phosphorylated on S129 by endogenous kinases. Interestingly, phosphorylation reduced aSyn toxicity and the percentage of cells with cytosolic inclusions, in comparison to cells expressing mutant forms of aSyn (S129A or S129G) that mimic the unphosphorylated form of aSyn. Using high-resolution 4D imaging and fluorescence recovery after photobleaching (FRAP) in live cells, we compared the dynamics of WT and S129A mutant aSyn. While WT aSyn inclusions were very homogeneous, inclusions formed by S129A aSyn were larger and showed FRAP heterogeneity. Upon blockade of aSyn expression, cells were able to clear the inclusions formed by WT aSyn. However, this process was much slower for the inclusions formed by S129A aSyn. Interestingly, whereas the accumulation of WT aSyn led to a marked induction of autophagy, cells expressing the S129A mutant failed to activate this protein quality control pathway. The finding that the phosphorylation state of aSyn on S129 can alter the ability of cells to clear aSyn inclusions provides important insight into the role that this posttranslational modification may have in the pathogenesis of PD and other synucleinopathies, opening novel avenues for investigating the molecular basis of these disorders and for the development of therapeutic strategies. Protein aggregation is a common hallmark in neurodegenerative disorders, but is also associated with phenotypic plasticity in a variety of organisms, including yeasts. Alpha-synuclein (aSyn) forms aggregates that are typical of synucleinopathies, and is phosphorylated at S129, but the significance of phosphorylation in the biology and pathophysiology of the protein is still controversial. Exploring the power of budding yeast, we found phosphorylation reduced aSyn toxicity and inclusion formation. While inclusions formed by WT aSyn were homogeneous, those formed by S129A aSyn were larger and heterogeneous. Interestingly, clearance of aSyn inclusions was reduced in cells expressing S129A aSyn, correlating with deficient autophagy activation. The finding that phosphorylation alters the ability of cells to clear aSyn inclusions provides novel insight into the role phosphorylation may have in synucleinopathies, and suggests posttranslational modifications might constitute switches cells use to control the aggregation and clearance of key proteins, opening novel avenues for the development of therapeutic strategies for these devastating disorders.
Collapse
Affiliation(s)
- Sandra Tenreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (ST); (TFO)
| | - Madalena M. Reimão-Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Antas
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Donata Wawrzycka
- Department of Genetics and Cell Physiology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Diana Macedo
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rita Rosado-Ramos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Triana Amen
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meytal Waiss
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Filipa Magalhães
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Gomes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia N. Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tiago Fleming Outeiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- * E-mail: (ST); (TFO)
| |
Collapse
|
12
|
Monti M, Cozzolino M, Cozzolino F, Vitiello G, Tedesco R, Flagiello A, Pucci P. Puzzle of protein complexesin vivo: a present and future challenge for functional proteomics. Expert Rev Proteomics 2014; 6:159-69. [DOI: 10.1586/epr.09.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Regulation of Gγ-globin gene by ATF2 and its associated proteins through the cAMP-response element. PLoS One 2013; 8:e78253. [PMID: 24223142 PMCID: PMC3819381 DOI: 10.1371/journal.pone.0078253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
The upstream Gγ-globin cAMP-response element (G-CRE) plays an important role in regulating Gγ-globin expression through binding of ATF2 and its DNA-binding partners defined in this study. ATF2 knockdown resulted in a significant reduction of γ-globin expression accompanied by decreased ATF2 binding to the G-CRE. By contrast, stable ATF2 expression in K562 cells increased γ-globin transcription which was reduced by ATF2 knockdown. Moreover, a similar effect of ATF2 on γ-globin expression was observed in primary erythroid progenitors. To understand the role of ATF2 in γ-globin expression, chromatographically purified G-CRE/ATF2-interacting proteins were subjected to mass spectrometry analysis; major binding partners included CREB1, cJun, Brg1, and histone deacetylases among others. Immunoprecipitation assays demonstrated interaction of these proteins with ATF2 and in vivo GCRE binding in CD34+ cells undergoing erythroid differentiation which was correlated with γ-globin expression during development. These results suggest synergism between developmental stage-specific recruitments of the ATF2 protein complex and expression of γ-globin during erythropoiesis. Microarray studies in K562 cells support ATF2 plays diverse roles in hematopoiesis and chromatin remodeling.
Collapse
|
14
|
Basso E, Antas P, Marijanovic Z, Gonçalves S, Tenreiro S, Outeiro TF. PLK2 modulates α-synuclein aggregation in yeast and mammalian cells. Mol Neurobiol 2013; 48:854-62. [PMID: 23677647 DOI: 10.1007/s12035-013-8473-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/06/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylation of α-synuclein (aSyn) on serine 129 is one of the major post-translation modifications found in Lewy bodies, the typical pathological hallmark of Parkinson's disease. Here, we found that both PLK2 and PLK3 phosphorylate aSyn on serine 129 in yeast. However, only PLK2 increased aSyn cytotoxicity and the percentage of cells presenting cytoplasmic foci. Consistently, in mammalian cells, PLK2 induced aSyn phosphorylation on serine 129 and induced an increase in the size of the inclusions. Our study supports a role for PLK2 in the generation of aSyn inclusions by a mechanism that does not depend directly on serine 129 phosphorylation.
Collapse
Affiliation(s)
- Elisa Basso
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Maston GA, Zhu LJ, Chamberlain L, Lin L, Fang M, Green MR. Non-canonical TAF complexes regulate active promoters in human embryonic stem cells. eLife 2012; 1:e00068. [PMID: 23150797 PMCID: PMC3490149 DOI: 10.7554/elife.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/26/2012] [Indexed: 12/23/2022] Open
Abstract
The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find, unexpectedly, that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2, 3, 5, 6, 7 and 11), whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP, whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results, hESCs contain a previously undescribed complex comprising TAFs 2, 6, 7, 11 and TBP. Altering the composition of hESC TAFs, either by depleting TAFs that are present or ectopically expressing TAFs that are absent, results in misregulated expression of pluripotency genes and induction of differentiation. Thus, the selective expression and use of TAFs underlies the ability of hESCs to self-renew.DOI:http://dx.doi.org/10.7554/eLife.00068.001.
Collapse
Affiliation(s)
- Glenn A Maston
- Programs in Gene Function and Expression and Molecular Medicine , University of Massachusetts Medical School , Worcester , United States ; Howard Hughes Medical Institute , Chevy Chase , United States
| | | | | | | | | | | |
Collapse
|
16
|
Nozaki R, Tamura S, Ito A, Moriyama T, Yamaguchi K, Kono T. A rapid method to isolate soluble royal jelly proteins. Food Chem 2012; 134:2332-7. [DOI: 10.1016/j.foodchem.2012.03.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 03/15/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
17
|
Stability and function of the Sec61 translocation complex depends on the Sss1p tail-anchor sequence. Biochem J 2011; 436:291-303. [PMID: 21355855 DOI: 10.1042/bj20101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sss1p, an essential component of the heterotrimeric Sec61 complex in the ER (endoplasmic reticulum), is a tail-anchored protein whose precise mechanism of action is largely unknown. Tail-anchored proteins are involved in many cellular processes and are characterized by a single transmembrane sequence at or near the C-terminus. The Sec61 complex is the molecular machine through which secretory and membrane proteins translocate into and across the ER membrane. To understand the function of the tail anchor of Sss1p, we introduced mutations into the tail-anchor sequence and analysed the resulting yeast phenotypes. Point mutations in the C-terminal hydrophobic core of the tail anchor of Sss1p were identified that allowed Sss1p assembly into Sec61 complexes, but resulted in diminished growth, defects in co- and post-translational translocation, inefficient ribosome binding to Sec61 complexes, reduction in the stability of both heterotrimeric Sec61 and heptameric Sec complexes and a complete breakdown of ER structure. The underlying defect caused by the mutations involves loss of a stabilizing function of the Sss1p tail-anchor sequence for both the heterotrimeric Sec61 and the heptameric Sec complexes. These results indicate that by stabilizing multiprotein membrane complexes, the hydrophobic core of a tail-anchor sequence can be more than a simple membrane anchor.
Collapse
|
18
|
Savas JN, Ma B, Deinhardt K, Culver BP, Restituito S, Wu L, Belasco JG, Chao MV, Tanese N. A role for huntington disease protein in dendritic RNA granules. J Biol Chem 2010; 285:13142-53. [PMID: 20185826 DOI: 10.1074/jbc.m110.114561] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated transport and local translation of mRNA in neurons are critical for modulating synaptic strength, maintaining proper neural circuitry, and establishing long term memory. Neuronal RNA granules are ribonucleoprotein particles that serve to transport mRNA along microtubules and control local protein synthesis in response to synaptic activity. Studies suggest that neuronal RNA granules share similar structures and functions with somatic P-bodies. We recently reported that the Huntington disease protein huntingtin (Htt) associates with Argonaute (Ago) and localizes to cytoplasmic P-bodies, which serve as sites of mRNA storage, degradation, and small RNA-mediated gene silencing. Here we report that wild-type Htt associates with Ago2 and components of neuronal granules and co-traffics with mRNA in dendrites. Htt was found to co-localize with RNA containing the 3'-untranslated region sequence of known dendritically targeted mRNAs. Knockdown of Htt in neurons caused altered localization of mRNA. When tethered to a reporter construct, Htt down-regulated reporter gene expression in a manner dependent on Ago2, suggesting that Htt may function to repress translation of mRNAs during transport in neuronal granules.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Myeloid translocation gene 16 (MTG16) interacts with Notch transcription complex components to integrate Notch signaling in hematopoietic cell fate specification. Mol Cell Biol 2010; 30:1852-63. [PMID: 20123979 DOI: 10.1128/mcb.01342-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway regulates gene expression programs to influence the specification of cell fate in diverse tissues. In response to ligand binding, the intracellular domain of the Notch receptor is cleaved by the gamma-secretase complex and then translocates to the nucleus. There, it binds the transcriptional repressor CSL, triggering its conversion to an activator of Notch target gene expression. The events that control this conversion are poorly understood. We show that the transcriptional corepressor, MTG16, interacts with both CSL and the intracellular domains of Notch receptors, suggesting a pivotal role in regulation of the Notch transcription complex. The Notch1 intracellular domain disrupts the MTG16-CSL interaction. Ex vivo fate specification in response to Notch signal activation is impaired in Mtg16-/- hematopoietic progenitors, and restored by MTG16 expression. An MTG16 derivative lacking the binding site for the intracellular domain of Notch1 fails to restore Notch-dependent cell fate. These data suggest that MTG16 interfaces with critical components of the Notch transcription complex to affect Notch-dependent lineage allocation in hematopoiesis.
Collapse
|
20
|
Towns WL, Tauhata SBF, Vaughan PS, Vaughan KT. Transfection-induced defects in dynein-driven transport: evidence that ICs mediate cargo-binding. ACTA ACUST UNITED AC 2009; 66:80-9. [PMID: 19061245 DOI: 10.1002/cm.20327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytoplasmic dynein contributes to the localization and transport of multiple membranous organelles, including late endosomes, lysosomes, and the Golgi complex. It remains unclear which subunits of dynein are directly responsible for linking the dynein complex to these organelles, however the intermediate chain (IC), light intermediate chain (LIC) and light chain (LC) subunits are each thought to be important. Based on previous mapping of a dynein IC phosphorylation site (S84), we measured the impact of transfected ICs on dynein-driven organelle transport (Vaughan et al.,2001). Wild-type and S84A constructs disrupted organelle transport, whereas the S84D construct induced no defects. In this study we investigated the mechanisms of transfection-induced disruption of organelle transport. Transfected ICs did not: (1) disrupt the dynein holoenzyme, (2) incorporate into the native dynein complex, (3) dimerize with native dynein ICs or (4) sequester dynein LCs in a phosphorylation-sensitive manner. Consistent with saturation of dynactin as an inhibitory mechanism, truncated ICs containing only the dynactin-binding domain were as effective as full-length IC constructs in disrupting organelle transport, and this effect was influenced by phosphorylation-state. Competition analysis demonstrated that S84D ICs were less capable than dephosphorylated ICs in disrupting the dynein-dynactin interaction. Finally, two-dimensional gel analysis revealed phosphorylation of the wild-type but not S84D ICs, providing an explanation for the incomplete effects of the wild-type ICs. Together these findings suggest that transfected ICs disrupt organelle transport by competing with native dynein for dynactin binding in a phosphorylation-sensitive manner.
Collapse
Affiliation(s)
- William L Towns
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
21
|
Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S. Protein requirements for sister telomere association in human cells. EMBO J 2007; 26:4867-78. [PMID: 17962804 PMCID: PMC2099466 DOI: 10.1038/sj.emboj.7601903] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/04/2007] [Indexed: 02/04/2023] Open
Abstract
Previous studies in human cells indicate that sister telomeres have distinct requirements for their separation at mitosis. In cells depleted for tankyrase 1, a telomeric poly(ADP-ribose) polymerase, sister chromatid arms and centromeres separate normally, but telomeres remain associated and cells arrest in mitosis. Here, we use biochemical and genetic approaches to identify proteins that might mediate the persistent association at sister telomeres. We use immunoprecipitation analysis to show that the telomeric proteins, TRF1 (an acceptor of PARsylation by tankyrase 1) and TIN2 (a TRF1 binding partner) each bind to the SA1 ortholog of the cohesin Scc3 subunit. Sucrose gradient sedimentation shows that TRF1 cosediments with the SA1-cohesin complex. Depletion of the SA1 cohesin subunit or the telomeric proteins (TRF1 and TIN2) restores the normal resolution of sister telomeres in mitosis in tankyrase 1-depleted cells. Moreover, depletion of TRF1 and TIN2 or SA1 abrogates the requirement for tankyrase 1 in mitotic progression. Our studies indicate that sister telomere association in human cells is mediated by a novel association between a cohesin subunit and components of telomeric chromatin.
Collapse
Affiliation(s)
- Silvia Canudas
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Benjamin R Houghtaling
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Ju Youn Kim
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Jasmin N Dynek
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - William G Chang
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Susan Smith
- Program in Molecular Pathogenesis and Department of Pathology, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Cho WJ, Jeremic A, Jin H, Ren G, Jena BP. Neuronal fusion pore assembly requires membrane cholesterol. Cell Biol Int 2007; 31:1301-1308. [PMID: 17703958 PMCID: PMC2040125 DOI: 10.1016/j.cellbi.2007.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Cholesterol has been proposed to play a critical role in regulating neurotransmitter release and synaptic plasticity. The neuronal porosome/fusion pore, the secretory machinery at the nerve terminal, is a 12-17 nm cup-shaped lipoprotein structure composed of cholesterol and a number of proteins, among them calcium channels, and the t-SNARE proteins Syntaxin-1 and SNAP-25. During neurotransmission, synaptic vesicles dock and fuse at the porosome via interaction of their v-SNARE protein with t-SNAREs at the porosome base. Membrane-associated neuronal t-SNAREs interact in a circular array with liposome-associated neuronal v-SNARE to form the t-/v-SNARE ring complex. The SNARE complex along with calcium is required for the establishment of continuity between opposing bilayers. Here we show that although cholesterol is an integral component of the neuronal porosome and is required for maintaining its physical integrity and function, it has no influence on the conformation of the SNARE ring complex.
Collapse
Affiliation(s)
- Won Jin Cho
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Aleksandar Jeremic
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Huan Jin
- Department of Biochemistry and Biophysics, University of California SanFrancisco, SanFrancisco, CA 94158, USA
| | - Gang Ren
- Department of Biochemistry and Biophysics, University of California SanFrancisco, SanFrancisco, CA 94158, USA
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
23
|
Gagné JP, Bonicalzi MÈ, Gagné P, Ouellet MÈ, Hendzel M, Poirier G. Poly(ADP-ribose) glycohydrolase is a component of the FMRP-associated messenger ribonucleoparticles. Biochem J 2006; 392:499-509. [PMID: 16117724 PMCID: PMC1316289 DOI: 10.1042/bj20050792] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PARG [poly(ADP-ribose) glycohydrolase] is the only known enzyme that catalyses the hydrolysis of poly(ADP-ribose), a branched polymer that is synthesized by the poly(ADP-ribose) polymerase family of enzymes. Poly(ADP-ribosyl)ation is a transient post-translational modification that alters the functions of the acceptor proteins. It has mostly been studied in the context of DNA-damage signalling or DNA transaction events, such as replication and transcription reactions. Growing evidence now suggests that poly(ADP-ribosyl)ation could have a much broader impact on cellular functions. To elucidate the roles that could be played by PARG, we performed a proteomic identification of PARG-interacting proteins by mass spectrometric analysis of PARG pulled-down proteins. In the present paper, we report that PARG is resident in FMRP (Fragile-X mental retardation protein)-associated messenger ribonucleoparticles complexes. The localization of PARG in these complexes, which are components of the translation machinery, was confirmed by sedimentation and microscopy analysis. A functional link between poly(ADP-ribosyl)ation modulation and FMRP-associated ribonucleoparticle complexes are discussed in a context of translational regulation.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- *Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Québec, Canada, G1V 4G2
| | - Marie-Ève Bonicalzi
- *Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Québec, Canada, G1V 4G2
| | - Pierre Gagné
- *Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Québec, Canada, G1V 4G2
| | - Marie-Ève Ouellet
- *Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Québec, Canada, G1V 4G2
| | - Michael J. Hendzel
- †Department of Oncology, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2
| | - Guy G. Poirier
- *Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Québec, Canada, G1V 4G2
- ‡Eastern Quebec Proteomic Center, Laval University Medical Research Center, 2705 Boulevard Laurier, Ste-Foy, Québec, Canada, G1V 4G2
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Cubizolles F, Martino F, Perrod S, Gasser SM. A Homotrimer–Heterotrimer Switch in Sir2 Structure Differentiates rDNA and Telomeric Silencing. Mol Cell 2006; 21:825-36. [PMID: 16543151 DOI: 10.1016/j.molcel.2006.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/21/2005] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
The budding yeast genome contains transcriptionally repressed domains at mating-type and telomeric loci, and within rDNA repeats. Gene silencing at telomeres requires the Silent information regulators Sir2p, Sir3p, and Sir4p, whereas only the Sir2p histone deacetylase is required for rDNA repression. To understand these silencing mechanisms biochemically, we examined the subunit structure of Sir2p-containing complexes. Sir2p alone forms a stable homotrimer, whereas the SIR complex is a heterotrimer containing one copy of each Sir protein. A point mutation in the Sir2p core domain (sir2(P394L)) compromises selectively rDNA repression. This mutation impairs homotrimerization but allows SIR heterotrimer formation. Surprisingly, when sir2(P394L) is coexpressed with wild-type Sir2p, rDNA repression increases and homotrimers form. Furthermore, coexpression of sir2(P394L) and enzymatically inactive sir2(H364Y) allows crosscomplementation of rDNA repression defects. The correlation of genetic and biochemical complementation argues that Sir2p trimerization is physiologically relevant for rDNA silencing.
Collapse
MESH Headings
- Amino Acid Sequence
- DNA, Ribosomal
- Genes, Mating Type, Fungal
- Models, Biological
- Molecular Sequence Data
- Point Mutation
- Protein Structure, Tertiary
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Amino Acid
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/chemistry
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
- Telomere/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Fabien Cubizolles
- Department of Molecular Biology and NCCR Frontiers in Genetics, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
25
|
Hilton TL, Li Y, Dunphy EL, Wang EH. TAF1 histone acetyltransferase activity in Sp1 activation of the cyclin D1 promoter. Mol Cell Biol 2005; 25:4321-32. [PMID: 15870300 PMCID: PMC1087727 DOI: 10.1128/mcb.25.10.4321-4332.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A missense mutation within the histone acetyltransferase (HAT) domain of the TATA binding protein-associated factor TAF1 induces ts13 cells to undergo a late G(1) arrest and decreases cyclin D1 transcription. We have found that TAF1 mutants (Delta844-850 and Delta848-850, from which amino acids 844 through 850 and 848 through 850 have been deleted, respectively) deficient in HAT activity are unable to complement the ts13 defect in cell proliferation and cyclin D1 transcription. Chromatin immunoprecipitation assays revealed that histone H3 acetylation was reduced at the cyclin D1 promoter but not the c-fos promoter upon inactivation of TAF1 in ts13 cells. The hypoacetylation of H3 at the cyclin D1 promoter was reversed by treatment with trichostatin A (TSA), a histone deacetylase inhibitor, or by expression of TAF1 proteins that retain HAT activity. Transcription of a chimeric promoter containing the Sp1 sites of cyclin D1 and c-fos core remained TAF1 dependent in ts13 cells. Treatment with TSA restored full activity to the cyclin D1-c-fos chimera at 39.5 degrees C. In vivo genomic footprinting experiments indicate that protein-DNA interactions at the Sp1 sites of the cyclin D1 promoter were compromised at 39.5 degrees C in ts13 cells. These data have led us to hypothesize that TAF1-dependent histone acetylation facilitates transcription factor binding to the Sp1 sites, thereby activating cyclin D1 transcription and ultimately G(1)-to-S-phase progression.
Collapse
Affiliation(s)
- Traci L Hilton
- University of Washington, School of Medicine, Department of Pharmacology, 1959 NE Pacific Street, Health Sciences Center, Box 357280, Seattle, WA 98195-7280, USA
| | | | | | | |
Collapse
|
26
|
Rehtanz M, Schmidt HM, Warthorst U, Steger G. Direct interaction between nucleosome assembly protein 1 and the papillomavirus E2 proteins involved in activation of transcription. Mol Cell Biol 2004; 24:2153-68. [PMID: 14966293 PMCID: PMC350572 DOI: 10.1128/mcb.24.5.2153-2168.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a yeast two-hybrid screen, we identified human nucleosome assembly protein 1 (hNAP-1) as a protein interacting with the activation domain of the transcriptional activator encoded by papillomaviruses (PVs), the E2 protein. We show that the interaction between E2 and hNAP-1 is direct and not merely mediated by the transcriptional coactivator p300, which is bound by both proteins. Coexpression of hNAP-1 strongly enhances activation by E2, indicating a functional interaction as well. E2 binds to at least two separate domains within hNAP-1, one within the C terminus and an internal domain. The binding of E2 to hNAP-1 is necessary for cooperativity between the factors. Moreover, the N-terminal 91 amino acids are crucial for the transcriptional activity of hNAP-1, since deletion mutants lacking this N-terminal portion fail to cooperate with E2. We provide evidence that hNAP-1, E2, and p300 can form a ternary complex efficient in the activation of transcription. We also show that p53 directly interacts with hNAP-1, indicating that transcriptional activators in addition to PV E2 interact with hNAP-1. These results suggest that the binding of sequence-specific DNA binding proteins to hNAP-1 may be an important step contributing to the activation of transcription.
Collapse
Affiliation(s)
- Manuela Rehtanz
- Institute of Virology, University of Cologne, 50935 Cologne, Germany
| | | | | | | |
Collapse
|
27
|
Braunstein J, Brutsaert S, Olson R, Schindler C. STATs dimerize in the absence of phosphorylation. J Biol Chem 2003; 278:34133-40. [PMID: 12832402 DOI: 10.1074/jbc.m304531200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Upon activation by tyrosine kinases, members of the STAT family of transcription factors form stable dimers that are able to rapidly translocate to the nucleus and bind DNA. Although crystal structures of activated, near full-length, Stat1 and Stat3 illustrate how STATs bind to DNA, they provide little insight into the dynamic regulation of STAT activity. To explore the unique structural changes Stat1 and Stat3 undergo when they become activated, full-length inactive recombinant proteins were prepared. To our surprise, even though these proteins are unable to bind DNA, our studies demonstrate that they exist as stable homodimers. Similarly, the Stat1 and Stat3 found in the cytoplasm of unstimulated cells also exhibit a dimeric structure. These observations indicate that Stat1 and Stat3 exist as stable homodimers prior to activation.
Collapse
Affiliation(s)
- Jutta Braunstein
- Department of Microbiology, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
28
|
Pozidis C, Chalkiadaki A, Gomez-Serrano A, Stahlberg H, Brown I, Tampakaki AP, Lustig A, Sianidis G, Politou AS, Engel A, Panopoulos NJ, Mansfield J, Pugsley AP, Karamanou S, Economou A. Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J Biol Chem 2003; 278:25816-24. [PMID: 12734178 DOI: 10.1074/jbc.m301903200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type III protein secretion (TTS) is catalyzed by translocases that span both membranes of Gram-negative bacteria. A hydrophilic TTS component homologous to F1/V1-ATPases is ubiquitous and essential for secretion. We show that hrcN encodes the putative TTS ATPase of Pseudomonas syringae pathovar phaseolicola and that HrcN is a peripheral protein that assembles in clusters at the membrane. A decahistidinyl HrcN derivative was overexpressed in Escherichia coli and purified to homogeneity in a folded state. Hydrodynamic analysis, cross-linking, and electron microscopy revealed four distinct HrcN forms: I, 48 kDa (monomer); II, approximately 300 kDa (putative hexamer); III, 575 kDa (dodecamer); and IV, approximately 3.5 MDa. Form III is the predominant form of HrcN at the membrane, and its ATPase activity is dramatically stimulated (>700-fold) over the basal activity of Form I. We propose that TTS ATPases catalyze protein translocation as activated homo-oligomers at the plasma membrane.
Collapse
Affiliation(s)
- Charalambos Pozidis
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, P.O. Box 1527, GR-711 10 Iraklio, Crete, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J. SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem 2002; 277:22330-7. [PMID: 11950834 DOI: 10.1074/jbc.m111987200] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The SWI/SNF complex is required for the transcription of several genes and has been shown to alter nucleosome structure in an ATP-dependent manner. The tumor suppressor protein p53 displays growth and transformation suppression functions that are frequently lost in mutant p53 proteins detected in various cancers. Using genetic and biochemical approaches, we show that several subunits of the human SWI/SNF complex bind to the tumor suppressor protein p53 in vivo and in vitro. The transactivation function of p53 is stimulated by overexpression of hSNF5 and BRG-1 and dominant forms of hSNF5 and BRG-1 repress p53-dependent transcription. Chromatin immunoprecipitation assay shows that hSNF5 and BRG-1 are recruited to a p53-dependent promoter in vivo. Overexpression of dominant negative forms of either hSNF5 or BRG-1 inhibited p53-mediated cell growth suppression and apoptosis. Molecular connection between p53 and the SWI/SNF complex implicates that (i) the SWI/SNF complex is necessary for p53-driven transcriptional activation, and (ii) the SWI/SNF complex plays an important role in p53-mediated cell cycle control.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphate/metabolism
- Apoptosis
- Blotting, Western
- Cell Line
- Centrifugation, Density Gradient
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/metabolism
- DNA Helicases
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Flow Cytometry
- Genes, Dominant
- Glutathione Transferase/metabolism
- Glycerol/pharmacology
- Humans
- Immunoblotting
- Luciferases/metabolism
- Mutation
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- SMARCB1 Protein
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/metabolism
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
30
|
Markus SM, Taneja SS, Logan SK, Li W, Ha S, Hittelman AB, Rogatsky I, Garabedian MJ. Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 2002; 13:670-82. [PMID: 11854421 PMCID: PMC65658 DOI: 10.1091/mbc.01-10-0513] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Revised: 10/19/2001] [Accepted: 11/08/2001] [Indexed: 11/11/2022] Open
Abstract
The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR(153-336), containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR(153-336) fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Microbiology, The Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yuan H, Puckett S, Lyles DS. Inhibition of host transcription by vesicular stomatitis virus involves a novel mechanism that is independent of phosphorylation of TATA-binding protein (TBP) or association of TBP with TBP-associated factor subunits. J Virol 2001; 75:4453-8. [PMID: 11287600 PMCID: PMC114196 DOI: 10.1128/jvi.75.9.4453-4458.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The matrix (M) protein of vesicular stomatitis virus (VSV) is a potent inhibitor in vivo of transcription by all three host RNA polymerases (RNAP). In the case of host RNA polymerase II (RNAPII), the inhibition is due to lack of activity of the TATA-binding protein (TBP), which is a subunit of the basal transcription factor TFIID. Despite the potency of M protein-induced inhibition in vivo, experiments presented here show that M protein cannot directly inactivate TFIID in vitro. Addition of M protein to nuclear extracts from uninfected cells did not inhibit transcription activity, indicating that the inhibition is indirect and is mediated through host factors. The host factors that are known to regulate TBP activity include phosphorylation by host kinases and association with different TBP-associated factor (TAF) subunits. However, TBP in VSV-infected cells was found to be assembled normally with its TAF subunits, as shown by ion exchange high-pressure liquid chromatography and sedimentation velocity analysis. A normal pattern of phosphorylation of TBP in VSV-infected cells was also observed by pH gradient gel electrophoresis. Collectively, these data indicate that M protein inactivates TBP activity in RNAPII-dependent transcription by a novel mechanism, since the known mechanisms for regulating TBP activity cannot account for the inhibition.
Collapse
Affiliation(s)
- H Yuan
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|