1
|
Kaya S, Bedir O, Baysallar M, Ören S, Koru Ö, Albay A. Rapid detection of antimicrobial susceptibility of the Bacteroides fragilis group by flow cytometry: A preliminary study. Diagn Microbiol Infect Dis 2024; 110:116464. [PMID: 39180786 DOI: 10.1016/j.diagmicrobio.2024.116464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
A total of nine Bacteroides fragilis group strains and B. fragilis ATCC 25285 were studied. Six antibiotics were used in the study. Broth dilution method was used for flow cytometry (FCM) analysis. Cell suspensions with antibiotics and antibiotic-free were stained with thiazole orange and propidium iodide (PI) to differentiate dead/live cells. The percentage of dead and live cells was calculated using FCM device. Cut-off values for antibiotics (26,7 %, 35,5 % and 30,2 % for meropenem, AMC and clindamycin, respectively) were calculated for dead/live cell differentiation. A common cut-off value was calculated for bactericidal and bacteriostatic (31,8 % and 25,7 % respectively). The PI staining ratios of the B. fragilis ATCC 25285 calculated in the MIC ranges for each antibiotic were under the cut-off values calculated with clinical isolates. The cut-off values we calculated are compatible with MBC rather than MIC values. The FCM method is one of the candidate methods for antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Sinem Kaya
- Department of Medical Microbiology, Gulhane Training and Research Hospital, Etlik, Ankara, Turkey.
| | - Orhan Bedir
- Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Etlik, Ankara, Turkey
| | - Mehmet Baysallar
- Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Etlik, Ankara, Turkey
| | - Sema Ören
- Molecular Application and Research Unit of R and D Laboratory, University of Health Sciences, Etlik, Ankara, Turkey
| | - Özgür Koru
- Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Etlik, Ankara, Turkey
| | - Ali Albay
- Department of Medical Microbiology, Gulhane Medical Faculty, University of Health Sciences, Etlik, Ankara, Turkey
| |
Collapse
|
2
|
Evaluation of the Characteristics and Infectivity of the Secondary Inoculum Produced by Plasmopara viticola on Grapevine Leaves by Means of Flow Cytometry and Fluorescence-Activated Cell Sorting. Appl Environ Microbiol 2022; 88:e0101022. [PMID: 36250698 PMCID: PMC9642012 DOI: 10.1128/aem.01010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmopara viticola, the oomycete causing grapevine downy mildew, is one of the most important pathogens in viticulture. P. viticola is a polycyclic pathogen, able to carry out numerous secondary cycles of infection during a single vegetative grapevine season, by producing asexual spores (zoospores) within sporangia. The extent of these infections is strongly influenced by both the quantity (density) and quality (infectivity) of the inoculum produced by the pathogen. To date, the protocols for evaluating all these characteristics are quite limited and time-consuming and do not allow all the information to be obtained in a single run. In this study, a protocol combining flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) was developed to investigate the composition, the infection efficiency and the dynamics of the inoculum produced by P. viticola for secondary infection cycles. In our analyses, we identified different structures within the inoculum, including degenerated and intact sporangia. The latter have been sorted, and single sporangia were directly inoculated on grapevine leaf discs, thus allowing a thorough investigation of the infection dynamics and efficiency. In detail, we determined that, in our conditions, 8% of sporangia were able to infect the leaves and that on a susceptible variety, the time required by the pathogen to reach 50% of total infection is about 10 days. The analytical approach developed in this study could open a new perspective to shed light on the biology and epidemiology of this important pathogen. IMPORTANCE P. viticola secondary infections contribute significantly to the epidemiology of this important plant pathogen. However, the infection dynamics of asexual spores produced by this organism are still poorly investigated. The main challenges in dissecting the grapevine-P. viticola interaction in vitro are attributable to the biotrophic adaptation of the pathogen. This work provides new insights into the infection efficiency and dynamics imputable to P. viticola sporangia, contributing useful information on grapevine downy mildew epidemiology. Moreover, future applications of the sorting protocol developed in this work could yield a significant and positive impact in the study of P. viticola, providing unmatched resolution, precision, and accuracy compared with the traditional techniques.
Collapse
|
3
|
Separation of Microalgae by a Dynamic Bed of Magnetite-Containing Gel in the Application of a Magnetic Field. SEPARATIONS 2022. [DOI: 10.3390/separations9050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Microalgae are now known as potential microorganisms in the production of chemicals, fuel, and food. Since microalgae live in the sea and the river, they need to be harvested and separated and cultured for further usage. In this study, to separate microalgae, a bed of magnetite-containing gel (Mag gel, 190 µm) was packed in the column by the application of a magnetic field for the separative elution of injected microalgae (including mainly four species), cultured at Saga University in Japan. The applied magnetic field was set at a constant and dynamic-convex manner. At a constant magnetic field of 0.4–1.1 T, the elution percentage of the microalgae at less than 5 µm was 30–50%. At 1.1 T, the larger-sized microalgae were eluted at a percentage of 20%, resulting in the structural change of the bed by the applied magnetic field. In a convex-like change of the magnetic field at 1.1 T ⇄ 0.4 T, the smaller-sized microalgae were selectively eluted, whereas at 1.1 T ⇄ 0.8 T, the larger-sized microalgae were eluted. Dynamic convex-like changes by the magnetic field selectively eluted the microalgae, leading to the separation and the extraction of potential microalgae.
Collapse
|
4
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
5
|
Separation of microalgae using a compacted magnetite-containing gel bed. Bioprocess Biosyst Eng 2021; 45:321-331. [PMID: 34741657 DOI: 10.1007/s00449-021-02662-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
Separation of microalgae of various sizes and shapes is an important process that enables subsequent production of useful compounds. Herein, the separation of microalgae was accomplished using a magnetite-containing gel (42 μm) packed into a column. An algal suspension was injected into the top of the gel bed, after which water was passed through the column. The pressure generated during the process caused the lower domain of the gel bed to deform, resulting in narrowed gaps between the gel beads. When a suspension of Nannochloropsis sp. (0.0069-0.69 g L-1) was loaded and water was passed through the column at an applied pressure of 0.01-0.10 MPa, the majority of microalgae were captured within the upper domain of the gel bed, while only 20% were captured within the lower domain. The amount of Nannochloropsis sp. captured was expressed by an ordinary differential equation to determine the capture coefficient, K, and the maximum capture amount, Qmax. As pressure increased, gel gaps narrowed, K increased, and Qmax decreased because of a reduction in the number of effective capture sites upon compaction of the gel. When a mixed suspension of Anabaena sp., Monoraphidium sp., and Desmodesmus sp. (0.069 g L-1 each) was injected into the gel bed at an applied pressure of 0.01 MPa, only Anabaena sp. was captured at the bottom of the gel bed. This device can be applied for the separation of microalgae in rivers and the sea.
Collapse
|
6
|
Hare PJ, LaGree TJ, Byrd BA, DeMarco AM, Mok WWK. Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters. Microorganisms 2021; 9:2277. [PMID: 34835403 PMCID: PMC8620850 DOI: 10.3390/microorganisms9112277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population can survive antibiotic doses that kill their kin, even though the entire population is genetically susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence. However, elucidating these rare cell states can be technically challenging. The advent of single-cell techniques has enabled us to observe and quantitatively investigate individual cells in complex, phenotypically heterogeneous populations. In this review, we will discuss current technologies for studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics that contribute high-throughput and high-content information; and next-generation sequencing for powerful insights into genetic and transcriptomic programs. We will further discuss existing knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell microbiology can potentially improve infectious disease treatment outcomes.
Collapse
Affiliation(s)
- Patricia J. Hare
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Dental Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Travis J. LaGree
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Brandon A. Byrd
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Angela M. DeMarco
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| |
Collapse
|
7
|
Galbusera L, Bellement-Theroue G, Urchueguia A, Julou T, van Nimwegen E. Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLoS One 2020; 15:e0240233. [PMID: 33045012 PMCID: PMC7549788 DOI: 10.1371/journal.pone.0240233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
Fluorescence flow cytometry is increasingly being used to quantify single-cell expression distributions in bacteria in high-throughput. However, there has been no systematic investigation into the best practices for quantitative analysis of such data, what systematic biases exist, and what accuracy and sensitivity can be obtained. We investigate these issues by measuring the same E. coli strains carrying fluorescent reporters using both flow cytometry and microscopic setups and systematically comparing the resulting single-cell expression distributions. Using these results, we develop methods for rigorous quantitative inference of single-cell expression distributions from fluorescence flow cytometry data. First, we present a Bayesian mixture model to separate debris from viable cells using all scattering signals. Second, we show that cytometry measurements of fluorescence are substantially affected by autofluorescence and shot noise, which can be mistaken for intrinsic noise in gene expression, and present methods to correct for these using calibration measurements. Finally, we show that because forward- and side-scatter signals scale non-linearly with cell size, and are also affected by a substantial shot noise component that cannot be easily calibrated unless independent measurements of cell size are available, it is not possible to accurately estimate the variability in the sizes of individual cells using flow cytometry measurements alone. To aid other researchers with quantitative analysis of flow cytometry expression data in bacteria, we distribute E-Flow, an open-source R package that implements our methods for filtering debris and for estimating true biological expression means and variances from the fluorescence signal. The package is available at https://github.com/vanNimwegenLab/E-Flow.
Collapse
Affiliation(s)
- Luca Galbusera
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Arantxa Urchueguia
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Thomas Julou
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Erik van Nimwegen
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
8
|
Lang E, Guyot S, Peltier C, Alvarez-Martin P, Perrier-Cornet JM, Gervais P. Cellular Injuries in Cronobacter sakazakii CIP 103183T and Salmonella enterica Exposed to Drying and Subsequent Heat Treatment in Milk Powder. Front Microbiol 2018; 9:475. [PMID: 29593704 PMCID: PMC5859370 DOI: 10.3389/fmicb.2018.00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/28/2018] [Indexed: 11/30/2022] Open
Abstract
Because of the ability of foodborne pathogens to survive in low-moisture foods, their decontamination is an important issue in food protection. This study aimed to clarify some of the cellular mechanisms involved in inactivation of foodborne pathogens after drying and subsequent heating. Individual strains of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii were mixed into whole milk powder and dried to different water activity levels (0.25 and 0.58); the number of surviving cells was determined after drying and subsequent thermal treatments in closed vessels at 90 and 100°C, for 30 and 120 s. For each condition, the percentage of unculturable cells was estimated and, in parallel, membrane permeability and respiratory activity were estimated by flow cytometry using fluorescent probes. After drying, it was clearly observable that the percentage of unculturable cells was correlated with the percentage of permeabilized cells (responsible for 20–40% of the total inactivated bacteria after drying), and to a lesser degree with the percentage of cells presenting with loss of respiratory activity. In contrast, the percentages of unculturable cells observed after heat treatment were strongly correlated with the loss of respiratory activity and weakly with membrane permeability (for 70–80% of the total inactivated bacteria after heat treatment). We conclude that cell inactivation during drying is closely linked to membrane permeabilization and that heat treatment of dried cells affects principally their respiratory activity. These results legitimize the use of time–temperature scales and allow better understanding of the cellular mechanisms of bacterial death during drying and subsequent heat treatment. These results may also allow better optimization of the decontamination process to ensure food safety by targeting the most deleterious conditions for bacterial cells without denaturing the food product.
Collapse
Affiliation(s)
- Emilie Lang
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Novolyze, Daix, France
| | - Stéphane Guyot
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Caroline Peltier
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | | | - Jean-Marie Perrier-Cornet
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Patrick Gervais
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| |
Collapse
|
9
|
González-Cabaleiro R, Mitchell AM, Smith W, Wipat A, Ofiţeru ID. Heterogeneity in Pure Microbial Systems: Experimental Measurements and Modeling. Front Microbiol 2017; 8:1813. [PMID: 28970826 PMCID: PMC5609101 DOI: 10.3389/fmicb.2017.01813] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/05/2017] [Indexed: 01/02/2023] Open
Abstract
Cellular heterogeneity influences bioprocess performance in ways that until date are not completely elucidated. In order to account for this phenomenon in the design and operation of bioprocesses, reliable analytical and mathematical descriptions are required. We present an overview of the single cell analysis, and the mathematical modeling frameworks that have potential to be used in bioprocess control and optimization, in particular for microbial processes. In order to be suitable for bioprocess monitoring, experimental methods need to be high throughput and to require relatively short processing time. One such method used successfully under dynamic conditions is flow cytometry. Population balance and individual based models are suitable modeling options, the latter one having in particular a good potential to integrate the various data collected through experimentation. This will be highly beneficial for appropriate process design and scale up as a more rigorous approach may prevent a priori unwanted performance losses. It will also help progressing synthetic biology applications to industrial scale.
Collapse
Affiliation(s)
- Rebeca González-Cabaleiro
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Anca M Mitchell
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Wendy Smith
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of ComputingNewcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of ComputingNewcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina D Ofiţeru
- School of Engineering, Chemical Engineering, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Yu ACS, Loo JFC, Yu S, Kong SK, Chan TF. Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique. Appl Microbiol Biotechnol 2013; 98:855-62. [DOI: 10.1007/s00253-013-5377-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
|
11
|
Sycuro LK, Rule CS, Petersen TW, Wyckoff TJ, Sessler T, Nagarkar DB, Khalid F, Pincus Z, Biboy J, Vollmer W, Salama NR. Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol Microbiol 2013; 90:869-83. [PMID: 24112477 PMCID: PMC3844677 DOI: 10.1111/mmi.12405] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 12/17/2022]
Abstract
The helical cell shape of Helicobacter pylori is highly conserved and contributes to its ability to swim through and colonize the viscous gastric mucus layer. A multi-faceted peptidoglycan (PG) modification programme involving four recently characterized peptidases and two accessory proteins is essential for maintaining H. pylori's helicity. To expedite identification of additional shape-determining genes, we employed flow cytometry with fluorescence-activated cell sorting (FACS) to enrich a transposon library for bacterial cells with altered light scattering profiles that correlate with perturbed cell morphology. After a single round of sorting, 15% of our clones exhibited a stable cell shape defect, reflecting 37-fold enrichment. Sorted clones with straight rod morphology contained insertions in known PG peptidases, as well as an insertion in csd6, which we demonstrated has ld-carboxypeptidase activity and cleaves monomeric tetrapeptides in the PG sacculus, yielding tripeptides. Other mutants had only slight changes in helicity due to insertions in genes encoding MviN/MurJ, a protein possibly involved in initiating PG synthesis, and the hypothetical protein HPG27_782. Our findings demonstrate FACS robustly detects perturbations of bacterial cell shape and identify additional PG peptide modifications associated with helical cell shape in H. pylori.
Collapse
Affiliation(s)
- Laura K Sycuro
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
13
|
Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 2012; 31:2-16. [PMID: 22561949 DOI: 10.1016/j.biotechadv.2012.04.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 01/24/2023]
Abstract
The current interest in microalgae as a sustainable source of next generation biofuels and other valuable substances is driving exploration of their use as unique biotechnological production systems. To design and optimise appropriate production strategies, the behaviour of particular microalgal species should be well characterised under different culture conditions. Thus, flow cytometric (FCM) methods, which are already well established in environmental and toxicological studies of microalgae, are also useful for analysing the physiological state of microalgae, and have the potential to contribute to the rapid development of feasible bioprocesses. These methods are commonly based on the examination of intrinsic features of individual cells within a population (such as autofluorescence or size). Cells possessing the desired physiological or morphological features, which are detectable with or without fluorescent staining, are counted or isolated (sorted) using an FCM device. The options for implementation of FCM in the development of biotechnological processes detailed in this review are (i) analysing the chemical composition of biomass, (ii) monitoring cellular enzyme activity and cell viability, and (iii) sorting cells to isolate those overproducing the target compound or for the preparation of axenic cultures.
Collapse
Affiliation(s)
- P Hyka
- Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Cooper MA, Dultsev FN, Ostanin VP, Klenerman D. Separation and detection of bacteria using rupture event scanning. Anal Chim Acta 2011; 702:233-8. [PMID: 21839203 DOI: 10.1016/j.aca.2011.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
We have developed a sensitive and economical method to directly detect bacteria, based on the interaction between the bacteria and specific antibodies attached to an oscillating surface. By monotonously increasing the amplitude of oscillation of a quartz crystal microbalance (QCM) coated with the antibody, the QCM can be used to sensitively detect the acoustic noise produced when the interactions between the bacteria and the surface were broken. We term this process rupture event scanning (REVS). The method is quantitative over at least 6 orders of magnitude and can detect as few as 10 bacteria. We demonstrate here that this approach allows one to arrange separation of bacteria and follow the process completion on the basis of the acoustic signal. Detection is not significantly affected by non-specific binding of sample contaminants and thus can be achieved both in buffer and in serum.
Collapse
Affiliation(s)
- Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, 306 Carmody Rd., St Lucia, Qld 4072, Australia
| | | | | | | |
Collapse
|
15
|
Kentner D, Sourjik V. Use of Fluorescence Microscopy to Study Intracellular Signaling in Bacteria. Annu Rev Microbiol 2010; 64:373-90. [DOI: 10.1146/annurev.micro.112408.134205] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Kentner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| |
Collapse
|
16
|
Silva F, Lourenço O, Pina-Vaz C, Rodrigues AG, Queiroz JA, Domingues FC. The use of DRAQ5 to monitor intracellular DNA in Escherichia coli by flow cytometry. J Fluoresc 2010; 20:907-14. [PMID: 20352307 DOI: 10.1007/s10895-010-0636-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Flow cytometry provides a rapid and high-content multiparameter analysis of individual microorganisms within a population. In the past years, several fluorescent stains were developed in order to monitor DNA content distribution and cell-cycle phases, mainly in eukaryotic cells. Recently, due to its low detection limits, several of these fluorescent stains were also applied to prokaryotic cells. In this study, the ability of a novel far-red fluorescent stain DRAQ5 in assessing intracellular DNA content distribution in Escherichia coli DH5alpha was evaluated. The results showed that a DRAQ5-labelled live E. coli suspension can be obtained by incubation of 1 x 10(6) cells/mL with 5 microM DRAQ5 in PBS buffer supplemented with EDTA (pH = 7.4) during 30 min at 37 degrees C. Flow cytometric analysis of fixed E. coli cells revealed that ethanol should be used in detriment of glutaraldehyde for DRAQ5 labelling. After the analysis of RNase and DNase digested samples, DRAQ5 was proven to be a specific DNA labelling stain. The present study demonstrates that the use of DRAQ5 as a DNA-labelling stain provides an easy assessment of intracellular DNA content and cell-cycle phases in gram-negative bacteria such as E. coli.
Collapse
Affiliation(s)
- Filomena Silva
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | | | | | | | | | | |
Collapse
|
17
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Cronin U, Wilkinson M. The potential of flow cytometry in the study of Bacillus cereus. J Appl Microbiol 2010; 108:1-16. [DOI: 10.1111/j.1365-2672.2009.04370.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
The growth, physiology and toxigenic potential of Bacillus cereus in cooked rice during storage temperature abuse. Food Control 2009. [DOI: 10.1016/j.foodcont.2008.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Cronin UP, Wilkinson MG. Physiological response of Bacillus cereus vegetative cells to simulated food processing treatments. J Food Prot 2008; 71:2168-76. [PMID: 19044257 DOI: 10.4315/0362-028x-71.11.2168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vegetative cells of the spore-former Bacillus cereus were exposed to a number of treatments commonly used in commercial food preparation or during equipment cleaning and decontamination. Treated suspensions were then analyzed for reductions (CFU per milliliter) by plate counting and changes in levels of ATP and ADP released from cells with a bioluminescence-based assay. With the use of flow cytometry (FCM), the physiological status of individual cells before and after exposure to treatments was determined by staining of control and treated cells with three pairs of physiological dyes (SYTO 9/propidium iodide, carboxyfluorescein diacetate/Hoechst 33342, and C12-resazurin/SYTOX Green). Good agreement was found between plate counting and FCM. In general, treatments giving rise to the highest count reductions also had the greatest effects on cell membrane permeability (measured with the use of propidium iodide or SYTOX Green), esterase activity (measured with carboxyfluorescein diacetate), or redox activity (C12-resazurin). FCM data demonstrated the extent of heterogeneity of vegetative cell responses to treatments in, for example, the treatment with 5% H2O2, which caused a 6-log reduction in which approximately 95% of the population was composed of membrane-damaged cells (as reflected by their permeability to SYTOX Green), whereas in treatment with 0.09% (wt/vol) potassium sorbate, which caused only a 1-log reduction, not more than 40% of cells were membrane damaged. The approaches described in this work can be applied to gain a greater understanding of bacterial responses to food control measures, generate more accurate inactivation models, or screen novel prospective food control measures.
Collapse
Affiliation(s)
- Ultan P Cronin
- Department of Life Sciences, University of Limerick, Castletroy, County Limerick, Ireland
| | | |
Collapse
|
21
|
Hoffman RA. Flow Cytometry: Instrumentation, Applications, Future Trends and Limitations. SPRINGER SERIES ON FLUORESCENCE 2008. [DOI: 10.1007/4243_2008_037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Graziano JJ, Liu W, Perera R, Geierstanger BH, Lesley SA, Schultz PG. Selecting folded proteins from a library of secondary structural elements. J Am Chem Soc 2007; 130:176-85. [PMID: 18067292 DOI: 10.1021/ja074405w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A protein evolution strategy is described by which double-stranded DNA fragments encoding defined Escherichia coli protein secondary structural elements (alpha-helices, beta-strands, and loops) are assembled semirandomly into sequences comprised of as many as 800 amino acid residues. A library of novel polypeptides generated from this system was inserted into an enhanced green fluorescent protein (EGFP) fusion vector. Library members were screened by fluorescence activated cell sorting (FACS) to identify those polypeptides that fold into soluble, stable structures in vivo that comprised a subset of shorter sequences ( approximately 60 to 100 residues) from the semirandom sequence library. Approximately 108 clones were screened by FACS, a set of 1149 high fluorescence colonies were characterized by dPCR, and four soluble clones with varying amounts of secondary structure were identified. One of these is highly homologous to a domain of aspartate racemase from a marine bacterium (Polaromonas sp.) but is not homologous to any E. coli protein sequence. Several other selected polypeptides have no global sequence homology to any known protein but show significant alpha-helical content, limited dispersion in 1D nuclear magnetic resonance spectra, pH sensitive ANS binding and reversible folding into soluble structures. These results demonstrate that this strategy can generate novel polypeptide sequences containing secondary structure.
Collapse
Affiliation(s)
- James J Graziano
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Gene regulation by two-component systems has traditionally been studied using assays that involve averages over large numbers of cells. Single-cell measurements of transcription offer a complementary approach that provides the distribution of gene expression among the population. This chapter focuses on methods for using fluorescence microscopy and fluorescent proteins to study gene expression in single cells.
Collapse
Affiliation(s)
- Tim Miyashiro
- Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
24
|
Fernandez-Prada CM, Zelazowska EB, Bhattacharjee AK, Nikolich MP, Hoover DL. Identification of smooth and rough forms in cultures of Brucella melitensis strains by flow cytometry. J Immunol Methods 2006; 315:162-70. [PMID: 16965789 DOI: 10.1016/j.jim.2006.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 07/25/2006] [Indexed: 11/17/2022]
Abstract
Brucella melitensis strains may occur as either smooth or rough variants depending on the expression of O-polysaccharides (OPS) as a component of the bacterial outer membrane lipopolysaccharide (LPS). The wboA gene, which codes for the enzyme glycosyl transferase, is essential for the assembly of O-chain in Brucella. Deletion of wboA in smooth virulent B. melitensis 16M results in a rough mutant designated WRR51. We developed a flow cytometric method to determine the proportion of B. melitensis cells displaying surface O-polysaccharide (OPS) in liquid culture. OPS was detected using polyclonal antibodies from rabbits immunized with smooth (S) or rough (R) Brucella LPS. First, we evaluated the binding of these antibodies to 16M (S), WRR51 (R) and complemented WRR51 expressing the wboA gene (S) as well as to their corresponding GFP-expressing derivative strains 16M/GFP, WRR51/GFP and WRR51/GFP+wboA. The rough mutants did not react with anti-S-LPS nor did the smooth strains react with anti-R-LPS. Second, using different ratios of 16M/GFP and WRR51/GFP, we were able to detect the presence of 1% rough bacteria spiked into a sample of smooth organisms. Third, we evaluated the purity of cultures of B. melitensis strains grown in a fermenter. These flow cytometric methods may be useful for quality control of process development for large-scale vaccine production.
Collapse
Affiliation(s)
- Carmen M Fernandez-Prada
- Department of Bacterial Diseases, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910, USA.
| | | | | | | | | |
Collapse
|
25
|
Almeida AJ, Martins M, Carmona JA, Cano LE, Restrepo A, Leão C, Rodrigues F. New insights into the cell cycle profile of Paracoccidioides brasiliensis. Fungal Genet Biol 2006; 43:401-9. [PMID: 16631397 DOI: 10.1016/j.fgb.2006.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 11/26/2022]
Abstract
The present work focuses on the analysis of cell cycle progression of Paracoccidioides brasiliensis yeast cells under different environmental conditions. We optimized a flow cytometric technique for cell cycle profile analysis based on high resolution measurements of nuclear DNA. Exponentially growing cells in poor-defined or rich-complex nutritional environments showed an increased percentage of daughter cells in accordance with the fungus' multiple budding and high growth rate. During the stationary growth-phase cell cycle progression in rich-complex medium was characterized by an accumulation of cells with higher DNA content or pseudohyphae-like structures, whereas in poor-defined medium arrested cells mainly displayed two DNA contents. Furthermore, the fungicide benomyl induced an arrest of the cell cycle with accumulation of cells presenting high and varying DNA contents, consistent with this fungus' unique pattern of cellular division. Altogether, our findings seem to indicate that P. brasiliensis may possess alternative control mechanisms during cell growth to manage multiple budding and its multinucleate nature.
Collapse
Affiliation(s)
- A J Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The development of a fully automated on-line monitoring and control system is very important in bioprocesses. One of the most important parameters in these processes is biomass. This review discusses different methods for biomass quantification. A general definition of biomass and biovolume are presented. Interesting concepts about active but not culturable cells considerations are included as well as concepts that must be taken into account when selecting biomass quantification technology. Chemical methods have had few applications in biomass measurement to date; however, bioluminescence can selectively enumerate viable cells. Photometric methods including fluorescence and scattered light measurements are presented. Reference methods including dry and wet weight, viable counts and direct counts are discussed, as well as the physical methods of flow cytometry, impedancimetric and dielectric techniques.
Collapse
Affiliation(s)
- R E Madrid
- Departamento de Bioingeniería, FACET/INSIBIO, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Tucuman, Argentina.
| | | |
Collapse
|
27
|
Hedhammar M, Stenvall M, Lönneborg R, Nord O, Sjölin O, Brismar H, Uhlén M, Ottosson J, Hober S. A novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein. J Biotechnol 2005; 119:133-46. [PMID: 15996784 DOI: 10.1016/j.jbiotec.2005.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/14/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
A high throughput method for screening of protein expression is described. By using a flow cytometer, levels of both soluble and precipitated protein can simultaneously be assessed in vivo. Protein fragments were fused to the N-terminus of enhanced GFP and the cell samples were analysed using a flow cytometer. Data concerning whole cell fluorescence and light scattering was collected. The whole cell fluorescence is probing intracellular concentrations of soluble fusion proteins. Concurrently, forward scattered light gives data about inclusion body formation, valuable information in process optimisation. To evaluate the method, the cells were disrupted, separated into soluble and non-soluble fractions and analysed by gel electrophoresis. A clear correlation between fluorescence and soluble target protein was shown. Interestingly, the distribution of the cells regarding forward scatter (standard deviation) correlates with the amount of inclusion bodies formed. Finally, the newly developed method was used to evaluate two different purification tags, His(6) and Z(basic), and their effect on the expression pattern.
Collapse
Affiliation(s)
- My Hedhammar
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Traditional culture and microscopy methods for evaluation of bioaerosols are slow, tedious, and rather imprecise. In this study, the application of flow cytometry that was combined with a fluorescent technique (FCM/FL) was evaluated as a technique to quickly and accurately determine and quantify the total concentration and viability of bioaerosols. The optimal conditions of five fluorescent dyes [acridine orange (AO), SYTO-13, propidium iodide (PI), YOPRO-1, and 5-cyano-2,3-ditolytetrazolium chloride (CTC)] used in FCM/FL were determined for laboratory samples of bacterial aerosols (Escherichia coli, and endospores of Bacillus subtilis) and fungal aerosols (Candida famata and Penicillium citrinum spores). Based on the measured cell concentration, fluorescence intensity, and staining efficiency as indicators for dye performance evaluation, SYTO-13 was found to be the most suitable fluorescent dye for determining the total concentration of the bioaerosols, as well as YOPRO-1 was the most suitable for determining viability. Moreover, the established optimal FCM/FL with dyes was validated for characterizing microorganism profiles from both air and water samples from the aeration tank of hospital wastewater treatment plant. In conclusion, the FCM/FL successfully assessed the total concentration and viability for bacterial and fungal microorganisms in environmental field samples.
Collapse
Affiliation(s)
- Pei-Shih Chen
- Graduate Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, 100, Taiwan, ROC
| | | |
Collapse
|
29
|
Lopez C, Pons MN, Morgenroth E. Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge. WATER RESEARCH 2005; 39:456-468. [PMID: 15644254 DOI: 10.1016/j.watres.2004.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 10/01/2004] [Accepted: 10/11/2004] [Indexed: 05/24/2023]
Abstract
Microscopic techniques ranging from epifluorescence microscopy to confocal laser scanning microscopy (CLSM) and two photon excitation laser scanning microscopy (TPE-LSM) combined with fluorescent stains can help to evaluate complex microbial aggregates such as activated sludge flocs. To determine the application limits of these microscopic techniques, activated sludge samples from three different sources were evaluated after staining with a fluorescent viability indicator (Baclight Bacterial Viability Kit, Molecular Probes). Image analysis routines were developed to quantify overall amounts of red and green stained cells, location of stained cells within the flocs, and the spatial organization in clusters and filaments. It was found that the selection of the appropriate microscopic technique depends strongly on the type of microbial aggregates being analyzed. For flocs with high cell density, the use of TPE-LSM is preferred, since it provides a clearer image of the internal structure of the aggregate. Epifluorescence microscopy did not allow to reliably quantify red stained cells in dense aggregates. CLSM did not adequately image the internal filamentous structure and the location of stained cells within dense flocs. However, for typical activated sludge flocs epifluorescence and CLSM proved adequate.
Collapse
Affiliation(s)
- C Lopez
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3219 Newmark Civil Engineering Laboratory, MC-250, 205 North Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
30
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
31
|
Hakkila K, Maksimow M, Rosengren A, Karp M, Virta M. Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins. J Microbiol Methods 2003; 54:75-9. [PMID: 12732423 DOI: 10.1016/s0167-7012(03)00008-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the possibility of monitoring promoter activity with flow cytometry by using green fluorescent protein (GFPmut2) and red fluorescent protein (drFP583) in a single bacterial cell. The drFP583 was used as an intrinsic marker of the bacterial cells, because it was expressed constantly in Escherichia coli MC1061 strain. The GFPmut2 expressed under the control of the Hg(2+) ion inducible mer promoter/operator, was used to study promoter activity. Over 75% of the cells were positive for red and green fluorescence in flow cytometric analysis. The average green fluorescence of the whole population increased from 6.7 to 1700 when the mercury concentration was increased from 0 to 1 x 10(-4) M, while the red fluorescence was unaffected by the mercury concentration. These results show that gfpmut2 and drFP583 could be expressed under different promoters in one bacterial cell and measured independently with a flow cytometer.
Collapse
Affiliation(s)
- Kaisa Hakkila
- Department of Biotechnology, University of Turku, Tykistökatu 6A, 6th floor, FIN-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
32
|
Nohynek L, Saski E, Haikara A, Raaska L. Detection of bacterial contamination in starch and resin-based papermaking chemicals using fluorescence techniques. J Ind Microbiol Biotechnol 2003; 30:239-44. [PMID: 12720090 DOI: 10.1007/s10295-003-0046-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Accepted: 02/26/2003] [Indexed: 10/23/2022]
Abstract
Rapid fluorescence techniques were evaluated for the detection of bacterial contaminants in papermaking chemicals including starch and the resin-based sizes and starch slurries used in the paper industry. Viable and non-viable bacterial cells were visualised by fluorescent probes and detected by epifluorescence microscopy and flow cytometry. The best discrimination ability was obtained with the fluorescent probes LIVE/DEAD and SYBR Green, based on the staining of cellular nucleic acid, and ChemChrome V3, which demonstrated cellular enzymatic activity. The process samples had to be diluted and filtered before fluorescence staining and analysis because they were viscous and contained solid particles. Fluorescence microscopic counts of bacteria in highly contaminated process samples were similar to plate counts, but flow cytometric enumeration of bacterial cells in process samples yielded 2- to 10-fold lower counts compared with plate counts, depending on the consistency of the sample. The detection limits in flow cytometric analysis and in epifluorescence microscopy were 10(3)-10(6) cells ml(-1) and 10(5)-10(6) cells ml(-1), respectively. Intrinsic bacterial contamination was detectable with fluorescence techniques and highly contaminated process samples could be analysed with fluorescence methods.
Collapse
Affiliation(s)
- Liisa Nohynek
- VTT Biotechnology, P.O. Box 1500, 02044 VTT, Finland.
| | | | | | | |
Collapse
|
33
|
Vida T, Wendland B. Flow cytometry/cell sorting for isolating membrane trafficking mutants in yeast. Methods Enzymol 2002; 351:623-31. [PMID: 12073372 DOI: 10.1016/s0076-6879(02)51872-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Vida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Day JP, Kell DB, Griffith GW. Differentiation of Phytophthora infestans sporangia from other airborne biological particles by flow cytometry. Appl Environ Microbiol 2002; 68:37-45. [PMID: 11772606 PMCID: PMC126536 DOI: 10.1128/aem.68.1.37-45.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of two different flow cytometers, the Microcyte (Optoflow) and the PAS-III (Partec), to differentiate sporangia of the late-blight pathogen Phytophthora infestans from other potential airborne particles was compared. With the PAS-III, light scatter and intrinsic fluorescence parameters could be used to differentiate sporangia from conidia of Alternaria or Botrytis spp., rust urediniospores, and pollen of grasses and plantain. Differentiation between P. infestans sporangia and powdery mildew conidia was not possible by these two methods but, when combined with analytical rules evolved by genetic programming methods, could be achieved after staining with the fluorescent brightener Calcofluor white M2R. The potential application of these techniques to the prediction of late-blight epiphytotics in the field is discussed.
Collapse
Affiliation(s)
- Jennifer P Day
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion, Wales SY23 3DA, United Kingdom
| | | | | |
Collapse
|
35
|
Attfield PV, Choi HY, Veal DA, Bell PJ. Heterogeneity of stress gene expression and stress resistance among individual cells of Saccharomyces cerevisiae. Mol Microbiol 2001; 40:1000-8. [PMID: 11401706 DOI: 10.1046/j.1365-2958.2001.02444.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Knowledge of gene expression and cellular responses in microorganisms is derived from analyses of populations consisting of millions of cells. Analytical techniques that provide data as population averages fail to inform of culture heterogeneity. Flow cytometry and fluorescence techniques were used to provide information on the heterogeneity of stress-responsive gene expression and stress tolerance in individual cells within populations. A sequence of DNA encoding the heat shock and stress response elements of the Saccharomyces cerevisiae HSP104 gene was used to express enhanced green fluorescent protein (EGFP). When integrated into the genome of yeast strain W303-1A, intrinsic expression of EGFP increased about twofold as cells progressed from growth on glucose to ethanol utilization in aerobic batch cultures. Staining of cells with orange/red fluorescent propidium iodide (PI), which only enters cells that have compromised membrane integrity, revealed that the population became more tolerant to 52 degrees C heat stress as it progressed from growth on glucose and through the ethanol utilization phase of aerobic batch culture. Exposure of cultures growing on glucose to a mild heat shock (shift from 25 degrees C to 37 degrees C) resulted in significantly increased expression of EGFP in the population. However, there was heterogeneity in the intensity of fluorescence of individual cells from heat-shocked cultures, indicating variability in the strength of stress response in the clonal population. Detailed analysis of the heterogeneity showed a clear positive trend between intensity of stress response and individual cell resistance, measured in terms of PI exclusion, to heat stress at 52 degrees C. Further experiments indicated that, although the mean gene expression by a population is influenced by the genetic background, the heterogeneity among individual cells in clonal populations is largely physiologically based.
Collapse
Affiliation(s)
- P V Attfield
- Centre for Fluorimetric Applications in Biotechnology, Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|