1
|
Khattri RB, Batra A, Matheny M, Hart C, Henley-Beasley SC, Hammers D, Zeng H, White Z, Ryan TE, Barton E, Pascal B, Walter GA. Magnetic resonance quantification of skeletal muscle lipid infiltration in a humanized mouse model of Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2023; 36:e4869. [PMID: 36331178 PMCID: PMC10308798 DOI: 10.1002/nbm.4869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Rodent models of Duchenne muscular dystrophy (DMD) often do not recapitulate the severity of muscle wasting and resultant fibro-fatty infiltration observed in DMD patients. Having recently documented severe muscle wasting and fatty deposition in two preclinical models of muscular dystrophy (Dysferlin-null and mdx mice) through apolipoprotein E (ApoE) gene deletion without and with cholesterol-, triglyceride-rich Western diet supplementation, we sought to determine whether magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) could be used to detect, characterize, and compare lipid deposition in mdx-ApoE knockout with mdx mice in a diet-dependent manner. MRI revealed that both mdx and mdx-ApoE mice exhibited elevated proton relaxation time constants (T2 ) in their lower hindlimbs irrespective of diet, indicating both chronic muscle damage and fatty tissue deposition. The mdx-ApoE mice on a Western diet (mdx-ApoEW ) presented with greatest fatty tissue infiltration in the posterior compartment of the hindlimb compared with other groups, as detected by MRI/MRS. High-resolution magic angle spinning confirmed elevated lipid deposition in the posterior compartments of mdx-ApoEW mice in vivo and ex vivo, respectively. In conclusion, the mdx-ApoEW model recapitulates some of the extreme fatty tissue deposition observed clinically in DMD muscle but typically absent in mdx mice. This preclinical model will help facilitate the development of new imaging modalities directly relevant to the image contrast generated in DMD, and help to refine MR-based biomarkers and their relationship to tissue structure and disease progression.
Collapse
Affiliation(s)
- Ram B. Khattri
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Abhinandan Batra
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Michael Matheny
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Cora Hart
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | | | - David Hammers
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, FL, USA
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Canada
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Center of Exercise Science, University of Florida, Gainesville, FL, United States
| | - Elisabeth Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Bernatchez Pascal
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Canada
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
3
|
Barboni MTS, Dias SL, Silva LA, Damico FM, Vidal KS, Costa MF, Nagy BV, Kremers J, Ventura DF. Correlations Between Dark-Adapted Rod Threshold Elevations and ERG Response Deficits in Duchenne Muscular Dystrophy. Invest Ophthalmol Vis Sci 2021; 62:29. [PMID: 33891680 PMCID: PMC8083068 DOI: 10.1167/iovs.62.4.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The purpose of this study was to characterize changes in the full-field flash electroretinogram (ERG) in association with psychophysical dark-adapted visual thresholds in patients with genetically characterized Duchenne muscular dystrophy (DMD) either lacking Dp427 (Up 30) or at least Dp260 in addition to Dp427 (Down 30). Methods Twenty-one patients with DMD and 27 age-similar controls participated in this study. Dark-adapted (0.01, 3.0, and 10 cd.s/m² flashes) and light-adapted (3.0 cd.s/m² flash) ERGs were recorded following International Society for Clinical Electrophysiology of Vision (ISCEV) standard protocols. Visual detection thresholds to 625-nm (cone function) and 527-nm (rod function) light-emitting diode (LED) flashes (2 degree diameter) were measured during a dark adaptation period after a 1-minute exposure to a bleaching light (3000 cd/m²). Initially, 8 minutes of interleaved 625-nm and 527-nm thresholds were measured. After an additional 5 minutes of dark-adaptation, a second set of threshold measurements to 527-nm stimuli was performed during the subsequent 6 minutes. Results Dark-adapted b-wave amplitude was significantly reduced to all strengths of flash and a-wave in response to the strong flash stimulus was delayed (15.6 vs. 14.7 ms, P < 0.05) in patients with Down 30 compared with controls. Dark-adapted cone thresholds did not differ among the groups (−2.0, −1.8, and −1.7 log cd/m² for Down 30, Up 30, and controls, respectively, P = 0.21). In contrast, dark-adapted rod thresholds were elevated (F(2,36) = 8.537, P = 0.001) in patients with Down 30 (mean = −3.2 ± 1.1 log cd/m²) relative to controls (mean = −4.2 ± 0.3 log cd/m²). Dark-adapted b-wave amplitudes were correlated with dark-adapted rod sensitivity in patients with DMD (Spearman Rho = 0.943, P = 0.005). The changes were much smaller or absent in patients with intact Dp260. Conclusions Dp260 is particularly required for normal rod-system function in dark adaptation.
Collapse
Affiliation(s)
- Mirella Telles Salgueiro Barboni
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary.,Department of Experimental Psychology, Institute of Psychology, University of Sao Paulo, Brazil
| | - Sarah Leonardo Dias
- Department of Experimental Psychology, Institute of Psychology, University of Sao Paulo, Brazil
| | | | - Francisco Max Damico
- Department of Experimental Psychology, Institute of Psychology, University of Sao Paulo, Brazil.,Department of Ophthalmology, Faculty of Medicine, University of Sao Paulo, Brazil
| | - Kallene Summer Vidal
- Department of Experimental Psychology, Institute of Psychology, University of Sao Paulo, Brazil
| | - Marcelo Fernandes Costa
- Department of Experimental Psychology, Institute of Psychology, University of Sao Paulo, Brazil
| | - Balázs Vince Nagy
- Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jan Kremers
- Section for Retinal Physiology, University Hospital Erlangen, Erlangen, Germany
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, University of Sao Paulo, Brazil
| |
Collapse
|
4
|
Altered visual processing in the mdx52 mouse model of Duchenne muscular dystrophy. Neurobiol Dis 2021; 152:105288. [PMID: 33556541 DOI: 10.1016/j.nbd.2021.105288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
The mdx52 mouse model of Duchenne muscular dystrophy (DMD) is lacking exon 52 of the DMD gene that is located in a hotspot mutation region causing cognitive deficits and retinal anomalies in DMD patients. This deletion leads to the loss of the dystrophin proteins, Dp427, Dp260 and Dp140, while Dp71 is preserved. The flash electroretinogram (ERG) in mdx52 mice was previously characterized by delayed dark-adapted b-waves. A detailed description of functional ERG changes and visual performances in mdx52 mice is, however, lacking. Here an extensive full-field ERG repertoire was applied in mdx52 mice and WT littermates to analyze retinal physiology in scotopic, mesopic and photopic conditions in response to flash, sawtooth and/or sinusoidal stimuli. Behavioral contrast sensitivity was assessed using quantitative optomotor response (OMR) to sinusoidally modulated luminance gratings at 100% or 50% contrast. The mdx52 mice exhibited reduced amplitudes and delayed implicit times in dark-adapted ERG flash responses, particularly in their b-wave and oscillatory potentials, and diminished amplitudes of light-adapted flash ERGs. ERG responses to sawtooth stimuli were also diminished and delayed for both mesopic and photopic conditions in mdx52 mice and the first harmonic amplitudes to photopic sine-wave stimuli were smaller at all temporal frequencies. OMR indices were comparable between genotypes at 100% contrast but significantly reduced in mdx52 mice at 50% contrast. The complex ERG alterations and disturbed contrast vision in mdx52 mice include features observed in DMD patients and suggest altered photoreceptor-to-bipolar cell transmission possibly affecting contrast sensitivity. The mdx52 mouse is a relevant model to appraise the roles of retinal dystrophins and for preclinical studies related to DMD.
Collapse
|
5
|
Zhang DW, Zhang S, Wu J. Expression profile analysis to predict potential biomarkers for glaucoma: BMP1, DMD and GEM. PeerJ 2020; 8:e9462. [PMID: 32953253 PMCID: PMC7474882 DOI: 10.7717/peerj.9462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Glaucoma is the second commonest cause of blindness. We assessed the gene expression profile of astrocytes in the optic nerve head to identify possible prognostic biomarkers for glaucoma. Method A total of 20 patient and nine normal control subject samples were derived from the GSE9944 (six normal samples and 13 patient samples) and GSE2378 (three normal samples and seven patient samples) datasets, screened by microarray-tested optic nerve head tissues, were obtained from the Gene Expression Omnibus (GEO) database. We used a weighted gene coexpression network analysis (WGCNA) to identify coexpressed gene modules. We also performed a functional enrichment analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Genes expression was represented by boxplots, functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all the key genes. Then the key genes were validated by the external dataset. Results A total 8,606 genes and 19 human optic nerve head samples taken from glaucoma patients in the GSE9944 were compared with normal control samples to construct the co-expression gene modules. After selecting the most common clinical traits of glaucoma, their association with gene expression was established, which sorted two modules showing greatest correlations. One with the correlation coefficient is 0.56 (P = 0.01) and the other with the correlation coefficient is −0.56 (P = 0.01). Hub genes of these modules were identified using scatterplots of gene significance versus module membership. A functional enrichment analysis showed that the former module was mainly enriched in genes involved in cellular inflammation and injury, whereas the latter was mainly enriched in genes involved in tissue homeostasis and physiological processes. This suggests that genes in the green–yellow module may play critical roles in the onset and development of glaucoma. A LASSO regression analysis identified three hub genes: Recombinant Bone Morphogenetic Protein 1 gene (BMP1), Duchenne muscular dystrophy gene (DMD) and mitogens induced GTP-binding protein gene (GEM). The expression levels of the three genes in the glaucoma group were significantly lower than those in the normal group. GSEA further illuminated that BMP1, DMD and GEM participated in the occurrence and development of some important metabolic progresses. Using the GSE2378 dataset, we confirmed the high validity of the model, with an area under the receiver operator characteristic curve of 85%. Conclusion We identified several key genes, including BMP1, DMD and GEM, that may be involved in the pathogenesis of glaucoma. Our results may help to determine the prognosis of glaucoma and/or to design gene- or molecule-targeted drugs.
Collapse
Affiliation(s)
- Dao Wei Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
6
|
Persiconi I, Cosmi F, Guadagno NA, Lupo G, De Stefano ME. Dystrophin Is Required for the Proper Timing in Retinal Histogenesis: A Thorough Investigation on the mdx Mouse Model of Duchenne Muscular Dystrophy. Front Neurosci 2020; 14:760. [PMID: 32982660 PMCID: PMC7487415 DOI: 10.3389/fnins.2020.00760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disease caused by defective expression of the cytoskeletal protein dystrophin (Dp427). Selected autonomic and central neurons, including retinal neurons, express Dp427 and/or dystrophin shorter isoforms. Because of this, DMD patients may also experience different forms of cognitive impairment, neurological and autonomic disorders, and specific visual defects. DMD-related damages to the nervous system are established during development, suggesting a role for all dystrophin isoforms in neural circuit development and differentiation; however, to date, their function in retinogenesis has never been investigated. In this large-scale study, we analyzed whether the lack of Dp427 affects late retinogenesis in the mdx mouse, the most well studied animal model of DMD. Retinal gene expression and layer maturation, as well as neural cell proliferation, apoptosis, and differentiation, were evaluated in E18 and/or P0, P5, P10, and adult mice. In mdx mice, expression of Capn3, Id3 (E18-P5), and Dtnb (P5) genes, encoding proteins involved in different aspects of retina development and synaptogenesis (e.g., Calpain 3, DNA-binding protein inhibitor-3, and β-dystrobrevin, respectively), was transiently reduced compared to age-matched wild type mice. Concomitantly, a difference in the time required for the retinal ganglion cell layer to reach appropriate thickness was observed (P0–P5). Immunolabeling for specific cell markers also evidenced a significant dysregulation in the number of GABAergic amacrine cells (P5–P10), a transient decrease in the area immunopositive for the Vesicular Glutamate Transporter 1 (VGluT1) during ribbon synapse maturation (P10) and a reduction in the number of calretinin+ retinal ganglion cells (RGCs) (adults). Finally, the number of proliferating retinal progenitor cells (P5–P10) and apoptotic cells (P10) was reduced. These results support the hypothesis of a role for Dp427 during late retinogenesis different from those proposed in consolidated neural circuits. In particular, Dp427 may be involved in shaping specific steps of retina differentiation. Notably, although most of the above described quantitative alterations recover over time, the number of calretinin+ RGCs is reduced only in the mature retina. This suggests that alterations subtler than the timing of retinal maturation may occur, a hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Irene Persiconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Francesca Cosmi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Research in Neurobiology "Daniel Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Catalani E, Bongiorni S, Taddei AR, Mezzetti M, Silvestri F, Coazzoli M, Zecchini S, Giovarelli M, Perrotta C, De Palma C, Clementi E, Ceci M, Prantera G, Cervia D. Defects of full-length dystrophin trigger retinal neuron damage and synapse alterations by disrupting functional autophagy. Cell Mol Life Sci 2020; 78:1615-1636. [PMID: 32749504 PMCID: PMC7904721 DOI: 10.1007/s00018-020-03598-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/10/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Dystrophin (dys) mutations predispose Duchenne muscular disease (DMD) patients to brain and retinal complications. Although different dys variants, including long dys products, are expressed in the retina, their function is largely unknown. We investigated the putative role of full-length dystrophin in the homeostasis of neuro-retina and its impact on synapsis stabilization and cell fate. Retinas of mdx mice, the most used DMD model which does not express the 427-KDa dys protein (Dp427), showed overlapped cell death and impaired autophagy. Apoptotic neurons in the outer plexiform/inner nuclear layer and the ganglion cell layer had an impaired autophagy with accumulated autophagosomes. The autophagy dysfunction localized at photoreceptor axonal terminals and bipolar, amacrine, and ganglion cells. The absence of Dp427 does not cause a severe phenotype but alters the neuronal architecture, compromising mainly the pre-synaptic photoreceptor terminals and their post-synaptic sites. The analysis of two dystrophic mutants of the fruit fly Drosophila melanogaster, the homozygous DysE17 and DysEP3397, lacking functional large-isoforms of dystrophin-like protein, revealed rhabdomere degeneration. Structural damages were evident in the internal network of retina/lamina where photoreceptors make the first synapse. Both accumulated autophagosomes and apoptotic features were detected and the visual system was functionally impaired. The reactivation of the autophagosome turnover by rapamycin prevented neuronal cell death and structural changes of mutant flies and, of interest, sustained autophagy ameliorated their response to light. Overall, these findings indicate that functional full-length dystrophin is required for synapsis stabilization and neuronal survival of the retina, allowing also proper autophagy as a prerequisite for physiological cell fate and visual properties.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy
| | - Marta Mezzetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy
| | - Federica Silvestri
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy
| | - Marco Coazzoli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157, Milano, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157, Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157, Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157, Milano, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Luigi Vanvitelli 32, 20129 , Milano, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157, Milano, Italy
- Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, via G.B. Grassi 74, 20157, Milano, Italy
- Scientific Institute IRCCS "Eugenio Medea", via Don Luigi Monza 20, 23842, Bosisio Parini (LC), Italy
| | - Marcello Ceci
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100, Viterbo, Italy.
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157, Milano, Italy.
| |
Collapse
|
8
|
Barboni MTS, Vaillend C, Joachimsthaler A, Liber AMP, Khabou H, Roux MJ, Vacca O, Vignaud L, Dalkara D, Guillonneau X, Ventura DF, Rendon A, Kremers J. Rescue of Defective Electroretinographic Responses in Dp71-Null Mice With AAV-Mediated Reexpression of Dp71. Invest Ophthalmol Vis Sci 2020; 61:11. [PMID: 32049345 PMCID: PMC7326481 DOI: 10.1167/iovs.61.2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To study the potential effect of a gene therapy, designed to rescue the expression of dystrophin Dp71 in the retinas of Dp71-null mice, on retinal physiology. Methods We recorded electroretinograms (ERGs) in Dp71-null and wild-type littermate mice. In dark-adapted eyes, responses to flashes of several strengths were measured. In addition, flash responses on a 25-candela/square meters background were measured. On- and Off-mediated responses to sawtooth stimuli and responses to photopic sine-wave modulation (3–30 Hz) were also recorded. After establishing the ERG phenotype, the ShH10-GFP adeno-associated virus (AAV), which has been previously shown to target specifically Müller glial cells (MGCs), was delivered intravitreously with or without (sham therapy) the Dp71 coding sequence under control of a CBA promoter. ERG recordings were repeated three months after treatment. Real-time quantitative PCR and Western blotting analyses were performed in order to quantify Dp71 expression in the retinas. Results Dp71-null mice displayed reduced b-waves in dark- and light-adapted flash ERGs and smaller response amplitudes to photopic rapid-on sawtooth modulation and to sine-wave stimuli. Three months after intravitreal injections of the ShH10-GFP-2A-Dp71 AAV vector, ERG responses were completely recovered in treated eyes of Dp71-null mice. The functional rescue was associated with an overexpression of Dp71 in treated retinas. Conclusions The present results show successful functional recovery accompanying the reexpression of Dp71. In addition, this experimental model sheds light on MGCs influencing ERG components, since previous reports showed that aquaporin 4 and Kir4.1 channels were mislocated in MGCs of Dp71-null mice, while their distribution could be normalized following intravitreal delivery of the same ShH10-GFP-2A-Dp71 vector.
Collapse
|
9
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Orlandi C, Omori Y, Wang Y, Cao Y, Ueno A, Roux MJ, Condomitti G, de Wit J, Kanagawa M, Furukawa T, Martemyanov KA. Transsynaptic Binding of Orphan Receptor GPR179 to Dystroglycan-Pikachurin Complex Is Essential for the Synaptic Organization of Photoreceptors. Cell Rep 2020; 25:130-145.e5. [PMID: 30282023 PMCID: PMC6203450 DOI: 10.1016/j.celrep.2018.08.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
Abstract
Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify uniquephysiological propertiesofindividual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft—members oftheheparansulfateproteoglycan (HSPG) family—associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the presynaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals. Orlandi et al. identify transsynaptic assembly at photoreceptor synapses involving pre-synaptic dystrophindystroglycan complex and the postsynaptic orphan receptor GPR179 bridged by HSPG protein Pikachurin in the cleft and demonstrate its role in shaping transmission of photoreceptor signals.
Collapse
Affiliation(s)
- Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7104, INSERM, U1258, Illkirch, France
| | - Giuseppe Condomitti
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
11
|
Bucher F, Friedlander MS, Aguilar E, Kurihara T, Krohne TU, Usui Y, Friedlander M. The long dystrophin gene product Dp427 modulates retinal function and vascular morphology in response to age and retinal ischemia. Neurochem Int 2019; 129:104489. [DOI: 10.1016/j.neuint.2019.104489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023]
|
12
|
Dumont NA, Rudnicki MA. Targeting muscle stem cell intrinsic defects to treat Duchenne muscular dystrophy. NPJ Regen Med 2016; 1. [PMID: 29188075 PMCID: PMC5703417 DOI: 10.1038/npjregenmed.2016.6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterised by skeletal muscle degeneration and progressive muscle wasting, which is caused by loss-of-function mutations in the DMD gene that encodes for the protein dystrophin. Dystrophin has critical roles in myofiber stability and integrity by connecting the actin cytoskeleton to the extracellular matrix. Absence of dystrophin leads to myofiber fragility and contributes to skeletal muscle degeneration in DMD patients, however, accumulating evidence also indicate that muscle stem cells (also known as satellite cells) are defective in dystrophic muscles, which leads to impaired muscle regeneration. Our recent work demonstrated that dystrophin is expressed in activated satellite cells, where it regulates the establishment of satellite cell polarity and asymmetric cell division. These findings indicate that dystrophin-deficient satellite cells have intrinsic dysfunctions that contribute to muscle wasting and progression of the disease. This discovery suggests that satellite cells could be targeted to treat DMD. Here we discuss how these new findings affect regenerative therapies for muscular dystrophies. Therapies targeting satellite cells hold great potential and could have long-term efficiency owing to the high self-renewal ability of these cells.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Chaussenot R, Edeline JM, Le Bec B, El Massioui N, Laroche S, Vaillend C. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes. Neurobiol Learn Mem 2015; 124:111-22. [PMID: 26190833 DOI: 10.1016/j.nlm.2015.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks.
Collapse
Affiliation(s)
- Rémi Chaussenot
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Jean-Marc Edeline
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Benoit Le Bec
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Nicole El Massioui
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Serge Laroche
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Cyrille Vaillend
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France.
| |
Collapse
|
14
|
Ocular and neurodevelopmental features of Duchenne muscular dystrophy: a signature of dystrophin function in the central nervous system. Eur J Hum Genet 2015; 24:562-8. [PMID: 26081639 DOI: 10.1038/ejhg.2015.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 01/16/2023] Open
Abstract
Multiple isoforms of dystrophin (Dp427, Dp260, Dp140, Dp71) are expressed differentially in the central nervous system (CNS) including the retinal layers. Disruption of these protein products is responsible for cognitive dysfunction, electroretinogram (ERG) abnormalities and behavioural disorders in Duchenne muscular dystrophy (DMD). We studied the ocular characteristics and neuropsychiatric profile of 16 DMD boys. The ISCEV standard, full-field flash ERGs were assessed. Intellectual ability and behavioural disturbances were measured. All genotypes were associated with mildly abnormal photopic ERG a:b-wave amplitude ratios. In addition, we identified the following genotype/phenotype correlations: boys with mutations upstream of exon 30 (ie, isolated Dp427 altered expression) showed normal scotopic a:b ratios, abnormal photopic oscillatory potential OP2 and normal scotopic OP2. Conversely, all boys with DMD mutations downstream of exon 30 showed profoundly 'negative' scotopic ERGs (a:b ratios >1). In these patients, the involvement of Dp260 isoform resulted in the absence of slow rod pathway signalling in15 Hz scotopic flicker ERGs. These boys had abnormal scotopic OP2 and normal photopic OP2. Finally, children with mutations also affecting Dp71 were associated with more pronounced electronegative ERGs. When correlating ERGs to neurodevelopmental outcome, we found a positive correlation between negative scotopic ERGs and neurodevelopmental disturbances, and the most severe findings were in boys with Dp71 disruption. These findings suggest a strong association between DMD mutations affecting different DMD isoforms with characteristically abnormal scotopic ERGs and severe neurodevelopmental problems. The role of the ERG as a potential biomarker for dystrophin function in the CNS and response to novel genetic therapies warrants further exploration.
Collapse
|
15
|
Cia D, Simonutti M, Fort PE, Doly M, Rendon A. Slight Alteration of the Electroretinogram in Mice Lacking Dystrophin Dp71. Ophthalmic Res 2014; 51:196-203. [DOI: 10.1159/000357272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022]
|
16
|
Abstract
The b-wave is a major component of the electroretinogram that reflects the activity of depolarizing bipolar cells (DBCs). The b-wave is used diagnostically to identify patients with defects in DBC signaling or in transmission from photoreceptors to DBCs. In mouse models, an abnormal b-wave has been used to demonstrate a critical role of a particular protein in the release of glutamate from photoreceptor terminals, in establishing the structure of the photoreceptor-to-DBC synapse, in DBC signal transduction, and also in DBC development, survival, or metabolic support. The purpose of this review is to summarize these models and how they have advanced our understanding of outer retinal function.
Collapse
|
17
|
Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J Biomed Biotechnol 2010; 2010:849426. [PMID: 20625423 PMCID: PMC2896903 DOI: 10.1155/2010/849426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/14/2010] [Indexed: 12/23/2022] Open
Abstract
Two decades of molecular, cellular, and functional studies considerably increased our understanding of dystrophins function and unveiled the complex etiology of the cognitive deficits in Duchenne muscular dystrophy (DMD), which involves altered expression of several dystrophin-gene products in brain. Dystrophins are normally part of critical cytoskeleton-associated membrane-bound molecular scaffolds involved in the clustering of receptors, ion channels, and signaling proteins that contribute to synapse physiology and blood-brain barrier function. The utrophin gene also drives brain expression of several paralogs proteins, which cellular expression and biological roles remain to be elucidated. Here we review the structural and functional properties of dystrophins and utrophins in brain, the consequences of dystrophins loss-of-function as revealed by numerous studies in mouse models of DMD, and we discuss future challenges and putative therapeutic strategies that may compensate for the cognitive impairment in DMD based on experimental manipulation of dystrophins and/or utrophins brain expression.
Collapse
|
18
|
Lei B, Zhang K, Yue Y, Ghosh A, Duan D. Adeno-associated virus serotype-9 mediated retinal outer plexiform layer transduction is mainly through the photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:671-8. [PMID: 20238072 DOI: 10.1007/978-1-4419-1399-9_77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Due to its high ocular transduction, low immune clearance and capability to bypass the brain blood barrier, adeno-associated virus-9 (AAV9) has been regarded as a promising vector for retinal disease gene therapy. We recently demonstrated that AAV9 efficiently transduces the retinal outer plexiform layer (OPL). The OPL consists of synapses formed between axons of the rod and cone photoreceptors (cell bodies in the outer nuclear layer, ONL) and dendrites of bipolar and horizontal cells (cell bodies in the inner nuclear layer, INL). It is not clear whether AAV9 transduces the OPL through the photoreceptors in the ONL or through bipolar and horizontal cells in the INL. To map the subcelluar pathway(s) involved in AAV9-mediated OPL transduction, we delivered subretinally AAV9.CMV.eGFP, an AAV vector carrying the enhanced green fluorescent protein gene (eGFP, 1 x 10(10) viral genome particles in microliter), to young (21-day-old) and adult (2- to 3-month-old) C57BL/6 mice. Four weeks after subretinal injection, eGFP expression was examined on retinal cryosections. PSD95 (postsynaptic density protein, a marker for photoreceptor terminals), CtBP2 (C-terminal binding protein 2, a marker for the photoreceptor synaptic ribbon), PKCalpha (protein kinase Calpha, a marker for rod bipolar cells), and calbindin (a marker for horizontal cells) were localized by immunofluorescence staining. In AAV9 infected retina, eGFP expression was seen in the retinal pigment epithelia, photoreceptor inner segments, ONL, OPL, Müller cells in the INL, inner plexiform layer and ganglion cell layer. Interestingly, eGFP expression co-localized with PSD95 and CtBP2, but not with PKCalpha and calbindin. Our results suggest that AAV9 transduces the photoreceptor side of the synapses in the OPL rather than the dendrites of bipolar and horizontal cells.
Collapse
Affiliation(s)
- Bo Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
19
|
Samardzija M, Neuhauss SCF, Joly S, Kurz-Levin M, Grimm C. Animal Models for Retinal Degeneration. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-541-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Dp71, utrophin and beta-dystroglycan expression and distribution in PC12/L6 cell cocultures. Neuroreport 2008; 18:1657-61. [PMID: 17921863 DOI: 10.1097/wnr.0b013e3282f0e42d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Function of dystrophin Dp71 isoforms is unknown but seems related to neurite outgrowth and synapse formation. To evaluate Dp71 role in myoneural synapses, we established a coculture model using PC12 cells and L6 myotubes and analyzed expression and localization of Dp71 and related proteins, utrophin and beta-dystroglycan, in PC12 cells. Confocal microscopy showed Dp71d isoform in PC12 nuclei, golgi-complex-like and endoplasmic reticulum-like structures, whereas Dp71ab concentrates at neurite tips and cytoplasm, colocalizing with beta-dystroglycan, utrophin, synaptophysin and acetylcholine receptors. Evidences suggest that Dp71ab isoform, unlike Dp71d, may take part in neurite-related processes. This is the first work on Dp and members of Dp-associated protein complex roles in a cell-line based coculturing system, which may be useful in determining Dp71 isoforms associations.
Collapse
|
21
|
Woodward WR, Choi D, Grose J, Malmin B, Hurst S, Pang J, Weleber RG, Pillers DAM. Isoflurane is an effective alternative to ketamine/xylazine/acepromazine as an anesthetic agent for the mouse electroretinogram. Doc Ophthalmol 2007; 115:187-201. [PMID: 17885776 DOI: 10.1007/s10633-007-9079-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
The electroretinogram (ERG) is an essential measure of retinal function for studying mouse models of retinal disease. Ketamine, in combination with xylazine and/or acepromazine, is the most commonly used anesthetic agent. Although it works well in most situations, some fragile mouse strains have high mortality rates with this ketamine cocktail. We compared isoflurane with the ketamine cocktail in a longitudinal study of light-adapted and dark-adapted ERGs in C57BL/6J mice. Waveforms were averaged, oscillatory potentials (OPs) were extracted by digital filtration, and key ERG parameters were analyzed. The ERG waveforms were qualitatively similar with both anesthetics, and the male and female ERG parameters did not show significant differences. For light-adapted ERGs, b-wave amplitude and implicit time, and wavelet index were decreased under isoflurane anesthesia, whereas for dark-adapted ERGs, a- and b-wave implicit times were decreased and wavelet index was increased. The dark-adapted b-wave amplitude showed a significant inverse correlation with animal weight and age. Rod phototransduction gain and the Naka-Rushton n and R (max) parameters were the same for both anesthetics, and only the Naka-Rushton log k parameter was significantly elevated for isoflurane anesthesia. We propose that isoflurane is a satisfactory alternative to the ketamine cocktail for anesthesia in the mouse ERG. Precise quantitative comparisons, however, should only employ study designs using isoflurane versus isoflurane, or ketamine versus ketamine. Moreover, in light of the effects of both isoflurane and the ketamine cocktail on blood glucose levels, it would be prudent to control the fasting state of the animals in quantitative ERG studies.
Collapse
Affiliation(s)
- William R Woodward
- Department of Neurology, Oregon Health & Science University, Portland, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Costa MF, Oliveira AGF, Feitosa-Santana C, Zatz M, Ventura DF. Red-green color vision impairment in Duchenne muscular dystrophy. Am J Hum Genet 2007; 80:1064-75. [PMID: 17503325 PMCID: PMC1867095 DOI: 10.1086/518127] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/15/2007] [Indexed: 11/03/2022] Open
Abstract
The present study evaluated the color vision of 44 patients with Duchenne muscular dystrophy (DMD) (mean age 14.8 years; SD 4.9) who were submitted to a battery of four different color tests: Cambridge Colour Test (CCT), Neitz Anomaloscope, Ishihara, and American Optical Hardy-Rand-Rittler (AO H-R-R). Patients were divided into two groups according to the region of deletion in the dystrophin gene: upstream of exon 30 (n=12) and downstream of exon 30 (n=32). The control group was composed of 70 age-matched healthy male subjects with no ophthalmological complaints. Of the patients with DMD, 47% (21/44) had a red-green color vision defect in the CCT, confirmed by the Neitz Anomaloscope with statistical agreement (P<.001). The Ishihara and the AO H-R-R had a lower capacity to detect color defects--5% and 7%, respectively, with no statistical similarity between the results of these two tests nor between CCT and Anomaloscope results (P>.05). Of the patients with deletion downstream of exon 30, 66% had a red-green color defect. No color defect was found in the patients with deletion upstream of exon 30. A negative correlation between the color thresholds and age was found for the controls and patients with DMD, suggesting a nonprogressive color defect. The percentage (66%) of patients with a red-green defect was significantly higher than the expected <10% for the normal male population (P<.001). In contrast, patients with DMD with deletion upstream of exon 30 had normal color vision. This color defect might be partially explained by a retina impairment related to dystrophin isoform Dp260.
Collapse
|
23
|
Zhang K, Yao G, Gao Y, Hofeldt KJ, Lei B. Frequency spectrum and amplitude analysis of dark- and light-adapted oscillatory potentials in albino mouse, rat and rabbit. Doc Ophthalmol 2007; 115:85-93. [PMID: 17541795 DOI: 10.1007/s10633-007-9061-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 04/26/2007] [Accepted: 04/28/2007] [Indexed: 11/29/2022]
Abstract
We studied frequency spectrum, implicit time and amplitude of oscillatory potentials (OPs) in albino mice, rats, and rabbits. Oscillatory potentials were extracted digitally from dark- and light-adapted electroretinograms (ERGs) recorded with a protocol commonly used in our laboratory. The frequency spectra of OPs were analyzed by using Fast Fourier Transform (FFT). Oscillatory potential amplitudes were calculated via numerically integrating the power spectrum. Oscillatory potential frequency spectra vary among species and are light-intensity dependent. In dark-adapted ERG, mouse and rat OPs have one major component with a frequency peak at approximately 100 Hz. Rabbits show multiple frequency peaks with a low frequency peak around 75 Hz. In all the three species, the implicit time of light-adapted OP is longer than that of the dark-adapted OPs. At a given intensity, mice have the highest OP responses. Our data suggest that the commonly used bandpass of 75 Hz (or even 100 Hz) to 300 Hz for OP extraction is insufficient in these animals. In order to acquire the complete OP responses from the ERG signals, it is necessary to determine the OP frequency spectrum. In this study, the lower end cutoff frequency was set at 40 Hz in mice, 65 Hz in rats and rabbits.
Collapse
Affiliation(s)
- Keqing Zhang
- Department of Veterinary and Surgery, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
A major role for Müller cells in the retina is to buffer changes in the extracellular K+ concentration ([K+]o) resulting from light-evoked neuronal activity. The primary K+ conductance in Müller cells is the inwardly rectifying K+ channel Kir4.1. Since this channel is constitutively active, K+ can enter or exit Müller cells depending on the state of the [K+]o. This process of [K+]o buffering by Müller cells ("K+ siphoning") is enhanced by the precise accumulation of these K+ channels at discrete subdomains of Müller cell membranes. Specifically, Kir4.1 is localized to the perivascular processes of Müller cells in animals with vascular retinas and to the endfeet of Müller cells in all species examined. The water channel aquaporin-4 (AQP4) also appears to be important for [K+]o buffering and is expressed in Müller cells in a very similar subcellular distribution pattern to that of Kir4.1. To gain a better understanding of how Müller cells selectively target K+ and water channels to discrete membrane subdomains, we addressed the question of whether Kir4.1 and AQP4 associate with the dystrophin-glycoprotein complex (DGC) in the mammalian retina. Immunoprecipitation (IP) experiments were utilized to show that Kir4.1 and AQP4 are associated with DGC proteins in rat retina. Furthermore, AQP4 was also shown to co-precipitate with Kir4.1, suggesting that both channels are tethered together by the DGC in Müller cells. This work further defines a subcellular localization mechanism in Müller cells that facilitates [K+]o buffering in the retina.
Collapse
Affiliation(s)
- Nathan C Connors
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
25
|
Zhu X, Wu K, Rife L, Cawley NX, Brown B, Adams T, Teofilo K, Lillo C, Williams DS, Loh YP, Craft CM. Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina. J Neurochem 2005; 95:1351-62. [PMID: 16219026 DOI: 10.1111/j.1471-4159.2005.03460.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.
Collapse
Affiliation(s)
- Xuemei Zhu
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, and Departmentsof Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bordais A, Bolaños-Jimenez F, Fort P, Varela C, Sahel JA, Picaud S, Rendon A. Molecular cloning and protein expression of Duchenne muscular dystrophy gene products in porcine retina. Neuromuscul Disord 2005; 15:476-87. [PMID: 15941659 DOI: 10.1016/j.nmd.2005.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/17/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Due to the difference between rodent and human retinal circuitry, we characterize a new animal model of retinal perturbation in neurotransmission in Duchenne Muscular Dystrophy (DMD) patients. We investigated the expression and localization of dystrophin proteins and dystrophin associated proteins in porcine retina by reverse transcription polymerase chain reaction, Western blot analysis and immunohistochemistry. Homologues of human DMD gene products and alternative spliced isoforms of Dp71 were identified. We observed that dystrophins were expressed in the outer plexiform layer, around blood vessels and at the inner limiting membrane as previously described in human and mouse retinae. Moreover, by double immunostaining we showed that beta-dystroglycan co-localizes with dystrophin in the outer plexiform layer whereas alpha1-syntrophin labeling differs from that for dystrophins. Using confocal laser microscopy we observed that dystrophins labeling co-localizes with pre- and post-synaptic cell markers in the outer plexiform layer. We suggest that porcine retina constitutes a good model to study the role of dystrophins in retinal neurotransmission and should be used to investigate the physiological roles of dystrophins in signal transduction.
Collapse
Affiliation(s)
- Agnès Bordais
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U592, Hôpital Saint-Antoine, Bâtiment Kourilsky, 184 rue du Faubourg Saint-Antoine, 75571 Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Noël G, Belda M, Guadagno E, Micoud J, Klöcker N, Moukhles H. Dystroglycan and Kir4.1 coclustering in retinal Müller glia is regulated by laminin-1 and requires the PDZ-ligand domain of Kir4.1. J Neurochem 2005; 94:691-702. [PMID: 16033419 DOI: 10.1111/j.1471-4159.2005.03191.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inwardly rectifying potassium (Kir) channels in Müller glia play a critical role in the spatial buffering of potassium ions that accumulate during retinal activity. To this end, Kir channels show a polarized subcellular distribution with the predominant channel subunit in Müller glia, Kir4.1, clustered in the endfeet of these cells at the inner limiting membrane. However, the molecular mechanisms underlying their distribution have yet to be identified. Here, we show that laminin, agrin and alpha-dystroglycan (DG) codistribute with Kir4.1 at the inner limiting membrane in the retina and that laminin-1 induces the clustering of alpha-DG, syntrophin and Kir4.1 in Müller cell cultures. In addition, we found that alpha-DG clusters were enriched for agrin and sought to investigate the role of agrin in their formation using recombinant C-agrins. Both C-agrin 4,8 and C-agrin 0,0 failed to induce alpha-DG clustering and neither of them potentiated the alpha-DG clustering induced by laminin-1. Finally, our data reveal that deletion of the PDZ-ligand domain of Kir4.1 prevents their laminin-induced clustering. These findings indicate that both laminin-1 and alpha-DG are involved in the distribution of Kir4.1 to specific Müller cell membrane domains and that this process occurs via a PDZ-domain-mediated interaction. Thus, in the basal lamina laminin is an essential regulator involved in clearing excess potassium released during neuronal activity, thereby contributing to the maintenance of normal synaptic transmission in the retina.
Collapse
Affiliation(s)
- Geoffrey Noël
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Green DG, Guo H, Pillers DAM. Normal photoresponses and altered b-wave responses to APB in the mdx(Cv3) mouse isolated retina ERG supports role for dystrophin in synaptic transmission. Vis Neurosci 2005; 21:739-47. [PMID: 15683561 PMCID: PMC1482463 DOI: 10.1017/s0952523804215085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Indexed: 11/07/2022]
Abstract
The mdx(Cv3) mouse is a model for Duchenne muscular dystrophy (DMD). DMD is an X-linked disorder with defective expression of the protein dystrophin, and which is associated with a reduced b-wave and has other electro- retinogram (ERG) abnormalities. To assess potential causes for the abnormalities, we recorded ERGs from pieces of isolated C57BL/6J and mdx(Cv3) mouse retinas, including measurements of transretinal and intraretinal potentials. The ERGs from the isolated mdx(Cv3) retina differ from those of control retinas in that they show reduced b-wave amplitudes and increased b-wave implicit times. Photovoltages obtained by recording across the photoreceptor outer segments of the retinas did not differ from normal, suggesting that the likely causes of the reduced b-wave are localized to the photoreceptor to ON-bipolar synapse. At a concentration of 50 microM, the glutamate analog dl-2-amino-4-phosphonobutyric acid (APB) blocks the b-wave component of the ERG, by binding to sites on the postsynaptic membrane. The On-bipolar cell contribution to the ERG was inferred by extracting the component that was blocked by APB. We found that this component was smaller in amplitude and had longer response latencies in the mdx(Cv3) mice, but was of similar overall time course. To assess the sensitivity of sites on the postsynaptic membrane to glutamate, the concentration of APB in the media was systematically varied, and the magnitude of blockage of the light response was quantified. We found that the mdx(Cv3) retina was 5-fold more sensitive to APB than control retinas. The ability of lower concentrations of APB to block the b-wave in mdx(Cv3) suggests that the ERG abnormalities may reflect alterations in either glutamate release, the glutamate postsynaptic binding sites, or in other proteins that modulate glutamate function in ON-bipolar cells.
Collapse
Affiliation(s)
- Daniel G Green
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Carretta D, Santarelli M, Sbriccoli A, Pinto F, Catini C, Minciacchi D. Spatial analysis reveals alterations of parvalbumin- and calbindin-positive local circuit neurons in the cerebral cortex of mutant mdx mice. Brain Res 2004; 1016:1-11. [PMID: 15234246 DOI: 10.1016/j.brainres.2004.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2004] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to investigate the spatial organization of selected populations of local circuit neurons in the cerebral cortex of the mutant mdx mouse, an acknowledged model of Duchenne Muscular Dystrophy. To this purpose, we quantified and compared the distribution of parvalbumin- and calbindin-positive neurons in the motor, somatosensory, visual, and anterior cingulate cortices of wild-type and mdx mice. The methodological approach was based on generation of two-dimensional Voronoi polygons from digital charts of the cell populations visualized immunohistochemically. Polygon areas were then analyzed and the derived coefficients of variation were statistically compared. Using this strategy, we were able to reveal, in mdx mice, changes involving both the above populations of interneurons. These changes were evident in the motor and anterior cingulate cortices but not in the somatosensory and visual cortices. In addition, the changes of coefficients of variation were area-specific in the cortex of mdx mice. The values increased in the motor cortex and decreased in the anterior cingulate cortex with respect to the corresponding values of wild-type animals. The present findings point out widespread alterations in the mdx cortex involving also areas not primarily related to sensorimotor integration. In addition, we demonstrate that cortical alterations of the local circuit machinery are characterized in mdx mice by individual regional differences.
Collapse
|
31
|
Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003; 2:731-40. [PMID: 14636778 DOI: 10.1016/s1474-4422(03)00585-4] [Citation(s) in RCA: 728] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large and complex gene on the X chromosome encodes dystrophin. Many mutations have been described in this gene, most of which affect the expression of the muscle isoform, the best-known protein product of this locus. These mutations result in the Duchenne and Becker muscular dystrophies (DMD and BMD). However, there are several other tissue specific isoforms of dystrophin, some exclusively or predominantly expressed in the brain or the retina. Mutations affecting the correct expression of these tissue-specific isoforms have been associated with the CNS involvement common in DMD. Rare mutations also account for the allelic disorder X-linked dilated cardiomyopathy, in which dystrophin expression or function is affected mostly or exclusively in the heart. Genotype definition of the dystrophin gene in patients with dystrophinopathies has taught us much about functionally important domains of the protein itself and has provided insights into several regulatory mechanisms governing the gene expression profile. Here, we focus on current understanding of the genotype-phenotype relation for mutations in the dystrophin gene and their implications for gene functions.
Collapse
Affiliation(s)
- Francesco Muntoni
- Department of Paediatrics, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | | | | |
Collapse
|
32
|
Abstract
The mouse has become a key animal model for ocular research. This situation reflects the fact that genes implicated in human retinal disorders or in mammalian retinal function may be readily manipulated in the mouse. Visual electrophysiology provides a means to examine retinal function in mutant mice, and stimulation and recording protocols have been developed that allow the activity of many classes of retinal neurons to be examined and which take into account unique features of the mouse retina. Here, we review the mouse visual electrophysiology literature, covering techniques used to record the mouse electroretinogram and visual evoked potential, and how these have been applied to characterize the functional implications of gene mutation or manipulation in the mouse retina.
Collapse
Affiliation(s)
- Neal S Peachey
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
33
|
Cisternas FA, Vincent JB, Scherer SW, Ray PN. Cloning and characterization of human CADPS and CADPS2, new members of the Ca2+-dependent activator for secretion protein family. Genomics 2003; 81:279-91. [PMID: 12659812 DOI: 10.1016/s0888-7543(02)00040-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent identification of some of the components involved in regulated and constitutive exocytotic pathways has yielded important insights into the mechanisms of membrane trafficking and vesicle secretion. To understand precisely the molecular events taking place during vesicle exocytosis, we must identify all of the proteins implicated in these pathways. In this paper we describe the full-length cloning and characterization of human CADPS and CADPS2, two new homologs of the mouse Cadps protein involved in large dense-core vesicle (LDCV)-regulated exocytosis. We show that these two genes have disparate RNA expression patterns, with CADPS restricted to neural and endocrine tissues and CADPS2 expressed ubiquitously. We also identify a C2 domain, a known protein motif involved in calcium and phospholipid interactions, in both CADPS and CADPS2. We propose that CADPS functions as a calcium sensor in regulated exocytosis, whereas CADPS2 acts as a calcium sensor in constitutive vesicle trafficking and secretion. CADPS and CADPS2 were determined to span 475 kb and 561 kb on human chromosomes 3p21.1 and 7q31.3, respectively. The q31-q34 of human chromosome 7 has recently been identified to contain a putative susceptibility locus for autism (AUTS1). The function, expression profile, and location of CADPS2 make it a candidate gene for autism, and thus we conducted mutation screening for all 28 exons in 90 unrelated autistic individuals. We identified several nucleotide substitutions, including only one that would affect the amino acid sequence. No disease-specific variants were identified.
Collapse
Affiliation(s)
- Felipe A Cisternas
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Beltran WA, Chahory S, Gnirs K, Escriou C, Blot S, Clerc B. The electroretinographic phenotype of dogs with Golden Retriever muscular dystrophy. Vet Ophthalmol 2001; 4:277-82. [PMID: 11906664 DOI: 10.1046/j.1463-5216.2001.00200.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the flash electroretinogram (ERG) in the Golden Retriever muscular dystrophy (GRMD) dog and to compare the results with those from a control group of Golden Retrievers. To investigate whether similar abnormalities of the ERG as those found in a majority of human patients with Duchenne muscular dystrophy (DMD) are also observed in the GRMD dog, the canine model for DMD. Animals Five GRMD dogs and five age-matched clinically normal Golden Retrievers. PROCEDURE An ophthalmic examination was carried out prior to performing electroretinography under general anesthesia. Rod, combined rod-cone and oscillatory potentials responses were recorded after dark adaptation. Responses to 30-Hz-flicker were recorded after light adaptation. The ERG responses of the GRMD dogs were compared with those of the control dogs by use of a Wilcoxon signed rank test. RESULTS GRMD dogs had significantly reduced a and b-wave amplitudes after dim white flash stimuli (rod response) and reduced a-wave amplitude after bright white flash stimuli (rod-cone response). CONCLUSION AND CLINICAL RELEVANCE The ERG abnormalities observed in the GRMD dog suggest a dysfunction in the rod signaling pathway. These ERG alterations are different from those observed in human patients with DMD.
Collapse
Affiliation(s)
- W A Beltran
- Ophthalmology and Neurology unit, Department of Small Animal and Equine Medicine, National Veterinary College of Alfort, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | | | | | | | | | | |
Collapse
|
35
|
Dalloz C, Claudepierre T, Rodius F, Mornet D, Sahel J, Rendon A. Differential Distribution of the Members of the Dystrophin Glycoprotein Complex in Mouse Retina: Effect of the mdx3Cv Mutation. Mol Cell Neurosci 2001; 17:908-20. [PMID: 11358487 DOI: 10.1006/mcne.2001.0978] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dystrophin glycoprotein complex (DGC) assembly and function require mediation by dystrophin in skeletal muscle. The existence of such complexes and the correlation with DMD phenotypes are not yet established in the central nervous system. Here we have studied the expression of DMD gene mRNAs and proteins in retina from C57BL/6 and mdx(3Cv) mouse strains. Then we have comparatively investigated the localization of dystrophin and dystrophin-associated proteins (DAPs) in both strains to analyze the repercussion of the mdx(3Cv) mutation on the retinal distributions of alpha/beta-dystroglycan, alpha1-syntrophin, alpha-dystrobrevin, and delta/gamma-sarcoglycan. Results showed that DMD gene product deficiency affects the expression of dystroglycan assembly exclusively at the outer plexiform layer without an apparent effect on the other DAPs. We conclude that the localization of members of the DGC could be independent of the presence of the DMD gene products and/or utrophin.
Collapse
MESH Headings
- Animals
- Calcium-Binding Proteins
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Dystroglycans
- Dystrophin/genetics
- Dystrophin/metabolism
- Dystrophin-Associated Proteins
- Gene Expression/physiology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL/embryology
- Mice, Inbred C57BL/genetics
- Mice, Inbred C57BL/metabolism
- Mice, Inbred mdx/abnormalities
- Mice, Inbred mdx/genetics
- Mice, Inbred mdx/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Mutation/genetics
- RNA, Messenger/metabolism
- Retina/abnormalities
- Retina/metabolism
- Retina/physiopathology
- Retinal Diseases/genetics
- Retinal Diseases/metabolism
- Retinal Diseases/physiopathology
- Sarcoglycans
Collapse
Affiliation(s)
- C Dalloz
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Médicale A, INSERM EMI 99-18, CHRU, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Libby RT, Brunken WJ, Hunter DD. Roles of the extracellular matrix in retinal development and maintenance. Results Probl Cell Differ 2001; 31:115-40. [PMID: 10929404 DOI: 10.1007/978-3-540-46826-4_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- R T Libby
- MRC Institute of Hearing Research, Nottingham, UK
| | | | | |
Collapse
|
37
|
Mehler MF. Brain dystrophin, neurogenetics and mental retardation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:277-307. [PMID: 10751678 DOI: 10.1016/s0165-0173(99)00090-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and the allelic disorder Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders that are associated with a spectrum of genetically based developmental cognitive and behavioral disabilities. Seven promoters scattered throughout the huge DMD/BMD gene locus normally code for distinct isoforms of the gene product, dystrophin, that exhibit nervous system developmental, regional and cell-type specificity. Dystrophin is a complex plasmalemmal-cytoskeletal linker protein that possesses multiple functional domains, autosomal and X-linked homologs and associated binding proteins that form multiunit signaling complexes whose composition is unique to each cellular and developmental context. Through additional interactions with a variety of proteins of the extracellular matrix, plasma membrane, cytoskeleton and distinct intracellular compartments, brain dystrophin acquires the capability to participate in the modulatory actions of a large number of cellular signaling pathways. During neural development, dystrophin is expressed within the neural tube and selected areas of the embryonic and postnatal neuraxis, and may regulate distinct aspects of neurogenesis, neuronal migration and cellular differentiation. By contrast, in the mature brain, dystrophin is preferentially expressed by specific regional neuronal subpopulations within proximal somadendritic microdomains associated with synaptic terminal membranes. Increasing experimental evidence suggests that in adult life, dystrophin normally modulates synaptic terminal integrity, distinct forms of synaptic plasticity and regional cellular signal integration. At a systems level, dystrophin may regulate essential components of an integrated sensorimotor attentional network. Dystrophin deficiency in DMD/BMD patients and in the mdx mouse model appears to impair intracellular calcium homeostasis and to disrupt multiple protein-protein interactions that normally promote information transfer and signal integration from the extracellular environment to the nucleus within regulated microdomains. In DMD/BMD, the individual profiles of cognitive and behavioral deficits, mental retardation and other phenotypic variations appear to depend on complex profiles of transcriptional regulation associated with individual dystrophin mutations that result in the corresponding presence or absence of individual brain dystrophin isoforms that normally exhibit developmental, regional and cell-type-specific expression and functional regulation. This composite experimental model will allow fine-level mapping of cognitive-neurogenetic associations that encompass the interrelationships between molecular, cellular and systems levels of signal integration, and will further our understanding of complex gene-environmental interactions and the pathogenetic basis of developmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- M F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, the Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
38
|
Affiliation(s)
- D A Pillers
- Departments of Pediatrics and Molecular and Medical Genetics, Oregon Health Sciences University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon, 97201-3042, USA
| |
Collapse
|
39
|
Pillers DA, Duncan NM, Dwinnell SJ, Rash SM, Kempton JB, Trune DR. Normal cochlear function in mdx and mdx(Cv3) Duchenne muscular dystrophy mouse models. Laryngoscope 1999; 109:1310-2. [PMID: 10443839 DOI: 10.1097/00005537-199908000-00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS Sensorineural hearing loss has been found in association with inherited muscular dystrophies in humans and in mouse models. An increased brainstem auditory evoked response threshold has been previously reported in the dystrophin-deficient mdx mouse model for Duchenne muscular dystrophy, suggesting that full-length dystrophin (Dp427) is involved in hearing. The objective of the present study was to confirm cochlear dysfunction with this gene defect and determine whether the shorter carboxyl terminus isoforms of dystrophin are also critical in maintaining normal hearing. STUDY DESIGN Case controlled. Animal model. METHODS Auditory brainstem response (ABR) audiometry to pure tones was used to evaluate cochlear function. Fourteen mdx, 4 mdx(Cv3), and 13 age-matched control (C57BL/6J and C57BL/10ScSn) male mice were tested at 5 weeks and 11 weeks of age. The ABR thresholds to tone-burst stimuli at 4, 8, 16, and 32 kHz were obtained for each ear and statistically compared (ANOVA) for potential group differences. RESULTS Both mdx and mdx(Cv3) mice demonstrated normal ABR thresholds when compared with controls. CONCLUSIONS Both mdx and mdx(Cv3) mouse models have normal hearing by ABR. The authors' data suggest that dystrophin and its carboxyl terminus isoforms do not play a critical role in hearing in the mouse. This was unexpected, as previous studies using the brainstem auditory evoked response method suggested that the mdx mouse has an increased threshold for hearing.
Collapse
Affiliation(s)
- D A Pillers
- Department of Pediatrics, Oregon Child Health Research Center, Doernbecher Children's Hospital, Oregon Health Sciences University, Portland 97201-3042, USA.
| | | | | | | | | | | |
Collapse
|