1
|
Holubova V, Barone R, Grunewald S, Tesařová M, Hansíková H, Augustínová J, Sykut-Cegielska J, De Nictolis F, Diaz-Moreno U, Elangovan R, Epifani F, Gasperini S, Jansen M, Lefeber D, Maksym-Gasiorek D, Diego M, Ounap K, Pettinato F, Põder H, Rymen D, Vals MA, Serrano M, Witters P, Honzík T. Clinical severity and cardiac phenotype in phosphomannomutase 2-congenital disorders of glycosylation : Insights into genetics and management recommendations. J Inherit Metab Dis 2025; 48:e12826. [PMID: 39633515 DOI: 10.1002/jimd.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Cardiac involvement (CI) in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG) is part of the multisystemic presentation contributing to high mortality rates. The most common cardiac manifestations are pericardial effusion, cardiomyopathy, and structural heart defects. A genotype-phenotype correlation with organ involvement has not yet been described. We analyzed clinical, biochemical, and molecular genetic data of 222 patients from eight European centers and characterized the natural course of patients with CI. Fifty-seven patients (45 children) presented with CI, of whom 24 died (median age 21 months, standard deviation 49.8). Pericardial effusion was the most frequent manifestation (55.4%), occurring mostly within the first 6 months of life. The most common pathogenic variants in patients with CI were p.(Arg141His) in 74%, followed by p.(Val231Met) in 36%, which is 3.5 times higher than in PMM2-CDG patients without CI (p < 0.0001). Twenty-one out of 36 patients with p.(Val231Met) had CI; among them, 15 died, compared to 33 out of 166 patients without p.(Val231Met) who had CI (p < 0.0001). Nine out of 33 patients died (p = 0.0015), indicating greater clinical severity. Furthermore, the p.(Val231Met) variant is predominant in Eastern Europe, suggesting a founder effect. Cardiac complications in PMM2-CDG patients are common and serious. The variant p.(Val231Met) profoundly influences the extent of CI and mortality rates. Therefore, we recommend cardiac surveillance be included in the follow-up protocols for PMM2-CDG.
Collapse
Affiliation(s)
- Veronika Holubova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Rita Barone
- Child Neuropsychiatry-Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Stephanie Grunewald
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, NHS Trust, London, UK
| | - Markéta Tesařová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansíková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Augustínová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Unai Diaz-Moreno
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ramyia Elangovan
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, NHS Trust, London, UK
| | - Florencia Epifani
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Serena Gasperini
- Department of Pediatrics, Milano-Bicocca University, San Gerardo Hospital, Monza, Italy
| | - Mirian Jansen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk Lefeber
- Department of Human Genetics and Neurology, Translational Metabolic Laboratory, Donders Center for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Martinelli Diego
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Katrin Ounap
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Fabio Pettinato
- Child Neuropsychiatry-Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Haide Põder
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Daisy Rymen
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Mari-Anne Vals
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Hall PL, Liedke K, Turgeon C, White A, Pino GB, Peck D, Studinski A, Gavrilov D, Tortorelli S, Oglesbee D, Matern D, Raymond K, Schultz MJ. Sensitivity of transferrin isoform analysis for PMM2-CDG. Mol Genet Metab 2024; 143:108564. [PMID: 39216211 DOI: 10.1016/j.ymgme.2024.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Transferrin isoform analysis is an established laboratory test for congenital disorders of glycosylation (CDG). Despite its long history of clinical use, little has been published about its empirical sensitivity for specific conditions. We conducted a retrospective analysis of ten years of testing data and report our experience with transferrin testing for type I profiles and its sensitivity for the most common congenital disorder of glycosylation, PMM2-CDG. The data demonstrate 94% overall test sensitivity for PMM2-CDG and importantly demonstrate two known, recurrent variants enriched in false positive cases highlighting an important limitation of the test. The data confirm the clinical validity of transferrin isotype analysis as a screening test for disorders of protein N-linked glycosylation and as functional test for PMM2 genotypes of uncertain significance.
Collapse
Affiliation(s)
- Patrica L Hall
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Kris Liedke
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Coleman Turgeon
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Amy White
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Gesele Bentz Pino
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Dawn Peck
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - April Studinski
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Dimitar Gavrilov
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Silvia Tortorelli
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America
| | - Matthew J Schultz
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, 200 2(nd) Street SW, Rochester, MN 55905, United States of America.
| |
Collapse
|
3
|
Muthusamy K, Perez-Ortiz JM, Ligezka AN, Altassan R, Johnsen C, Schultz MJ, Patterson MC, Morava E. Neurological manifestations in PMM2-congenital disorders of glycosylation (PMM2-CDG): Insights into clinico-radiological characteristics, recommendations for follow-up, and future directions. Genet Med 2024; 26:101027. [PMID: 37955240 DOI: 10.1016/j.gim.2023.101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
PURPOSE In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.
Collapse
Affiliation(s)
| | - Judit M Perez-Ortiz
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Neurology, Mayo Clinic, Rochester, MN
| | - Anna N Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Ruqaiah Altassan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Christin Johnsen
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN; Department of Pediatrics and Adolescent Medicine, University Medical Centre, Göttingen, Germany
| | | | - Marc C Patterson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Neurology, Mayo Clinic, Rochester, MN; Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN; Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Medical Genetics, University Medical School, Pecs, Hungary
| |
Collapse
|
4
|
Oddsson A, Sulem P, Sveinbjornsson G, Arnadottir GA, Steinthorsdottir V, Halldorsson GH, Atlason BA, Oskarsson GR, Helgason H, Nielsen HS, Westergaard D, Karjalainen JM, Katrinardottir H, Fridriksdottir R, Jensson BO, Tragante V, Ferkingstad E, Jonsson H, Gudjonsson SA, Beyter D, Moore KHS, Thordardottir HB, Kristmundsdottir S, Stefansson OA, Rantapää-Dahlqvist S, Sonderby IE, Didriksen M, Stridh P, Haavik J, Tryggvadottir L, Frei O, Walters GB, Kockum I, Hjalgrim H, Olafsdottir TA, Selbaek G, Nyegaard M, Erikstrup C, Brodersen T, Saevarsdottir S, Olsson T, Nielsen KR, Haraldsson A, Bruun MT, Hansen TF, Steingrimsdottir T, Jacobsen RL, Lie RT, Djurovic S, Alfredsson L, Lopez de Lapuente Portilla A, Brunak S, Melsted P, Halldorsson BV, Saemundsdottir J, Magnusson OT, Padyukov L, Banasik K, Rafnar T, Askling J, Klareskog L, Pedersen OB, Masson G, Havdahl A, Nilsson B, Andreassen OA, Daly M, Ostrowski SR, Jonsdottir I, Stefansson H, Holm H, Helgason A, Thorsteinsdottir U, Stefansson K, Gudbjartsson DF. Deficit of homozygosity among 1.52 million individuals and genetic causes of recessive lethality. Nat Commun 2023; 14:3453. [PMID: 37301908 PMCID: PMC10257723 DOI: 10.1038/s41467-023-38951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Genotypes causing pregnancy loss and perinatal mortality are depleted among living individuals and are therefore difficult to find. To explore genetic causes of recessive lethality, we searched for sequence variants with deficit of homozygosity among 1.52 million individuals from six European populations. In this study, we identified 25 genes harboring protein-altering sequence variants with a strong deficit of homozygosity (10% or less of predicted homozygotes). Sequence variants in 12 of the genes cause Mendelian disease under a recessive mode of inheritance, two under a dominant mode, but variants in the remaining 11 have not been reported to cause disease. Sequence variants with a strong deficit of homozygosity are over-represented among genes essential for growth of human cell lines and genes orthologous to mouse genes known to affect viability. The function of these genes gives insight into the genetics of intrauterine lethality. We also identified 1077 genes with homozygous predicted loss-of-function genotypes not previously described, bringing the total set of genes completely knocked out in humans to 4785.
Collapse
Affiliation(s)
| | | | | | - Gudny A Arnadottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Henriette Svarre Nielsen
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David Westergaard
- Deptartment of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Juha M Karjalainen
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Kristjan H S Moore
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Helga B Thordardottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pernilla Stridh
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Laufey Tryggvadottir
- Icelandic Cancer Registry, Icelandic Cancer Society, Reykjavik, Iceland
- Faculty of Medicine, BMC, Laeknagardur, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Oleksandr Frei
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Geir Selbaek
- Norwegian National Centre of Ageing and Health, Vestfold Hospital Trust, Tonsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mette Nyegaard
- Deptartment of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thorsten Brodersen
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center of Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Asgeir Haraldsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Soren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | - Leonid Padyukov
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Johan Askling
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koge, Denmark
| | | | - Alexandra Havdahl
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Bjorn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund, Sweden
| | - Ole A Andreassen
- NORMENT Centre, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark Daly
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Deptartment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Agnar Helgason
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
5
|
Genotype-Phenotype Correlations in PMM2-CDG. Genes (Basel) 2021; 12:genes12111658. [PMID: 34828263 PMCID: PMC8620515 DOI: 10.3390/genes12111658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023] Open
Abstract
PMM2-CDG is a rare disease, causing hypoglycosylation of multiple proteins, hence preventing full functionality. So far, no direct genotype–phenotype correlations have been identified. We carried out a retrospective cohort study on 26 PMM2-CDG patients. We collected the identified genotype, as well as continuous variables indicating the disease severity (based on Nijmegen Pediatric CDG Rating Score or NPCRS) and dichotomous variables reflecting the patients’ phenotype. The phenotypic effects of patients’ genotype were studied using non-parametric and Chi-Square tests. Seventeen different pathogenic variants have been studied. Variants with zero enzyme activity had no significant impact on the Nijmegen score. Pathogenic variants involving the stabilization/folding domain have a significantly lower total NPCRS (p = 0.017): presence of the p.Cys241Ser mutation had a significantly lower subscore 1,3 and NPCRS (p = 0.04) and thus result in a less severe phenotype. On the other hand, variants involving the dimerization domain, p.Pro113Leu and p.Phe119Leu, resulted in a significantly higher NPCRS score (p = 0.002), which indicates a worse clinical course. These concepts give a better insight in the phenotypic prognosis of PMM2-CDG, according to their molecular base.
Collapse
|
6
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Pituitary stalk interruption syndrome is characterized by genetic heterogeneity. PLoS One 2020; 15:e0242358. [PMID: 33270637 PMCID: PMC7714207 DOI: 10.1371/journal.pone.0242358] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pituitary stalk interruption syndrome is a rare disorder characterized by an absent or ectopic posterior pituitary, interrupted pituitary stalk and anterior pituitary hypoplasia, as well as in some cases, a range of heterogeneous somatic anomalies. A genetic cause is identified in only around 5% of all cases. Here, we define the genetic variants associated with PSIS followed by the same pediatric endocrinologist. Exome sequencing was performed in 52 (33 boys and 19 girls), including 2 familial cases single center pediatric cases, among them associated 36 (69.2%) had associated symptoms or syndromes. We identified rare and novel variants in genes (37 families with 39 individuals) known to be involved in one or more of the following-midline development and/or pituitary development or function (BMP4, CDON, GLI2, GLI3, HESX1, KIAA0556, LHX9, NKX2-1, PROP1, PTCH1, SHH, TBX19, TGIF1), syndromic and non-syndromic forms of hypogonadotropic hypogonadism (CCDC141, CHD7, FANCA, FANCC, FANCD2, FANCE, FANCG, IL17RD, KISS1R, NSMF, PMM2, SEMA3E, WDR11), syndromic forms of short stature (FGFR3, NBAS, PRMT7, RAF1, SLX4, SMARCA2, SOX11), cerebellum atrophy with optic anomalies (DNMT1, NBAS), axonal migration (ROBO1, SLIT2), and agenesis of the corpus callosum (ARID1B, CC2D2A, CEP120, CSPP1, DHCR7, INPP5E, VPS13B, ZNF423). Pituitary stalk interruption syndrome is characterized by a complex genetic heterogeneity, that reflects a complex phenotypic heterogeneity. Seizures, intellectual disability, micropenis or cryptorchidism, seen at presentation are usually considered as secondary to the pituitary deficiencies. However, this study shows that they are due to specific gene mutations. PSIS should therefore be considered as part of the phenotypic spectrum of other known genetic syndromes rather than as specific clinical entity.
Collapse
Affiliation(s)
- Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Galcheva S, Demirbilek H, Al-Khawaga S, Hussain K. The Genetic and Molecular Mechanisms of Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2019; 10:111. [PMID: 30873120 PMCID: PMC6401612 DOI: 10.3389/fendo.2019.00111] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a heterogenous and complex disorder in which the unregulated insulin secretion from pancreatic beta-cells leads to hyperinsulinaemic hypoglycaemia. The severity of hypoglycaemia varies depending on the underlying molecular mechanism and genetic defects. The genetic and molecular causes of CHI include defects in pivotal pathways regulating the secretion of insulin from the beta-cell. Broadly these genetic defects leading to unregulated insulin secretion can be grouped into four main categories. The first group consists of defects in the pancreatic KATP channel genes (ABCC8 and KCNJ11). The second and third categories of conditions are enzymatic defects (such as GDH, GCK, HADH) and defects in transcription factors (for example HNF1α, HNF4α) leading to changes in nutrient flux into metabolic pathways which converge on insulin secretion. Lastly, a large number of genetic syndromes are now linked to hyperinsulinaemic hypoglycaemia. As the molecular and genetic basis of CHI has expanded over the last few years, this review aims to provide an up-to-date knowledge on the genetic causes of CHI.
Collapse
Affiliation(s)
- Sonya Galcheva
- Department of Paediatrics, University Hospital St. Marina, Varna Medical University, Varna, Bulgaria
| | - Hüseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sara Al-Khawaga
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
8
|
Altassan R, Péanne R, Jaeken J, Barone R, Bidet M, Borgel D, Brasil S, Cassiman D, Cechova A, Coman D, Corral J, Correia J, de la Morena-Barrio ME, de Lonlay P, Dos Reis V, Ferreira CR, Fiumara A, Francisco R, Freeze H, Funke S, Gardeitchik T, Gert M, Girad M, Giros M, Grünewald S, Hernández-Caselles T, Honzik T, Hutter M, Krasnewich D, Lam C, Lee J, Lefeber D, Marques-de-Silva D, Martinez AF, Moravej H, Õunap K, Pascoal C, Pascreau T, Patterson M, Quelhas D, Raymond K, Sarkhail P, Schiff M, Seroczyńska M, Serrano M, Seta N, Sykut-Cegielska J, Thiel C, Tort F, Vals MA, Videira P, Witters P, Zeevaert R, Morava E. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up. J Inherit Metab Dis 2019; 42:5-28. [PMID: 30740725 DOI: 10.1002/jimd.12024] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genetic, Montréal Children's Hospital, Montréal, Québec, Canada
- Department of Medical Genetic, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Romain Péanne
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
| | - Jaak Jaeken
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Muad Bidet
- Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades Hospital, IMAGINE Institute affiliate, Paris, France
| | - Delphine Borgel
- INSERM U1176, Université Paris-Sud, CHU de Bicêtre, Le Kremlin Bicêtre, France
| | - Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Anna Cechova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - David Coman
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
- Schools of Medicine, University of Queensland Brisbane, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Joana Correia
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar do Porto, Porto, Portugal
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematologíay Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, University Paris Descartes, Hospital Necker Enfants Malades, Paris, France
| | - Vanessa Dos Reis
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Agata Fiumara
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Hudson Freeze
- Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Simone Funke
- Department of Obstetrics and Gynecology, Division of Neonatology, University of Pécs, Pecs, Hungary
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Gert
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Muriel Girad
- AP-HP, Necker University Hospital, Hepatology and Gastroenterology Unit, French National Reference Centre for Biliary Atresia and Genetic Cholestasis, Paris, France
- Hepatologie prdiatrique department, Paris Descartes University, Paris, France
| | - Marisa Giros
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Stephanie Grünewald
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, NHS Trust, London, UK
| | - Trinidad Hernández-Caselles
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Tomas Honzik
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marlen Hutter
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Donna Krasnewich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Joy Lee
- Department of Metabolic Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dirk Lefeber
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorinda Marques-de-Silva
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Antonio F Martinez
- Genetics and Molecular Medicine and Rare Disease Paediatric Unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katrin Õunap
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiffany Pascreau
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Paris, France
| | - Marc Patterson
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Pediatrics, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Medical Genetics, Mayo Clinic Children's Center, Rochester, New York
| | - Dulce Quelhas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
- Centro de Genética Médica Doutor Jacinto Magalhães, Unidade de Bioquímica Genética, Porto, Portugal
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peymaneh Sarkhail
- Metabolic and Genetic department, Sarem Woman's Hospital, Tehrān, Iran
| | - Manuel Schiff
- Neurologie pédiatrique et maladies métaboliques, (C. Farnoux) - Pôle de pédiatrie médicale CHU, Hôpital Robert Debré, Paris, France
| | - Małgorzata Seroczyńska
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Nathalie Seta
- AP-HP, Bichat Hospital, Université Paris Descartes, Paris, France
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, the Institute of Mother and Child, Warsaw, Poland
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Federic Tort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Mari-Anne Vals
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paula Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Renate Zeevaert
- Department of Paediatric Endocrinology and Diabetology, Jessa Hospital, Hasselt, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, New York
- Department of Pediatrics, Tulane University, New Orleans, Louisiana
| |
Collapse
|
9
|
The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers. Int J Mol Sci 2018; 19:ijms19082218. [PMID: 30061496 PMCID: PMC6121245 DOI: 10.3390/ijms19082218] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022] Open
Abstract
Type I disorders of glycosylation (CDG), the most frequent of which is phosphomannomutase 2 (PMM2-CDG), are a group of diseases causing the incomplete N-glycosylation of proteins. PMM2-CDG is an autosomal recessive disease with a large phenotypic spectrum, and is associated with mutations in the PMM2 gene. The biochemical analysis of mutants does not allow a precise genotype⁻phenotype correlation for PMM2-CDG. PMM2 is very tolerant to missense and loss of function mutations, suggesting that a partial deficiency of activity might be beneficial under certain circumstances. The patient phenotype might be influenced by variants in other genes associated with the type I disorders of glycosylation in the general population.
Collapse
|
10
|
Schiff M, Roda C, Monin ML, Arion A, Barth M, Bednarek N, Bidet M, Bloch C, Boddaert N, Borgel D, Brassier A, Brice A, Bruneel A, Buissonnière R, Chabrol B, Chevalier MC, Cormier-Daire V, De Barace C, De Maistre E, De Saint-Martin A, Dorison N, Drouin-Garraud V, Dupré T, Echenne B, Edery P, Feillet F, Fontan I, Francannet C, Labarthe F, Gitiaux C, Héron D, Hully M, Lamoureux S, Martin-Coignard D, Mignot C, Morin G, Pascreau T, Pincemaille O, Polak M, Roubertie A, Thauvin-Robinet C, Toutain A, Viot G, Vuillaumier-Barrot S, Seta N, De Lonlay P. Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. J Med Genet 2017; 54:843-851. [DOI: 10.1136/jmedgenet-2017-104903] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 11/04/2022]
|
11
|
Vicario M, Calì T, Cieri D, Vallese F, Bortolotto R, Lopreiato R, Zonta F, Nardella M, Micalizzi A, Lefeber DJ, Valente EM, Bertini E, Zanotti G, Zanni G, Brini M, Carafoli E. A novel PMCA3 mutation in an ataxic patient with hypomorphic phosphomannomutase 2 (PMM2) heterozygote mutations: Biochemical characterization of the pump defect. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3303-3312. [PMID: 28807751 DOI: 10.1016/j.bbadis.2017.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
The neuron-restricted isoform 3 of the plasma membrane Ca2+ ATPase plays a major role in the regulation of Ca2+ homeostasis in the brain, where the precise control of Ca2+ signaling is a necessity. Several function-affecting genetic mutations in the PMCA3 pump associated to X-linked congenital cerebellar ataxias have indeed been described. Interestingly, the presence of co-occurring mutations in additional genes suggest their synergistic action in generating the neurological phenotype as digenic modulators of the role of PMCA3 in the pathologies. Here we report a novel PMCA3 mutation (G733R substitution) in the catalytic P-domain of the pump in a patient affected by non-progressive ataxia, muscular hypotonia, dysmetria and nystagmus. Biochemical studies of the pump have revealed impaired ability to control cellular Ca2+ handling both under basal and under stimulated conditions. A combined analysis by homology modeling and molecular dynamics have revealed a role for the mutated residue in maintaining the correct 3D configuration of the local structure of the pump. Mutation analysis in the patient has revealed two additional function-impairing compound heterozygous missense mutations (R123Q and G214S substitution) in phosphomannomutase 2 (PMM2), a protein that catalyzes the isomerization of mannose 6-phosphate to mannose 1-phosphate. These mutations are known to be associated with Type Ia congenital disorder of glycosylation (PMM2-CDG), the most common group of disorders of N-glycosylation. The findings highlight the association of PMCA3 mutations to cerebellar ataxia and strengthen the possibility that PMCAs act as digenic modulators in Ca2+-linked pathologies.
Collapse
Affiliation(s)
- Mattia Vicario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, (Italy)
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, (Italy)
| | - Domenico Cieri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, (Italy)
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova, 35131 Padova, (Italy)
| | - Raissa Bortolotto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, (Italy)
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, (Italy)
| | - Francesco Zonta
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, 00015, Monterotondo, Rome, Italy
| | - Marta Nardella
- Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition, and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Enza Maria Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Enrico Bertini
- Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, (Italy)
| | - Ginevra Zanni
- Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Marisa Brini
- Department of Biology, University of Padova, Italy.
| | | |
Collapse
|
12
|
Vals MA, Morava E, Teeäär K, Zordania R, Pajusalu S, Lefeber DJ, Õunap K. Three families with mild PMM2-CDG and normal cognitive development. Am J Med Genet A 2017; 173:1620-1624. [PMID: 28425223 DOI: 10.1002/ajmg.a.38235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/08/2017] [Indexed: 11/10/2022]
Abstract
Congenital disorders of glycosylation (CDG) are caused by defective glycosylation of proteins and lipids. PMM2-CDG is the most common subtype among the CDG. The severity of PMM2-CDG is variable. Patients often have a recognizable phenotype with neurological and multisystem symptoms that might cause early death. We report six patients from three families who are diagnosed with a clinically mild PMM2-CDG and have normal cognitive development. All these patients had delayed gross motor skills with mild-to-moderate neurological findings. Cerebellar hypoplasia was detected in all siblings for whom brain MRI was performed. In 5/6 children the Wechsler Intelligence Scale for Children (WISC) showed normal cognitive development with full scale IQ scores ranging from borderline to average. Four patients were diagnosed with PMM2-CDG at the age of 8 years or later as their neurological symptoms were quite mild and they had been able to participate in regular school programs. We report patients with p.Val231Met/p.Arg239Trp and p.Ile120Thr/p.Gly228Cys genotypes which may cause milder variants of PMM2-CDG.
Collapse
Affiliation(s)
- Mari-Anne Vals
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Eva Morava
- Department of Pediatrics, Tulane University Medical School, New Orleans, Louisiana.,Center for Metabolic Diseases, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Kai Teeäär
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Riina Zordania
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet 2016; 24:1460-6. [PMID: 27165006 PMCID: PMC5027687 DOI: 10.1038/ejhg.2016.42] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022] Open
Abstract
Cerebellar ataxia (CA) and hereditary spastic paraplegia (HSP) are two of the most prevalent motor disorders with extensive locus and allelic heterogeneity. We implemented clinical exome sequencing, followed by filtering data for a ‘movement disorders' gene panel, as a generic test to increase variant detection in 76 patients with these disorders. Segregation analysis or phenotypic re-evaluation was utilized to substantiate findings. Disease-causing variants were identified in 9 of 28 CA patients, and 8 of 48 HSP patients. In addition, possibly disease-causing variants were identified in 1 and 8 of the remaining CA and HSP patients, respectively. In 10 patients with CA, the total disease-causing or possibly disease-causing variants were detected in 8 different genes, whereas 16 HSP patients had such variants in 12 different genes. In the majority of cases, the identified variants were compatible with the patient phenotype. Interestingly, in some patients variants were identified in genes hitherto related to other movement disorders, such as TH variants in two siblings with HSP. In addition, rare disorders were uncovered, for example, a second case of HSP caused by a VCP variant. For some patients, exome sequencing results had implications for treatment, exemplified by the favorable L-DOPA treatment in a patient with HSP due to ATP13A2 variants (Parkinson type 9). Thus, clinical exome sequencing in this cohort of CA and HSP patients suggests broadening of disease spectra, revealed novel gene–disease associations, and uncovered unanticipated rare disorders. In addition, clinical exome sequencing results have shown their value in guiding practical patient management.
Collapse
|
14
|
Zhang W, James PM, Ng BG, Li X, Xia B, Rong J, Asif G, Raymond K, Jones MA, Hegde M, Ju T, Cummings RD, Clarkson K, Wood T, Boerkoel CF, Freeze HH, He M. A Novel N-Tetrasaccharide in Patients with Congenital Disorders of Glycosylation, Including Asparagine-Linked Glycosylation Protein 1, Phosphomannomutase 2, and Mannose Phosphate Isomerase Deficiencies. Clin Chem 2015; 62:208-17. [PMID: 26430078 DOI: 10.1373/clinchem.2015.243279] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/25/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Primary deficiencies in mannosylation of N-glycans are seen in a majority of patients with congenital disorders of glycosylation (CDG). We report the discovery of a series of novel N-glycans in sera, plasma, and cultured skin fibroblasts from patients with CDG having deficient mannosylation. METHOD We used LC-MS/MS and MALDI-TOF-MS analysis to identify and quantify a novel N-linked tetrasaccharide linked to the protein core, an N-tetrasaccharide (Neu5Acα2,6Galβ1,4-GlcNAcβ1,4GlcNAc) in plasma, serum glycoproteins, and a fibroblast lysate from patients with CDG caused by ALG1 [ALG1 (asparagine-linked glycosylation protein 1), chitobiosyldiphosphodolichol β-mannosyltransferase], PMM2 (phosphomannomutase 2), and MPI (mannose phosphate isomerase). RESULTS Glycoproteins in sera, plasma, or cell lysate from ALG1-CDG, PMM2-CDG, and MPI-CDG patients had substantially more N-tetrasaccharide than unaffected controls. We observed a >80% decline in relative concentrations of the N-tetrasaccharide in MPI-CDG plasma after mannose therapy in 1 patient and in ALG1-CDG fibroblasts in vitro supplemented with mannose. CONCLUSIONS This novel N-tetrasaccharide could serve as a diagnostic marker of ALG1-, PMM2-, or MPI-CDG for screening of these 3 common CDG subtypes that comprise >70% of CDG type I patients. Its quantification by LC-MS/MS may be useful for monitoring therapeutic efficacy of mannose. The discovery of these small N-glycans also indicates the presence of an alternative pathway in N-glycosylation not recognized previously, but its biological significance remains to be studied.
Collapse
Affiliation(s)
| | - Philip M James
- Division of Genetics, Department of Medicine, Children's Hospital Boston, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - Xueli Li
- Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Kimiyo Raymond
- Mayo Biochemical Genetics Laboratory, Mayo Medical School, Rochester, MN
| | | | | | - Tongzhong Ju
- Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Katie Clarkson
- Mayo Biochemical Genetics Laboratory, Mayo Medical School, Rochester, MN
| | - Tim Wood
- Greenwood Genetics Center, Greenwood, SC
| | - Cornelius F Boerkoel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - Miao He
- Palmieri Metabolic Disease Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
15
|
Andreotti G, Cabeza de Vaca I, Poziello A, Monti MC, Guallar V, Cubellis MV. Conformational response to ligand binding in phosphomannomutase2: insights into inborn glycosylation disorder. J Biol Chem 2014; 289:34900-10. [PMID: 25324542 PMCID: PMC4263888 DOI: 10.1074/jbc.m114.586362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The most common glycosylation disorder is caused by mutations in the gene encoding phosphomannomutase2, producing a disease still without a cure. Phosphomannomutase2, a homodimer in which each chain is composed of two domains, requires a bisphosphate sugar (either mannose or glucose) as activator, opening a possible drug design path for therapeutic purposes. The crystal structure of human phosphomannomutase2, however, lacks bound substrate and a key active site loop. To speed up drug discovery, we present here the first structural model of a bisphosphate substrate bound to human phosphomannomutase2. Taking advantage of recent developments in all-atom simulation techniques in combination with limited and site-directed proteolysis, we demonstrated that α-glucose 1,6-bisphosphate can adopt two low energy orientations as required for catalysis. Upon ligand binding, the two domains come close, making the protein more compact, in analogy to the enzyme in the crystals from Leishmania mexicana. Moreover, proteolysis was also carried out on two common mutants, R141H and F119L. It was an unexpected finding that the mutant most frequently found in patients, R141H, although inactive, does bind α-glucose 1,6-bisphosphate and changes conformation.
Collapse
Affiliation(s)
- Giuseppina Andreotti
- From the Istituto di Chimica Biomolecolare-Consiglio Nazionale Delle Ricerche, 80078 Pozzuoli, Italy
| | - Israel Cabeza de Vaca
- Joint Barcelona Supercomputing Center-Center for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, c/Jordi Girona 29, 08034 Barcelona, Spain
| | - Angelita Poziello
- From the Istituto di Chimica Biomolecolare-Consiglio Nazionale Delle Ricerche, 80078 Pozzuoli, Italy, Dipartimento di Biologia, Università Federico II, 80126 Naples, Italy
| | - Maria Chiara Monti
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Victor Guallar
- Joint Barcelona Supercomputing Center-Center for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, c/Jordi Girona 29, 08034 Barcelona, Spain, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain, and
| | | |
Collapse
|
16
|
Messenger WB, Yang P, Pennesi ME. Ophthalmic findings in an infant with phosphomannomutase deficiency. Doc Ophthalmol 2014; 128:149-53. [PMID: 24493206 DOI: 10.1007/s10633-014-9427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION We present the ocular features including full-field electroretinography (ff-ERG) and spectral domain optical coherence tomography (SD-OCT) in a 14-month-old infant with congenital disorder of glycosylation type 1a (PMM2-CDG). METHODS AND RESULTS An infant with failure to thrive, bilateral neurosensory hearing loss, cerebellar hypoplasia, and pericardial effusions was referred to ophthalmic genetics for evaluation. The patient had fix and follow vision, an intermittent esotropia, moderate myopia, a hypo pigmented macula, and mild attenuation of the retinal vasculature. Electroretinography showed severe reduction in both rod and cone-dependent responses with a negative waveform pattern. Handheld SD-OCT revealed severe attenuation of the outer retina throughout the macula, but with preservation of outer retinal structures in the fovea. CONCLUSION PMM2-CDG is a rare congenital disorder for which both ff-ERG and SD-OCT were useful in demonstrating early changes in retinal architecture and function.
Collapse
Affiliation(s)
- Wyatt B Messenger
- Casey Eye Institute, Oregon Health and Science University, 3375 SW Terwilliger Blvd, Portland, OR, 97239, USA
| | | | | |
Collapse
|
17
|
Seifried A, Schultz J, Gohla A. Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 2012; 280:549-71. [PMID: 22607316 DOI: 10.1111/j.1742-4658.2012.08633.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatases of the haloacid dehalogenase (HAD) superfamily of hydrolases are an ancient and very large class of enzymes that have evolved to dephosphorylate a wide range of low- and high molecular weight substrates with often exquisite specificities. HAD phosphatases constitute approximately one-fifth of all human phosphatase catalytic subunits. While the overall sequence similarity between HAD phosphatases is generally very low, family members can be identified based on the presence of a characteristic Rossmann-like fold and the active site sequence DxDx(V/T). HAD phosphatases employ an aspartate residue as a nucleophile in a magnesium-dependent phosphoaspartyl transferase reaction. Although there is genetic evidence demonstrating a causal involvement of some HAD phosphatases in diseases such as cancer, cardiovascular, metabolic and neurological disorders, the physiological roles of many of these enzymes are still poorly understood. In this review, we discuss the structure and evolution of human HAD phosphatases, and summarize their known functions in health and disease.
Collapse
Affiliation(s)
- Annegrit Seifried
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
18
|
Pérez B, Briones P, Quelhas D, Artuch R, Vega AI, Quintana E, Gort L, Ecay MJ, Matthijs G, Ugarte M, Pérez-Cerdá C. The molecular landscape of phosphomannose mutase deficiency in iberian peninsula: identification of 15 population-specific mutations. JIMD Rep 2011; 1:117-23. [PMID: 23430838 DOI: 10.1007/8904_2011_26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 03/25/2023] Open
Abstract
PMM2-CDG is an autosomal recessive disorder and the most frequent form of congenital disorder of N-glycosylation, with more than 100 mutations identified to date. Sixty-six patients from 58 unrelated families were diagnosed as PMM2-CDG (CDG-Ia) based on clinical signs or because of a previous affected sibling. They all presented a type 1 serum transferrin isoform pattern, and, in most cases, the disease was confirmed by determining PMM2 activity in fibroblasts and/or lymphocytes. Residual PMM2 activity in fibroblasts ranged from not detectable to 60% of the mean controls. DNA and RNA were isolated from fresh blood or fibroblasts from patients to perform molecular studies of the PMM2 gene, resulting in the identification of 30 different mutations, four of them newly reported here (p.Y102C, p.T118S, p.P184T, and p.D209G). From these 30 mutations, 15 have only been identified among Iberian PMM2-CDG patients. As in other Caucasian populations, p.R141H was the most frequent mutation (24 alleles, prevalence 20.6%), but less than in other European series in which this mutation represents 35-43% of the disease alleles. The next frequent mutations were p.D65Y (12 alleles, prevalence 10.3%) and p.T237M (9 alleles, prevalence 7.6%), while p.F119L and p.E139K, the most frequent changes in Scandinavian and French populations, respectively, were not found in our patients. The most common genotype was [p.R141H] + [p.T237M], and four homozygous patients for p.Y64C, p.D65Y, p.P113L, and p.T237M were detected. The broad mutational spectrum and the diversity of phenotypes found in the Iberian populations hamper genotype-phenotype correlation.
Collapse
Affiliation(s)
- B Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, CBM-SO, Facultad de Ciencias, Módulo 10, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Haeuptle MA, Hennet T. Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat 2010; 30:1628-41. [PMID: 19862844 DOI: 10.1002/humu.21126] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Defects in the biosynthesis of the oligosaccharide precursor for N-glycosylation lead to decreased occupancy of glycosylation sites and thereby to diseases known as congenital disorders of glycosylation (CDG). In the last 20 years, approximately 1,000 CDG patients have been identified presenting with multiple organ dysfunctions. This review sets the state of the art by listing all mutations identified in the 15 genes (PMM2, MPI, DPAGT1, ALG1, ALG2, ALG3, ALG9, ALG12, ALG6, ALG8, DOLK, DPM1, DPM3, MPDU1, and RFT1) that yield a deficiency of dolichol-linked oligosaccharide biosynthesis. The present analysis shows that most mutations lead to substitutions of strongly conserved amino acid residues across eukaryotes. Furthermore, the comparison between the different forms of CDG affecting dolichol-linked oligosaccharide biosynthesis shows that the severity of the disease does not relate to the position of the mutated gene along this biosynthetic pathway.
Collapse
Affiliation(s)
- Micha A Haeuptle
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
20
|
Poláková M, Roslund MU, Ekholm FS, Saloranta T, Leino R. Synthesis of β-(1→2)-Linked Oligomannosides. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Grünewald S. The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta Mol Basis Dis 2009; 1792:827-34. [PMID: 19272306 DOI: 10.1016/j.bbadis.2009.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 02/05/2023]
Abstract
Congenital disorders of glycosylation are a clinically and genetically heterogeneous group of disorders resulting from abnormal glycosylation of various glycoconjugates. The first description of congenital disorders of glycosylation was published in the early 80s and once screening tests for glycosylation disorders (CDGs) became readily available, CDG-Ia became the most frequently diagnosed CDG subtype. CDG-Ia is pan-ethnic and the spectrum of the clinical manifestations is still evolving: it spans from severe hydrops fetalis and fetal loss to a (nearly) normal phenotype. However, the most common presentation in infancy is of a multisystem disorder with central nervous system involvement.
Collapse
Affiliation(s)
- Stephanie Grünewald
- Metabolic Medicine Unit, Great Ormond Street Hospital for Children NHS Trust with the UCL Institute of Child Health, London WC1N 3JH, UK.
| |
Collapse
|
22
|
Phillips GN, Fox BG, Markley JL, Volkman BF, Bae E, Bitto E, Bingman CA, Frederick RO, McCoy JG, Lytle BL, Pierce BS, Song J, Twigger SN. Structures of proteins of biomedical interest from the Center for Eukaryotic Structural Genomics. ACTA ACUST UNITED AC 2007; 8:73-84. [PMID: 17786587 DOI: 10.1007/s10969-007-9023-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/17/2007] [Indexed: 12/01/2022]
Abstract
The Center for Eukaryotic Structural Genomics (CESG) produces and solves the structures of proteins from eukaryotes. We have developed and operate a pipeline to both solve structures and to test new methodologies. Both NMR and X-ray crystallography methods are used for structure solution. CESG chooses targets based on sequence dissimilarity to known structures, medical relevance, and nominations from members of the scientific community. Many times proteins qualify in more than one of these categories. Here we review some of the structures that have connections to human health and disease.
Collapse
Affiliation(s)
- George N Phillips
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The congenital disorders of N-glycosylation (CDG), a steadily increasing group of multi-systemic disorders, have severe clinical implications in infancy and early childhood. The various inborn errors responsible adversely affect N-glycosylation of lysosomal proteins because of either failing assembly of lipid-linked (LL) oligosaccharides (OS) in the endoplasmic reticulum, CDG Type I, or faulty processing of the asparagines (N)-linked OS in the ER and in the Golgi, CDG Type II. The overlap of phenotypes precludes specific clinical delineation. Isoelectric focusing (IEF) of plasma transferrin remains a valuable, albeit imperfect, screening tool. IEF of plasma ApoC-III protein, introduced O-glycosylation defects that delineated some new CDGs due to mutations of both N- and O-glycosylation. Only CDG-Ib is amenable to treatment with free mannose supplementation. Hence, early specific diagnosis of any one entity is crucial for genetic counseling and elective preventive measures.
Collapse
Affiliation(s)
- Jules G Leroy
- Department of Pediatrics, Ghent University School of Medicine and University, B-9000 Ghent, Belgium.
| |
Collapse
|
24
|
Abstract
The spectrum of all glycan structures--the glycome--is immense. In humans, its size is orders of magnitude greater than the number of proteins that are encoded by the genome, one percent of which encodes proteins that make, modify, localize or bind sugar chains, which are known as glycans. In the past decade, over 30 genetic diseases have been identified that alter glycan synthesis and structure, and ultimately the function of nearly all organ systems. Many of the causal mutations affect key biosynthetic enzymes, but more recent discoveries point to defects in chaperones and Golgi-trafficking complexes that impair several glycosylation pathways. As more glycosylation disorders and patients with these disorders are identified, the functions of the glycome are starting to be revealed.
Collapse
Affiliation(s)
- Hudson H Freeze
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
25
|
Vilaseca MA, Artuch R, Briones P. Defectos congénitos de la glucosilación: últimos avances y experiencia española. Med Clin (Barc) 2004; 122:707-16. [PMID: 15171833 DOI: 10.1016/s0025-7753(04)74362-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of inherited disorders caused by defects in the synthesis and processing of the linked glycans of glycoproteins and other molecules. The first patients with CDG were described in 1980. Fifteen years later, phosphomannomutase was found to be the basis of the most frequent type: CDG-Ia. Over the last years, several novel types have been identified related to the N-glycosylation pathway, affecting enzymes or transporters of the cytosol, endoplasmic reticulum or the Golgi compartment. CDGs are multisystemic disorders, mainly affecting the central nervous system. Yet CDG-Ib and Ih are mainly hepato-intestinal diseases. Recently, several defects involving the O-glycosylation pathways have been described, indicating that some congenital muscular dystrophies and neuronal migration disorders are caused by congenital disorders of glycosylation.
Collapse
Affiliation(s)
- María Antonia Vilaseca
- Servei de Bioquímica, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Esplugues de Llobregat, Barcelona, Spain.
| | | | | |
Collapse
|
26
|
Barathur R, Bookout J, Sreevatsan S, Gordon J, Werner M, Thor G, Worthington M. New disc-based technologies for diagnostic and research applications. Psychiatr Genet 2002; 12:193-206. [PMID: 12454524 DOI: 10.1097/00041444-200212000-00002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of genotypic analysis in disease diagnostics and drug response assessment is continually expanding. New genomic discoveries combined with new, novel technologies may provide a greater range of testing capabilities in the near future. We describe the application of nanotechnology, in which DNA microarrays have been placed in a microchannel environment that can be read and analyzed in an optical (CD/DVD) disc drive system. The potential exists to combine molecular and immunological applications together into a rapid, low-cost, high-capacity screening platform. The relevance of this technology is discussed in respect to infectious agent detection, pharmacogenomics, neurogenomics and genetic variations associated with neurologic diseases.
Collapse
Affiliation(s)
- Raj Barathur
- Burstein Technologies Inc., Irvine, California 92618, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Congenital disorders of glycosylation (CDGs) are a rapidly growing group of inherited disorders caused by defects in the synthesis and processing of the asparagine(ASN)-linked oligosaccharides of glycoproteins. The first CDG patients were described in 1980. Fifteen years later, a phosphomannomutase deficiency was found as the basis of the most frequent type, CDG-Ia. In recent years several novel types have been identified. The N-glycosylation pathway is highly conserved from yeast to human, and the rapid progress in this field can largely be attributed to the systematic application of the knowledge of yeast mutants. Up to now, eight diseases have been characterized, resulting from enzyme or transport defects in the cytosol, endoplasmic reticulum, or Golgi compartment. CDGs affect all organs and particularly the CNS, except for CDG-Ib, which is mainly a hepatic-intestinal disease.
Collapse
|
28
|
Tayebi N, Andrews DQ, Park JK, Orvisky E, McReynolds J, Sidransky E, Krasnewich DM. A deletion-insertion mutation in the phosphomannomutase 2 gene in an African American patient with congenital disorders of glycosylation-Ia. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 108:241-6. [PMID: 11891694 DOI: 10.1002/ajmg.10246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of metabolic disorders with multisystemic involvement characterized by abnormalities in the synthesis of N-linked oligosaccharides. The most common form, CDG-Ia, resulting from mutations in the gene encoding the enzyme phosphomannomutase (PMM2), manifests with severe abnormalities in psychomotor development, dysmorphic features and visceral involvement. While this disorder is panethnic, we present the first cases of CDG-Ia identified in an African American family with two affected sisters. The proband had failure to thrive in infancy, hypotonia, ataxia, cerebellar hypoplasia and developmental delay. On examination, she also exhibited strabismus, inverted nipples and an atypical perineal fat distribution, all features characteristic of CDG-Ia. Direct sequencing demonstrated that the patient had a unique genotype, T237M/c.565-571 delAGAGAT insGTGGATTTCC. The novel deletion-insertion mutation, which was confirmed by subcloning and sequencing of each allele, introduces a stop codon 11 amino acids downstream from the site of the deletion. The presence of this deletion-insertion mutation at cDNA position 565 suggests that this site in the PMM2 gene may be a hotspot for chromosomal breakage.
Collapse
Affiliation(s)
- Nahid Tayebi
- Clinical Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing group of genetic diseases that are due to defects in the synthesis of glycans and in the attachment of glycans to other compounds. Most CDG are multisystem diseases that include severe brain involvement. The CDG causing sialic acid deficiency of N-glycans can be diagnosed by isoelectrofocusing of serum sialotransferrins. An efficient treatment, namely oral D-mannose, is available for only one CDG (CDG-Ib). In many patients with CDG, the basic defect is unknown (CDG-x). Glycan structural analysis, yeast genetics, and knockout animal models are essential tools in the elucidation of novel CDG. Eleven primary genetic glycosylation diseases have been discovered and their basic defects identified: six in the N-glycan assembly, three in the N-glycan processing, and two in the O-glycan (glycosaminoglycan) assembly. This review summarizes their clinical, biochemical, and genetic characteristics and speculates on further developments in this field.
Collapse
Affiliation(s)
- J Jaeken
- Department of Paediatrics, Centre for Metabolic Disease, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
30
|
Jaeken J, Carchon H. Congenitale defecten van de glycosylering (cdg) anno 2000. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf03061351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Grünewald S, Schollen E, Van Schaftingen E, Jaeken J, Matthijs G. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am J Hum Genet 2001; 68:347-54. [PMID: 11156536 PMCID: PMC1235268 DOI: 10.1086/318199] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Accepted: 12/13/2000] [Indexed: 11/03/2022] Open
Abstract
Congenital disorders of glycosylation (CDGs) are a rapidly enlarging group of inherited diseases with abnormal N-glycosylation of glycoconjugates. Most patients have CDG-Ia, which is due to a phosphomannomutase (PMM) deficiency. In this article, we report that a significant portion (9 of 54) of patients with CDG-Ia had a rather high residual PMM activity in fibroblasts included in the normal range (means of the controls +/- 2 SD) and amounting to 35%-70% of the mean control value. The clinical diagnosis of CDG-Ia was made difficult by the fact that most (6 of 9) of these patients belong to a subgroup characterized by a phenotype that is milder than classical CDG-Ia. These patients lack some of the symptoms that are suggestive for the diagnosis, such as inverted nipples and abnormal fat deposition, and, as a mean, had higher residual PMM activities in fibroblasts (2.05+/-0.61 mU/mg protein, n=9; vs. controls 5.34+/-1.74 mU/mg protein, n=22), compared with patients with moderate (1.32+/-0.86 mU/mg protein, n=18) or severe (0.63+/-0.56 mU/mg protein, n=27, P<.001) cases. Yet they all showed mild mental retardation, hypotonia, cerebellar hypoplasia, and strabismus. All of them had an abnormal serum transferrin pattern and a significantly reduced PMM activity in leukocytes. Six of the nine patients with mild presentations were compound heterozygotes for the C241S mutation, which is known to reduce PMM activity by only approximately 2-fold. Our results indicate that intermediate PMM values in fibroblasts may mask the diagnosis of CDG-Ia, which is better accomplished by measurement of PMM activity in leukocytes and mutation search in the PMM2 gene. They also indicate that there is some degree of correlation between the residual activity in fibroblasts and the clinical phenotype.
Collapse
Affiliation(s)
- Stephanie Grünewald
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Els Schollen
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Emile Van Schaftingen
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Jaak Jaeken
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| | - Gert Matthijs
- Centres for Human Genetics and Metabolic Disease, University of Leuven, Leuven; and Laboratory of Physiological Chemistry, Institute of Cellular Pathology and University of Louvain, Brussels
| |
Collapse
|
32
|
Schollen E, Dorland L, de Koning TJ, Van Diggelen OP, Huijmans JG, Marquardt T, Babovic-Vuksanovic D, Patterson M, Imtiaz F, Winchester B, Adamowicz M, Pronicka E, Freeze H, Matthijs G. Genomic organization of the human phosphomannose isomerase (MPI) gene and mutation analysis in patients with congenital disorders of glycosylation type Ib (CDG-Ib). Hum Mutat 2000; 16:247-52. [PMID: 10980531 DOI: 10.1002/1098-1004(200009)16:3<247::aid-humu7>3.0.co;2-a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CDG-Ib is the "gastro-intestinal" type of the congenital disorders of glycosylation (CDG) and a potentially treatable disorder. It has been described in patients presenting with congenital hepatic fibrosis and protein losing enteropathy. The symptoms result from hypoglycosylation of serum- and other glycoproteins. CDG-Ib is caused by a deficiency of mannose-6-phosphate isomerase (synonym: phosphomannose isomerase, EC 5.3.1.8), due to mutations in the MPI gene. We determined the genomic structure of the MPI gene in order to simplify mutation detection. The gene is composed of 8 exons and spans only 5 kb. Eight (7 novel) different mutations were found in seven patients with a confirmed phosphomannose isomerase deficiency, analyzed in the context of this study: six missense mutations, a splice mutation and one insertion. In the last, the mutation resulted in an unstable transcript, and was hardly detectable at the mRNA level. This emphasizes the importance of mutation analysis at the genomic DNA level.
Collapse
Affiliation(s)
- E Schollen
- Center for Human Genetics, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|