1
|
Kim H, Bae S, Kim SJ. Increased SNAI2 expression and defective collagen adhesion in cells with pediatric dementia, juvenile ceroid lipofuscinosis. Biochem Biophys Res Commun 2024; 738:150561. [PMID: 39154552 DOI: 10.1016/j.bbrc.2024.150561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Dementia-related neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), are known to be caused by accumulation of toxic proteins. However, the molecular mechanisms that cause neurodegeneration and its biophysical effects on cells remain unclear. In this study, we used juvenile neuronal ceroid lipofuscinosis (JNCL), a pediatric dementia with a clear etiology of mutations in ceroid lipofuscinosis neuronal 3 (CLN3), to explore the changes in cell adhesion, a biophysical process that regulates neuronal development and survival. We used JNCL cerebral organoid gene expression datasets to identify the biological pathways that affect neural development, and found enriched gene expression in the epithelial-mesenchymal transition (EMT) pathway and increased expression of its inducer snail family transcriptional repressor 2 (SNAI2). A cell adhesion assay using lymphoblasts from patients with JNCL revealed defective adhesion to cell culture plates, glass surfaces, collagen type I, and neuroblast-like cells. To determine whether inhibition of EMT could improve the cell adhesion of JNCL lymphoblasts, we used all-trans retinoic acid, a well-known EMT inhibitor and inducer of neural differentiation. In JNCL lymphoblasts, ATRA treatment enhanced adhesion to collagen type I and these effects were abolished by Ca2+ chelator. These results provide new insights into the role of CLN3 and cell adhesion in the pathogenesis of NDD.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea
| | - Sechul Bae
- Jung Cosmetic Corporation, Sinchang, Asan, Chungnam, 31537, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea.
| |
Collapse
|
2
|
Benitez BA, Wallace CE, Patel M, Nykanen NP, Yuede CM, Eaton SL, Pottier C, Cetin A, Johnson M, Bevan MT, Gardiner WD, Edwards HM, Doherty BM, Harrigan RT, Kurian D, Wishart TM, Smith C, Cirrito JR, Sands MS. Haploinsufficiency of lysosomal enzyme genes in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623962. [PMID: 39605615 PMCID: PMC11601326 DOI: 10.1101/2024.11.16.623962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
There is growing evidence suggesting that the lysosome or lysosome dysfunction is associated with Alzheimer's disease (AD). Pathway analysis of post mortem brain-derived proteomic data from AD patients shows that the lysosomal system is perturbed relative to similarly aged unaffected controls. However, it is unclear if these changes contributed to the pathogenesis or are a response to the disease. Consistent with the hypothesis that lysosome dysfunction contributes to AD pathogenesis, whole genome sequencing data indicate that heterozygous pathogenic mutations and predicted protein-damaging variants in multiple lysosomal enzyme genes are enriched in AD patients compared to matched controls. Heterozygous loss-of-function mutations in the palmitoyl protein thioesterase-1 (PPT1), α-L-iduronidase (IDUA), β-glucuronidase (GUSB), N-acetylglucosaminidase (NAGLU), and galactocerebrosidase (GALC) genes have a gene-dosage effect on Aβ40 levels in brain interstitial fluid in C57BL/6 mice and significantly increase Aβ plaque formation in the 5xFAD mouse model of AD, thus providing in vivo validation of the human genetic data. A more detailed analysis of PPT1 heterozygosity in 18-month-old mice revealed changes in α-, β-, and γ-secretases that favor an amyloidogenic pathway. Proteomic changes in brain tissue from aged PPT1 heterozygous sheep are consistent with both the mouse data and the potential activation of AD pathways. Finally, CNS-directed, AAV-mediated gene therapy significantly decreased Aβ plaques, increased life span, and improved behavioral performance in 5xFAD/PPT1+/- mice. Collectively, these data strongly suggest that heterozygosity of multiple lysosomal enzyme genes represent risk factors for AD and may identify precise therapeutic targets for a subset of genetically-defined AD patients.
Collapse
Affiliation(s)
- Bruno A Benitez
- Department of Medicine, Washington University, St. Louis, MO 63110
- Department of Psychiatry, Washington University, St. Louis, MO 63110
- Current address: Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Clare E Wallace
- Department of Neurology, Washington University, St. Louis, MO 63110
| | - Maulikkumar Patel
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | | | - Carla M Yuede
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | | | - Cyril Pottier
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | - Arda Cetin
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | - Matthew Johnson
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | - Mia T Bevan
- Department of Neurology, Washington University, St. Louis, MO 63110
| | | | - Hannah M Edwards
- Department of Neurology, Washington University, St. Louis, MO 63110
| | | | - Ryan T Harrigan
- Department of Neurology, Washington University, St. Louis, MO 63110
| | - Dominic Kurian
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG
| | - Thomas M Wishart
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG
- Current primary address: Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, NHB 084, Clifton Campus, NG11 8NS
| | - Colin Smith
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO 63110
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110
| | - Mark S Sands
- Department of Medicine, Washington University, St. Louis, MO 63110
- Department of Genetics, Washington University, St. Louis, MO 63110
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110
| |
Collapse
|
3
|
Hertz E, Glasstetter LM, Chen Y, Sidransky E. New tools can propel research in lysosomal storage diseases. Mol Genet Metab 2023; 140:107729. [PMID: 37951057 DOI: 10.1016/j.ymgme.2023.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Historically, the clinical manifestations of lysosomal storage diseases offered an early glimpse into the essential digestive functions of the lysosome. However, it was only recently that the more subtle role of this organelle in the dynamic regulation of multiple cellular processes was appreciated. With the need for precise interrogation of lysosomal interplay in health and disease comes the demand for more sophisticated functional tools. This demand has recently been met with 1) induced pluripotent stem cell-derived models that recapitulate the disease phenotype in vitro, 2) methods for lysosome affinity purification coupled with downstream omics analysis that provide a high-resolution snapshot of lysosomal alterations, and 3) gene editing and CRISPR/Cas9-based functional genomic strategies that enable screening for genetic modifiers of the disease phenotype. These emerging methods have garnered much interest in the field of neurodegeneration, and their use in the field of metabolic disorders is now also steadily gaining momentum. Looking forward, these robust tools should accelerate basic science efforts to understand lysosomal dysfunction distal to substrate accumulation and provide translational opportunities to identify disease-modifying therapies.
Collapse
Affiliation(s)
- Ellen Hertz
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Logan M Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Calcagni' A, Staiano L, Zampelli N, Minopoli N, Herz NJ, Di Tullio G, Huynh T, Monfregola J, Esposito A, Cirillo C, Bajic A, Zahabiyon M, Curnock R, Polishchuk E, Parkitny L, Medina DL, Pastore N, Cullen PJ, Parenti G, De Matteis MA, Grumati P, Ballabio A. Loss of the batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation. Nat Commun 2023; 14:3911. [PMID: 37400440 DOI: 10.1038/s41467-023-39643-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.
Collapse
Affiliation(s)
- Alessia Calcagni'
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | | | - Nadia Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Niculin J Herz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Mahla Zahabiyon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Rachel Curnock
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Luke Parkitny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
5
|
Klein M, Hermey G. Converging links between adult-onset neurodegenerative Alzheimer's disease and early life neurodegenerative neuronal ceroid lipofuscinosis? Neural Regen Res 2023; 18:1463-1471. [PMID: 36571343 PMCID: PMC10075119 DOI: 10.4103/1673-5374.361544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life. Here, we summarize emerging links between the most common late life neurodegenerative disease, Alzheimer's disease, and the most common early life neurodegenerative diseases, neuronal ceroid lipofuscinoses. Genetic studies reported an overlap of clinically diagnosed Alzheimer's disease and mutations in genes known to cause neuronal ceroid lipofuscinoses. Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders. This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases. A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts, the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations. Here, we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer's disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Chen J, Soni RK, Xu Y, Simoes S, Liang FX, DeFreitas L, Hwang R, Montesinos J, Lee JH, Area-Gomez E, Nandakumar R, Vardarajan B, Marquer C. Juvenile CLN3 disease is a lysosomal cholesterol storage disorder: similarities with Niemann-Pick type C disease. EBioMedicine 2023; 92:104628. [PMID: 37245481 PMCID: PMC10227369 DOI: 10.1016/j.ebiom.2023.104628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND The most common form of neuronal ceroid lipofuscinosis (NCL) is juvenile CLN3 disease (JNCL), a currently incurable neurodegenerative disorder caused by mutations in the CLN3 gene. Based on our previous work and on the premise that CLN3 affects the trafficking of the cation-independent mannose-6 phosphate receptor and its ligand NPC2, we hypothesised that dysfunction of CLN3 leads to the aberrant accumulation of cholesterol in the late endosomes/lysosomes (LE/Lys) of JNCL patients' brains. METHODS An immunopurification strategy was used to isolate intact LE/Lys from frozen autopsy brain samples. LE/Lys isolated from samples of JNCL patients were compared with age-matched unaffected controls and Niemann-Pick Type C (NPC) disease patients. Indeed, mutations in NPC1 or NPC2 result in the accumulation of cholesterol in LE/Lys of NPC disease samples, thus providing a positive control. The lipid and protein content of LE/Lys was then analysed using lipidomics and proteomics, respectively. FINDINGS Lipid and protein profiles of LE/Lys isolated from JNCL patients were profoundly altered compared to controls. Importantly, cholesterol accumulated in LE/Lys of JNCL samples to a comparable extent than in NPC samples. Lipid profiles of LE/Lys were similar in JNCL and NPC patients, except for levels of bis(monoacylglycero)phosphate (BMP). Protein profiles detected in LE/Lys of JNCL and NPC patients appeared identical, except for levels of NPC1. INTERPRETATION Our results support that JNCL is a lysosomal cholesterol storage disorder. Our findings also support that JNCL and NPC disease share pathogenic pathways leading to aberrant lysosomal accumulation of lipids and proteins, and thus suggest that the treatments available for NPC disease may be beneficial to JNCL patients. This work opens new avenues for further mechanistic studies in model systems of JNCL and possible therapeutic interventions for this disorder. FUNDING San Francisco Foundation.
Collapse
Affiliation(s)
- Jacinda Chen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York City, NY 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Feng-Xia Liang
- Microscopy Core Laboratory of Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York City, NY 10016, USA
| | - Laura DeFreitas
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Robert Hwang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; G. H. Sergievsky Center, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Estela Area-Gomez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; Institute of Human Nutrition, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; G. H. Sergievsky Center, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Catherine Marquer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
7
|
Xuan R, Wang J, Zhao X, Li Q, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T. Transcriptome Analysis of Goat Mammary Gland Tissue Reveals the Adaptive Strategies and Molecular Mechanisms of Lactation and Involution. Int J Mol Sci 2022; 23:ijms232214424. [PMID: 36430911 PMCID: PMC9693614 DOI: 10.3390/ijms232214424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution.
Collapse
|
8
|
Li W, Cologna SM. Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders. Mol Omics 2022; 18:256-278. [PMID: 35343995 PMCID: PMC9098683 DOI: 10.1039/d2mo00004k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major function of the lysosome is to degrade unwanted materials such as lipids, proteins, and nucleic acids; therefore, deficits of the lysosomal system can result in improper degradation and trafficking of these biomolecules. Diseases associated with lysosomal failure can be lethal and are termed lysosomal storage disorders (LSDs), which affect 1 in 5000 live births collectively. LSDs are inherited metabolic diseases caused by mutations in single lysosomal and non-lysosomal proteins and resulting in the subsequent accumulation of macromolecules within. Most LSD patients present with neurodegenerative clinical symptoms, as well as damage in other organs. The discovery of new biomarkers is necessary to understand and monitor these diseases and to track therapeutic progress. Over the past ten years, mass spectrometry (MS)-based proteomics has flourished in the biomarker studies in many diseases, including neurodegenerative, and more specifically, LSDs. In this review, biomarkers of disease pathophysiology and monitoring of LSDs revealed by MS-based proteomics are discussed, including examples from Niemann-Pick disease type C, Fabry disease, neuronal ceroid-lipofuscinoses, mucopolysaccharidosis, Krabbe disease, mucolipidosis, and Gaucher disease.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois at Chicago, USA.
| | | |
Collapse
|
9
|
Tariq A, Garnier U, Ghasemi R, Pierre Lefevre J, Mongin C, Brosseau A, Frédéric Audibert J, Pansu R, Dauzères A, Leray I. Perylene based PET Fluorescent molecular probes for pH monitoring. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Lin RH, Wang CC, Tung CW. A Machine Learning Classifier for Predicting Stable MCI Patients Using Gene Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084839. [PMID: 35457705 PMCID: PMC9025386 DOI: 10.3390/ijerph19084839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder with an insidious onset and irreversible condition. Patients with mild cognitive impairment (MCI) are at high risk of converting to AD. Early diagnosis of unstable MCI patients is therefore vital for slowing the progression to AD. However, current diagnostic methods are either highly invasive or expensive, preventing their wide applications. Developing low-invasive and cost-efficient screening methods is desirable as the first-tier approach for identifying unstable MCI patients or excluding stable MCI patients. This study developed feature selection and machine learning algorithms to identify blood-sample gene biomarkers for predicting stable MCI patients. Two datasets obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were utilized to conclude 29 genes biomarkers (31 probes) for predicting stable MCI patients. A random forest-based classifier performed well with area under the receiver operating characteristic curve (AUC) values of 0.841 and 0.775 for cross-validation and test datasets, respectively. For patients with a prediction score greater than 0.9, an excellent concordance of 97% was obtained, showing the usefulness of the proposed method for identifying stable MCI patients. In the context of precision medicine, the proposed prediction model is expected to be useful for identifying stable MCI patients and providing medical doctors and patients with new first-tier diagnosis options.
Collapse
Affiliation(s)
- Run-Hsin Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan;
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan;
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan
- Correspondence: ; Tel.: +88-6-3724-6166 (ext. 35771); Fax: +88-6-3758-6456
| |
Collapse
|
11
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
12
|
Abstract
Epidemiological studies have reported an inverse correlation between cancer and neurodegenerative disorders, and increasing evidence shows that similar genes and pathways are dysregulated in both diseases but in a contrasting manner. Given the genetic convergence of the neuronal ceroid lipofuscinoses (NCLs), a family of rare neurodegenerative disorders commonly known as Batten disease, and other neurodegenerative diseases, we sought to explore the relationship between cancer and the NCLs. In this review, we survey data from The Cancer Genome Atlas and available literature on the roles of NCL genes in different oncogenic processes to reveal links between all the NCL genes and cancer-related processes. We also discuss the potential contributions of NCL genes to cancer immunology. Based on our findings, we propose that further research on the relationship between cancer and the NCLs may help shed light on the roles of NCL genes in both diseases and possibly guide therapy development.
Collapse
|
13
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
14
|
Nascimento AC, Erustes AG, Reckziegel P, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS. α-Synuclein Overexpression Induces Lysosomal Dysfunction and Autophagy Impairment in Human Neuroblastoma SH-SY5Y. Neurochem Res 2020; 45:2749-2761. [PMID: 32915398 DOI: 10.1007/s11064-020-03126-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
Although the etiology of Parkinson's disease (PD) is multifactorial, it has been linked to abnormal accumulation of α-synuclein (α-syn) in dopaminergic neurons, which could lead to dysfunctions on intracellular organelles, with potential neurodegeneration. Patients with familial early-onset PD frequently present mutation in the α-syn gene (SNCA), which encodes mutant α-syn forms, such as A30P and A53T, which potentially regulate Ca2+ unbalance. Here we investigated the effects of overexpression of wild-type α-syn (WT) and the mutant forms A30P and A53T, on modulation of lysosomal Ca2+ stores and further autophagy activation. We found that in α-syn-overexpressing cells, there was a decrease in Ca2+ released from endoplasmic reticulum (ER) which is related to the increase in lysosomal Ca2+ release, coupled to lysosomal pH alkalization. Interestingly, α-syn-overexpressing cells showed lower LAMP1 levels, and a disruption of lysosomal morphology and distribution, affecting autophagy. Interestingly, all these effects were more evident with A53T mutant isoform when compared to A30P and WT α-syn types, indicating that the pathogenic phenotype for PD is potentially related to impairment of α-syn degradation. Taken together, these events directly impact PD-related dysfunctions, being considered possible molecular targets for neuroprotection.
Collapse
Affiliation(s)
- Ana Carolina Nascimento
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Adolfo G Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Patrícia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil
| | - Rodrigo P Ureshino
- Department of Biological Sciences, Diadema Campus, Universidade Federal de São Paulo (UNIFESP), Professor Arthur Riedel Street, Diadema, SP, 09972-270, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil.
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Três de Maio Street, 100, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
15
|
Zhong Y, Mohan K, Liu J, Al-Attar A, Lin P, Flight RM, Sun Q, Warmoes MO, Deshpande RR, Liu H, Jung KS, Mitov MI, Lin N, Butterfield DA, Lu S, Liu J, Moseley HNB, Fan TWM, Kleinman ME, Wang QJ. Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165883. [PMID: 32592935 DOI: 10.1016/j.bbadis.2020.165883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kabhilan Mohan
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Robert M Flight
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rahul R Deshpande
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Huijuan Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kyung Sik Jung
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Mihail I Mitov
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | | | - D Allan Butterfield
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Shuyan Lu
- Pfizer Inc., San Diego, CA, United States
| | - Jinze Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Computer Science, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Hunter N B Moseley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Teresa W M Fan
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
16
|
Burns JC, Cotleur B, Walther DM, Bajrami B, Rubino SJ, Wei R, Franchimont N, Cotman SL, Ransohoff RM, Mingueneau M. Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. eLife 2020; 9:e57495. [PMID: 32579115 PMCID: PMC7367682 DOI: 10.7554/elife.57495] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
To date, microglia subsets in the healthy CNS have not been identified. Utilizing autofluorescence (AF) as a discriminating parameter, we identified two novel microglia subsets in both mice and non-human primates, termed autofluorescence-positive (AF+) and negative (AF-). While their proportion remained constant throughout most adult life, the AF signal linearly and specifically increased in AF+ microglia with age and correlated with a commensurate increase in size and complexity of lysosomal storage bodies, as detected by transmission electron microscopy and LAMP1 levels. Post-depletion repopulation kinetics revealed AF- cells as likely precursors of AF+ microglia. At the molecular level, the proteome of AF+ microglia showed overrepresentation of endolysosomal, autophagic, catabolic, and mTOR-related proteins. Mimicking the effect of advanced aging, genetic disruption of lysosomal function accelerated the accumulation of storage bodies in AF+ cells and led to impaired microglia physiology and cell death, suggestive of a mechanistic convergence between aging and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jeremy Carlos Burns
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
- Department of Pharmacology & Experimental Therapeutics, Boston University School of MedicineBostonUnited States
| | - Bunny Cotleur
- Emerging Neurosciences Research Unit, BiogenCambridgeUnited States
| | | | - Bekim Bajrami
- Chemical Biology and ProteomicsCambridgeUnited States
| | - Stephen J Rubino
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
| | - Ru Wei
- Chemical Biology and ProteomicsCambridgeUnited States
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | | | - Michael Mingueneau
- Multiple Sclerosis & Neurorepair Research Unit, BiogenCambridgeUnited States
| |
Collapse
|
17
|
Gomez-Giro G, Arias-Fuenzalida J, Jarazo J, Zeuschner D, Ali M, Possemis N, Bolognin S, Halder R, Jäger C, Kuper WFE, van Hasselt PM, Zaehres H, del Sol A, van der Putten H, Schöler HR, Schwamborn JC. Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun 2019; 7:222. [PMID: 31888773 PMCID: PMC6937812 DOI: 10.1186/s40478-019-0871-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
The juvenile form of neuronal ceroid Lipofuscinosis (JNCL) is the most common form within this group of rare lysosomal storage disorders, causing pediatric neurodegeneration. The genetic disorder, which is caused by recessive mutations affecting the CLN3 gene, features progressive vision loss, cognitive and motor decline and other psychiatric conditions, seizure episodes, leading to premature death. Animal models have traditionally aid the understanding of the disease mechanisms and pathology and are very relevant for biomarker research and therapeutic testing. Nevertheless, there is a need for establishing reliable and predictive human cellular models to study the disease. Since patient material, particularly from children, is scarce and difficult to obtain, we generated an engineered a CLN3-mutant isogenic human induced pluripotent stem cell (hiPSC) line carrying the c.1054C → T pathologic variant, using state of the art CRISPR/Cas9 technology. To prove the suitability of the isogenic pair to model JNCL, we screened for disease-specific phenotypes in non-neuronal two-dimensional cell culture models as well as in cerebral brain organoids. Our data demonstrates that the sole introduction of the pathogenic variant gives rise to classical hallmarks of JNCL in vitro. Additionally, we discovered an alteration of the splicing caused by this particular mutation. Next, we derived cerebral organoids and used them as a neurodevelopmental model to study the particular effects of the CLN3Q352X mutation during brain formation in the disease context. About half of the mutation -carrying cerebral organoids completely failed to develop normally. The other half, which escaped this severe defect were used for the analysis of more subtle alterations. In these escapers, whole-transcriptome analysis demonstrated early disease signatures, affecting pathways related to development, corticogenesis and synapses. Complementary metabolomics analysis confirmed decreased levels of cerebral tissue metabolites, some particularly relevant for synapse formation and neurotransmission, such as gamma-amino butyric acid (GABA). Our data suggests that a mutation in CLN3 severely affects brain development. Furthermore, before disease onset, disease -associated neurodevelopmental changes, particular concerning synapse formation and function, occur.
Collapse
|
18
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
19
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
20
|
Chen FK, Zhang X, Eintracht J, Zhang D, Arunachalam S, Thompson JA, Chelva E, Mallon D, Chen SC, McLaren T, Lamey T, De Roach J, McLenachan S. Clinical and molecular characterization of non-syndromic retinal dystrophy due to c.175G>A mutation in ceroid lipofuscinosis neuronal 3 (CLN3). Doc Ophthalmol 2018; 138:55-70. [PMID: 30446867 DOI: 10.1007/s10633-018-9665-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Mutation of the CLN3 gene, associated with juvenile neuronal ceroid lipofuscinosis, has recently been associated with late-onset, non-syndromic retinal dystrophy. Herein we describe the multimodal imaging, immunological and systemic features of an adult with compound heterozygous CLN3 mutations. METHODS A 50-year-old female with non-syndromic retinal dystrophy from the age of 36 years underwent multimodal retinal imaging, electroretinography, neuroimaging, immunological studies and genetic testing. CLN3 transcripts were amplified from patient leukocytes by reverse transcriptase polymerase chain reaction and characterized by Sanger sequencing. RESULTS Visual acuity declined to 6/12 and 6/76 due to asymmetrical central scotoma. ERG responses became electronegative and patient's serum contained anti-retinal antibodies. Final visual acuity stabilized at 6/60 bilaterally 3 years after peri-ocular steroid and rituximab infusion. Genetic testing revealed compound heterozygous CLN3 mutations: the 1.02 kb deletion and a novel missense mutation (c.175G>A). In silico, analyses predicted the c.175G>A mutation disrupted an exonic splice enhancer site in exon 3. In patient leukocytes, CLN3 expression was reduced and novel CLN3 transcripts lacking exon 3 were detected. CONCLUSIONS Our case study shows that (1) non-syndromic CLN3 disease leads to rod and delayed primary cone degeneration resulting in constricting peripheral field and enlarging central scotoma and, (2) the c.175G>A CLN3 mutation, altered splicing of the CLN3 gene. Overall, we provide comprehensive clinical characterization of a patient with non-syndromic CLN3 disease.
Collapse
Affiliation(s)
- Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Xiao Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Jonathan Eintracht
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Sukanya Arunachalam
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Enid Chelva
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Dominic Mallon
- Department of Immunology, Fiona Stanley Hospital, Perth, WA, Australia
| | - Shang-Chih Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Terri McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Tina Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - John De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia.
| |
Collapse
|
21
|
Dannhausen K, Möhle C, Langmann T. Immunomodulation with minocycline rescues retinal degeneration in juvenile neuronal ceroid lipofuscinosis mice highly susceptible to light damage. Dis Model Mech 2018; 11:dmm.033597. [PMID: 30042155 PMCID: PMC6176999 DOI: 10.1242/dmm.033597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (jNCL) is a rare but fatal inherited lysosomal storage disorder mainly affecting children. The disease is caused by mutations in the CLN3 gene that lead to the accumulation of storage material in many tissues, prominent immune responses and neuronal degeneration. One of the first symptoms is vision loss followed by motor dysfunction and mental decline. The established Cln3Δex7/8 mouse model mimics many pathological features of the human disease except the retinal phenotype, which is very mild and occurs only very late in these mice. Here, we first carefully analyzed the retinal structure and microglia responses in these animals. While prominent autofluorescent spots were present in the fundus, only a moderate reduction of retinal thickness and no prominent microgliosis was seen in young CLN3-deficient mice. We next genetically introduced a light-sensitive RPE65 variant and established a light-damage paradigm that showed a high susceptibility of young Cln3Δex7/8 mice after exposure to 10,000 lux bright light for 30 min. Under these ‘low light’ conditions, CLN3-deficient mice showed a strong retinal degeneration, microglial activation, deposition of autofluorescent material and transcriptomic changes compared to wild-type animals. Finally, we treated the light-exposed Cln3Δex7/8 animals with the immunomodulatory compound minocycline, and thereby rescued the retinal phenotype and diminished microgliosis. Our findings indicate that exposure to specific light conditions accelerates CLN3-dependent retinal degeneration, and that immunomodulation by minocycline could be a possible treatment option to delay vision loss in jNCL patients. This article has an associated First Person interview with the first author of the paper. Summary: Here, we established a light-damage paradigm to model retinal degeneration in the juvenile neuronal ceroid lipofuscinosis mouse and showed the beneficial effects of minocycline on retinal pathology.
Collapse
Affiliation(s)
- Katharina Dannhausen
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany
| | - Christoph Möhle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
22
|
Cheng R, Tang M, Martinez I, Ayodele T, Baez P, Reyes-Dumeyer D, Lantigua R, Medrano M, Jimenez-Velazquez I, Lee JH, Beecham GW, Reitz C. Linkage analysis of multiplex Caribbean Hispanic families loaded for unexplained early-onset cases identifies novel Alzheimer's disease loci. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:554-562. [PMID: 30406174 PMCID: PMC6215058 DOI: 10.1016/j.dadm.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Less than 10% of early-onset Alzheimer's disease (EOAD) is explained by known mutations. Methods We conducted genetic linkage analysis of 68 well-phenotyped Caribbean Hispanic families without clear inheritance patterns or mutations in APP, PSEN1, and PSEN2 and with two or more individuals with EOAD. Results We identified 16 (logarithm of odds > 3.6) linked regions, including eight novel loci for EOAD (2p15, 5q14.1, 11p15.1, 13q21.22, 13q33.1, 16p12.1, 20p12.1, and 20q11.21) and eight regions previously associated with late-onset Alzheimer's disease. The strongest signal was observed at 16p12.1 (25 cM, 33 Mb; heterogeneity logarithm of odds = 5.3), ∼3 Mb upstream of the ceroid lipofuscinosis 3 (CLN3) gene associated with juvenile neuronal ceroid lipofuscinosis (JNCL), which functions in retromer trafficking and has been reported to alter intracellular processing of the amyloid precursor protein. Discussion This study supports the notion that the genetic architectures of unexplained EOAD and late-onset AD overlap partially, but not fully.
Collapse
Affiliation(s)
- Rong Cheng
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Min Tang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Izri Martinez
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Temitope Ayodele
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Penelope Baez
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Rafael Lantigua
- Department of Medicine, Columbia University, New York, NY, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | - Ivonne Jimenez-Velazquez
- Department of Internal Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Joseph H Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Epidemiology, Columbia University, New York, NY, USA
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Epidemiology, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis 2018; 115:182-193. [PMID: 29660499 PMCID: PMC5969532 DOI: 10.1016/j.nbd.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a class of inherited neurodegenerative diseases characterized by the accumulation of autofluorescent storage material. The most common neuronal ceroid lipofuscinosis has juvenile onset with rapid onset blindness and progressive degeneration of cognitive processes. The juvenile form is caused by mutations in the CLN3 gene, which encodes the protein CLN3. While mouse models of Cln3 deficiency show mild disease phenotypes, it is apparent from patient tissue- and cell-based studies that its loss impacts many cellular processes. Using Cln3 deficient mice, we previously described defects in mouse brain endothelial cells and blood-brain barrier (BBB) permeability. Here we expand on this to other components of the BBB and show that Cln3 deficient mice have increased astrocyte endfeet area. Interestingly, this phenotype is corrected by treatment with a commonly used GAP junction inhibitor, carbenoxolone (CBX). In addition to its action on GAP junctions, CBX has also been proposed to alter lipid microdomains. In this work, we show that CBX modifies lipid microdomains and corrects membrane fluidity alterations in Cln3 deficient endothelial cells, which in turn improves defects in endocytosis, caveolin-1 distribution at the plasma membrane, and Cdc42 activity. In further work using the NIH Library of Integrated Network-based Cellular Signatures (LINCS), we discovered other small molecules whose impact was similar to CBX in that they improved Cln3-deficient cell phenotypes. Moreover, Cln3 deficient mice treated orally with CBX exhibited recovery of impaired BBB responses and reduced auto-fluorescence. CBX and the compounds identified by LINCS, many of which have been used in humans or approved for other indications, may find therapeutic benefit in children suffering from CLN3 deficiency through mechanisms independent of their original intended use.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Luis Tecedor
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elena Lysenko
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Shyam Ramachandran
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
24
|
Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2018; 19:ijms19020625. [PMID: 29470438 PMCID: PMC5855847 DOI: 10.3390/ijms19020625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.
Collapse
|
25
|
Lack of specificity of antibodies raised against CLN3, the lysosomal/endosomal transmembrane protein mutated in juvenile Batten disease. Biosci Rep 2017; 37:BSR20171229. [PMID: 29089465 PMCID: PMC5700270 DOI: 10.1042/bsr20171229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Juvenile CLN3 (Batten) disease, a fatal, childhood neurodegenerative disorder, results from mutations in the CLN3 gene encoding a lysosomal/endosomal transmembrane protein. The exact physiological function of CLN3 is still unknown and it is unclear how CLN3 mutations lead to selective neurodegeneration. To study the tissue expression and subcellular localization of the CLN3 protein, a number of anti-CLN3 antibodies have been generated using either the whole CLN3 protein or short peptides from CLN3 for immunization. The specificity of these antibodies, however, has never been tested properly. Using immunoblot experiments, we show that commercially available or researcher-generated anti-CLN3 antibodies lack specificity: they detect the same protein bands in wild-type (WT) and Cln3−/− mouse brain and kidney extracts prepared with different detergents, in membrane proteins isolated from the cerebellum, cerebral hemisphere and kidney of WT and Cln3−/− mice, in cell extracts of WT and Cln3−/− mouse embryonic fibroblast cultures, and in lysates of BHK cells lacking or overexpressing human CLN3. Protein BLAST searches with sequences from peptides used to generate anti-CLN3 antibodies identified short motifs present in a number of different mouse and human proteins, providing a plausible explanation for the lack of specificity of anti-CLN3 antibodies. Our data provide evidence that immunization against a transmembrane protein with low to medium expression level does not necessarily generate specific antibodies. Because of the possible cross-reactivity to other proteins, the specificity of an antibody should always be checked using tissue samples from an appropriate knock-out animal or using knock-out cells.
Collapse
|
26
|
Grünewald B, Lange MD, Werner C, O'Leary A, Weishaupt A, Popp S, Pearce DA, Wiendl H, Reif A, Pape HC, Toyka KV, Sommer C, Geis C. Defective synaptic transmission causes disease signs in a mouse model of juvenile neuronal ceroid lipofuscinosis. eLife 2017; 6:28685. [PMID: 29135436 PMCID: PMC5724993 DOI: 10.7554/elife.28685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease) caused by mutations in the CLN3 gene is the most prevalent inherited neurodegenerative disease in childhood resulting in widespread central nervous system dysfunction and premature death. The consequences of CLN3 mutation on the progression of the disease, on neuronal transmission, and on central nervous network dysfunction are poorly understood. We used Cln3 knockout (Cln3Δex1-6) mice and found increased anxiety-related behavior and impaired aversive learning as well as markedly affected motor function including disordered coordination. Patch-clamp and loose-patch recordings revealed severely affected inhibitory and excitatory synaptic transmission in the amygdala, hippocampus, and cerebellar networks. Changes in presynaptic release properties may result from dysfunction of CLN3 protein. Furthermore, loss of calbindin, neuropeptide Y, parvalbumin, and GAD65-positive interneurons in central networks collectively support the hypothesis that degeneration of GABAergic interneurons may be the cause of supraspinal GABAergic disinhibition.
Collapse
Affiliation(s)
- Benedikt Grünewald
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Integrated Research and Treatment Center-Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Maren D Lange
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Christian Werner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Weishaupt
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Sandy Popp
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, United States
| | - Heinz Wiendl
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University of Münster, Münster, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Hans C Pape
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Klaus V Toyka
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Geis
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Integrated Research and Treatment Center-Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Xu S, Zhang L, Brodin L. Overexpression of SNX7 reduces Aβ production by enhancing lysosomal degradation of APP. Biochem Biophys Res Commun 2017; 495:12-19. [PMID: 29080748 DOI: 10.1016/j.bbrc.2017.10.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023]
Abstract
Abnormal production of amyloid-β peptides (Aβ) by proteolytic processing of amyloid precursor protein (APP) is thought to be central to the pathogenesis of Alzheimer's disease (AD). Although many efforts have been made to investigate mechanisms that regulate APP processing, many details remain incompletely understood. Sorting nexins (SNXs) are a family of proteins which are involved in many intracellular trafficking events. Several SNXs have been implicated in APP processing and Aβ production. In this study, we extended the investigation to SNX7. We found that overexpression of SNX7 in HEK293T cells reduces the levels of secreted Aβ and β-cleaved N-terminal APP fragments (sAPPβ). Moreover, SNX7 overexpression caused a significant reduction of the steady-state levels of APP as well as of the cell surface APP levels. By using NH4Cl and Bafilomycin A1 to inhibit the lysosomal degradative pathway, we found that the reduction of APP induced by SNX7 overexpression was prevented by such inhibition. No change in the cell surface distribution or steady-state levels of BACE1 was detected after overexpression of SNX7. Taken together, these results suggest that SNX7 regulates Aβ production by directing APP for degradation.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Lu Zhang
- Department of Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Lennart Brodin
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
28
|
Cárcel-Trullols J, Kovács AD, Pearce DA. Role of the Lysosomal Membrane Protein, CLN3, in the Regulation of Cathepsin D Activity. J Cell Biochem 2017; 118:3883-3890. [PMID: 28390177 PMCID: PMC5603378 DOI: 10.1002/jcb.26039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
Among Neuronal Ceroid Lipofuscinoses (NCLs), which are childhood fatal neurodegenerative disorders, the juvenile onset form (JNCL) is the most common. JNCL is caused by recessive mutations in the CLN3 gene. CLN3 encodes a lysosomal/endosomal transmembrane protein but its precise function is not completely known. We have previously reported that in baby hamster kidney (BHK) cells stably expressing myc-tagged human CLN3 (myc-CLN3), hyperosmotic conditions drastically increased myc-CLN3 mRNA and protein expression. In the present study, we analyzed the consequences of hyperosmolarity, and increased CLN3 expression on cathepsin D (CTSD) activity and prosaposin processing using BHK cells transiently or stably expressing myc-CLN3. We found that hyperosmolarity increased lysotracker staining of lysosomes, and elevated the levels of myc-CLN3 and lysosome-associated membrane protein-1 (LAMP1). Hyperosmolarity, independently of the expression level of myc-CLN3, decreased the levels of PSAP and saposin D, which are protein cofactors in sphingolipid metabolism. The lysosomal enzyme cathepsin D (CTSD) mediates the proteolytic cleavage of PSAP precursor into saposins A-D. Myc-CLN3 colocalized with CTSD and activity of CTSD decreased as myc-CLN3 expression increased, and clearly decreased under hyperosmotic conditions. Nevertheless, levels of CTSD measured by Western blotting were not altered under any studied condition. Our results suggest a direct involvement of CLN3 in the regulation of CTSD activity. J. Cell. Biochem. 118: 3883-3890, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jaime Cárcel-Trullols
- Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, 57104 USA
| | - Attila D. Kovács
- Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, 57104 USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, South Dakota, 57104 USA
| | - David A. Pearce
- Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, 57104 USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota Sioux Falls, South Dakota, 57104 USA
| |
Collapse
|
29
|
Assmus F, Houston JB, Galetin A. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. Eur J Pharm Sci 2017; 109:419-430. [DOI: 10.1016/j.ejps.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
|
30
|
Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. MICROBIAL CELL 2017; 4:278-293. [PMID: 28913343 PMCID: PMC5597791 DOI: 10.15698/mic2017.09.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Stephen L Sturley
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
31
|
Lloyd-Evans E, Haslett LJ. The lysosomal storage disease continuum with ageing-related neurodegenerative disease. Ageing Res Rev 2016; 32:104-121. [PMID: 27516378 DOI: 10.1016/j.arr.2016.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases and diseases of ageing share many features both at the physiological level and with respect to the mechanisms that underlie disease pathogenesis. Although the exact pathophysiology is not exactly the same, it is astounding how many similar pathways are altered in all of these diseases. The aim of this review is to provide a summary of the shared disease mechanisms, outlining the similarities and differences and how genetics, insight into rare diseases and functional research has changed our perspective on the causes underlying common diseases of ageing. The lysosome should no longer be considered as just the stomach of the cell or as a suicide bag, it has an emerging role in cellular signalling, nutrient sensing and recycling. The lysosome is of fundamental importance in the pathophysiology of diseases of ageing and by comparing against the LSDs we not only identify common pathways but also therapeutic targets so that ultimately more effective treatments can be developed for all neurodegenerative diseases.
Collapse
|
32
|
Wycisk V, Achazi K, Hillmann P, Hirsch O, Kuehne C, Dernedde J, Haag R, Licha K. Responsive Contrast Agents: Synthesis and Characterization of a Tunable Series of pH-Sensitive Near-Infrared Pentamethines. ACS OMEGA 2016; 1:808-817. [PMID: 30023492 PMCID: PMC6044694 DOI: 10.1021/acsomega.6b00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 05/15/2023]
Abstract
The demand for responsive dyes in optical imaging is high to achieve a better signal-to-noise ratio and, more specifically, to visualize acidic compartments of the endocytic pathway. Herein, we present a new synthetic route, with a step-by-step synthesis of water-soluble pH-sensitive cyanine dyes exhibiting pKa values in the region of physiological pH, as confirmed by absorption and fluorescence spectra. Moreover, modification of pKa values was achieved by two different substitution patterns, creating tunable pH-sensitive dyes. We demonstrated the functionality of the pH-sensitive dyes and their suitability as contrast agents for cellular uptake studies by preparing dye-labeled cetuximab and transferrin conjugates. Sulfonated head chains increased water solubility and prevented the formation of dimers, even in the context of dye-labeled bioconjugates. Confocal microscopy images of living cells revealed their pH-responsiveness, as specific fluorescence signal enhancements were observed in acidic compartments of the endocytic pathway (endosomes and lysosomes), although the background signal was low in a pH-neutral environment. Using mixtures of conjugates labeled with either a pH-sensitive or non-pH-sensitive dye for the uptake studies, we could follow the receptor binding and distinguish it from the endocytic uptake process of the conjugates in a simultaneous manner. Moreover, we used flow cytometry to quantify the fluorescence and observed a 3-fold signal enhancement for the pH-sensitive dye conjugates over a period of 3 h.
Collapse
Affiliation(s)
- Virginia Wycisk
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Paul Hillmann
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ole Hirsch
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | - Christian Kuehne
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Dernedde
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rainer Haag
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kai Licha
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
33
|
Hersrud SL, Kovács AD, Pearce DA. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1324-36. [PMID: 27101989 PMCID: PMC4899816 DOI: 10.1016/j.bbadis.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Mutations of the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive lysosomal storage disorder that causes progressive neurodegeneration in children and adolescents. There is evidence of immune system involvement in pathology that has been only minimally investigated. We characterized bone marrow stem cell-derived antigen presenting cells (APCs), peritoneal macrophages, and leukocytes from spleen and blood, harvested from the Cln3(-/-) mouse model of JNCL. We detected dramatically elevated CD11c surface levels and increased total CD11c protein in Cln3(-/-) cell samples compared to wild type. This phenotype was specific to APCs and also to a loss of CLN3, as surface levels did not differ from wild type in other leukocyte subtypes nor in cells from two other NCL mouse models. Subcellularly, CD11c was localized to lipid rafts, indicating that perturbation of surface levels is attributable to derangement of raft dynamics, which has previously been shown in Cln3 mutant cells. Interrogation of APC function revealed that Cln3(-/-) cells have increased adhesiveness to CD11c ligands as well as an abnormal secretory pattern that closely mimics what has been previously reported for Cln3 mutant microglia. Our results show that CLN3 deficiency alters APCs, which can be a major contributor to the autoimmune response in JNCL.
Collapse
Affiliation(s)
- Samantha L Hersrud
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States.
| |
Collapse
|
34
|
Bond ME, Brown R, Rallis C, Bähler J, Mole SE. A central role for TOR signalling in a yeast model for juvenile CLN3 disease. MICROBIAL CELL 2015; 2:466-480. [PMID: 28357272 PMCID: PMC5354605 DOI: 10.15698/mic2015.12.241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases.
Collapse
Affiliation(s)
- Michael E Bond
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rachel Brown
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Charalampos Rallis
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. ; Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK. ; UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. ; Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
35
|
Despras G, Zamaleeva AI, Dardevet L, Tisseyre C, Magalhaes JG, Garner C, De Waard M, Amigorena S, Feltz A, Mallet JM, Collot M. H-Rubies, a new family of red emitting fluorescent pH sensors for living cells. Chem Sci 2015; 6:5928-5937. [PMID: 29861916 PMCID: PMC5950754 DOI: 10.1039/c5sc01113b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Monitoring intracellular pH has drawn much attention due to its undeniably important function in cells. The widespread development of fluorescent imaging techniques makes pH sensitive fluorescent dyes valuable tools, especially red-emitting dyes which help to avoid the overcrowded green end of the spectral band. Herein, we present H-Rubies, a family of pH sensors based on a phenol moiety and a X-rhodamine fluorophore that display a bright red fluorescence upon acidification with pKa values spanning from 4 to 9. Slight structural modifications led to dramatic changes in their physicochemical properties and a relationship between their structures, their ability to form H-aggregates, and their apparent pKa was established. While molecular form H-Rubies can be used to monitor mitochondrial acidification of glioma cells, their functionalised forms were linked via click chemistry to dextrans or microbeads containing a near infrared Cy5 (Alexa-647) in order to provide ratiometric systems that were used to measure respectively the phagosomal and endosomal pH in macrophages (RAW 264.7 cells) using flow cytometry.
Collapse
Affiliation(s)
- Guillaume Despras
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| | - Alsu I Zamaleeva
- Ecole Normale Supérieure , Institut de Biologie de l'ENS (IBENS) , INSERM U1024 , CNRS UMR 8197 , Paris F-75005 , France
- INSERM U932 , Institute Curie , 75248 , Paris, Cedex 05 , France
| | - Lucie Dardevet
- Inserm U836 , LabEx Ion Channels, Science and Therapeutics , Grenoble Institute of Neuroscience , chemin fortuné ferrini, bâtiment Edmond Safra , 38042 Grenoble Cedex 09 , France
- Université Joseph Fourier , Grenoble , France
| | - Céline Tisseyre
- Inserm U836 , LabEx Ion Channels, Science and Therapeutics , Grenoble Institute of Neuroscience , chemin fortuné ferrini, bâtiment Edmond Safra , 38042 Grenoble Cedex 09 , France
- Université Joseph Fourier , Grenoble , France
| | | | - Charlotte Garner
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| | - Michel De Waard
- Inserm U836 , LabEx Ion Channels, Science and Therapeutics , Grenoble Institute of Neuroscience , chemin fortuné ferrini, bâtiment Edmond Safra , 38042 Grenoble Cedex 09 , France
- Université Joseph Fourier , Grenoble , France
- Smartox Biotechnology , Saint Martin d'Hères , France
| | | | - Anne Feltz
- Ecole Normale Supérieure , Institut de Biologie de l'ENS (IBENS) , INSERM U1024 , CNRS UMR 8197 , Paris F-75005 , France
| | - Jean-Maurice Mallet
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| | - Mayeul Collot
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| |
Collapse
|
36
|
Henry AG, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, Hirst WD. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet 2015; 24:6013-28. [PMID: 26251043 DOI: 10.1093/hmg/ddv314] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022] Open
Abstract
Lysosomal dysfunction plays a central role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Several genes linked to genetic forms of PD, including leucine-rich repeat kinase 2 (LRRK2), functionally converge on the lysosomal system. While mutations in LRRK2 are commonly associated with autosomal-dominant PD, the physiological and pathological functions of this kinase remain poorly understood. Here, we demonstrate that LRRK2 regulates lysosome size, number and function in astrocytes, which endogenously express high levels of LRRK2. Expression of LRRK2 G2019S, the most common pathological mutation, produces enlarged lysosomes and diminishes the lysosomal capacity of these cells. Enlarged lysosomes appears to be a common phenotype associated with pathogenic LRRK2 mutations, as we also observed this effect in cells expressing other LRRK2 mutations; R1441C or Y1699C. The lysosomal defects associated with these mutations are dependent on both the catalytic activity of the kinase and autophosphorylation of LRRK2 at serine 1292. Further, we demonstrate that blocking LRRK2's kinase activity, with the potent and selective inhibitor PF-06447475, rescues the observed defects in lysosomal morphology and function. The present study also establishes that G2019S mutation leads to a reduction in lysosomal pH and increased expression of the lysosomal ATPase ATP13A2, a gene linked to a parkinsonian syndrome (Kufor-Rakeb syndrome), in brain samples from mouse and human LRRK2 G2019S carriers. Together, these results demonstrate that PD-associated LRRK2 mutations perturb lysosome function in a kinase-dependent manner, highlighting the therapeutic promise of LRRK2 kinase inhibitors in the treatment of PD.
Collapse
Affiliation(s)
- Anastasia G Henry
- Pfizer Neuroscience and Pain Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Soheil Aghamohammadzadeh
- Pfizer Neuroscience and Pain Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Harry Samaroo
- Pfizer Neuroscience and Pain Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Yi Chen
- Pfizer Neuroscience and Pain Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Kewa Mou
- Pfizer Neuroscience and Pain Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Elie Needle
- Pfizer Neuroscience and Pain Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Warren D Hirst
- Pfizer Neuroscience and Pain Research Unit, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| |
Collapse
|
37
|
Cell biology of the NCL proteins: What they do and don't do. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2242-55. [PMID: 25962910 DOI: 10.1016/j.bbadis.2015.04.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
The fatal, primarily childhood neurodegenerative disorders, neuronal ceroid lipofuscinoses (NCLs), are currently associated with mutations in 13 genes. The protein products of these genes (CLN1 to CLN14) differ in their function and their intracellular localization. NCL-associated proteins have been localized mostly in lysosomes (CLN1, CLN2, CLN3, CLN5, CLN7, CLN10, CLN12 and CLN13) but also in the Endoplasmic Reticulum (CLN6 and CLN8), or in the cytosol associated to vesicular membranes (CLN4 and CLN14). Some of them such as CLN1 (palmitoyl protein thioesterase 1), CLN2 (tripeptidyl-peptidase 1), CLN5, CLN10 (cathepsin D), and CLN13 (cathepsin F), are lysosomal soluble proteins; others like CLN3, CLN7, and CLN12, have been proposed to be lysosomal transmembrane proteins. In this review, we give our views and attempt to summarize the proposed and confirmed functions of each NCL protein and describe and discuss research results published since the last review on NCL proteins. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
38
|
Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M, Oh H, Wolf P, Zhao WN, Norton S, Haggarty SJ, Lloyd-Evans E, Cotman SL. Unbiased Cell-based Screening in a Neuronal Cell Model of Batten Disease Highlights an Interaction between Ca2+ Homeostasis, Autophagy, and CLN3 Protein Function. J Biol Chem 2015; 290:14361-80. [PMID: 25878248 DOI: 10.1074/jbc.m114.621706] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/06/2022] Open
Abstract
Abnormal accumulation of undigested macromolecules, often disease-specific, is a major feature of lysosomal and neurodegenerative disease and is frequently attributed to defective autophagy. The mechanistic underpinnings of the autophagy defects are the subject of intense research, which is aided by genetic disease models. To gain an improved understanding of the pathways regulating defective autophagy specifically in juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), a neurodegenerative disease of childhood, we developed and piloted a GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) screening assay to identify, in an unbiased fashion, genotype-sensitive small molecule autophagy modifiers, employing a JNCL neuronal cell model bearing the most common disease mutation in CLN3. Thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) Ca(2+) pump inhibitor, reproducibly displayed significantly more activity in the mouse JNCL cells, an effect that was also observed in human-induced pluripotent stem cell-derived JNCL neural progenitor cells. The mechanism of thapsigargin sensitivity was Ca(2+)-mediated, and autophagosome accumulation in JNCL cells could be reversed by Ca(2+) chelation. Interrogation of intracellular Ca(2+) handling highlighted alterations in endoplasmic reticulum, mitochondrial, and lysosomal Ca(2+) pools and in store-operated Ca(2+) uptake in JNCL cells. These results further support an important role for the CLN3 protein in intracellular Ca(2+) handling and in autophagic pathway flux and establish a powerful new platform for therapeutic screening.
Collapse
Affiliation(s)
- Uma Chandrachud
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Mathew W Walker
- the Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Alexandra M Simas
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Sasja Heetveld
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Anton Petcherski
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Madeleine Klein
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Hyejin Oh
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Pavlina Wolf
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Wen-Ning Zhao
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Stephanie Norton
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Stephen J Haggarty
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Emyr Lloyd-Evans
- the Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Susan L Cotman
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| |
Collapse
|
39
|
Moffatt JH, Newton P, Newton HJ. Coxiella burnetii: turning hostility into a home. Cell Microbiol 2015; 17:621-31. [PMID: 25728389 DOI: 10.1111/cmi.12432] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/08/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
Abstract
Coxiella burnetii, the causative agent of the human disease Q fever, is a unique intracellular bacterial pathogen. Coxiella replicates to high numbers within a pathogen-derived lysosome-like vacuole, thriving within a low pH, highly proteolytic and oxidative environment. In 2009, researchers developed means to axenically culture Coxiella paving the way for the development of tools to genetically manipulate the organism. These advances have revolutionized our capacity to examine the pathogenesis of Coxiella. In recent years, targeted and random mutant strains have been used to demonstrate that the Dot/Icm type IV secretion system is essential for intracellular replication of Coxiella. Current research is focused towards understanding the unique cohort of over 130 effector proteins that are translocated into the host cell. Mutagenesis screens have been employed to identify effectors that play important roles for the biogenesis of the Coxiella-containing vacuole and intracellular replication of Coxiella. A surprisingly high number of effector mutants demonstrate significant intracellular growth defects, and future studies on the molecular function of these effectors will provide great insight into the pathogenesis of Coxiella. Already, this expanse of new data implicates many eukaryotic processes that are targeted by the arsenal of Coxiella effectors including autophagy, apoptosis and vesicular trafficking.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Vic., Australia
| | | | | |
Collapse
|
40
|
Autophagy in neuropathology. Acta Neuropathol 2015; 129:333-5. [PMID: 25648862 DOI: 10.1007/s00401-015-1396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Scifo E, Szwajda A, Dębski J, Uusi-Rauva K, Kesti T, Dadlez M, Gingras AC, Tyynelä J, Baumann MH, Jalanko A, Lalowski M. Drafting the CLN3 protein interactome in SH-SY5Y human neuroblastoma cells: a label-free quantitative proteomics approach. J Proteome Res 2013; 12:2101-15. [PMID: 23464991 DOI: 10.1021/pr301125k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are the most common inherited progressive encephalopathies of childhood. One of the most prevalent forms of NCL, Juvenile neuronal ceroid lipofuscinosis (JNCL) or CLN3 disease (OMIM: 204200), is caused by mutations in the CLN3 gene on chromosome 16p12.1. Despite progress in the NCL field, the primary function of ceroid-lipofuscinosis neuronal protein 3 (CLN3) remains elusive. In this study, we aimed to clarify the role of human CLN3 in the brain by identifying CLN3-associated proteins using a Tandem Affinity Purification coupled to Mass Spectrometry (TAP-MS) strategy combined with Significance Analysis of Interactome (SAINT). Human SH-SY5Y-NTAP-CLN3 stable cells were used to isolate native protein complexes for subsequent TAP-MS. Bioinformatic analyses of isolated complexes yielded 58 CLN3 interacting partners (IP) including 42 novel CLN3 IP, as well as 16 CLN3 high confidence interacting partners (HCIP) previously identified in another high-throughput study by Behrends et al., 2010. Moreover, 31 IP of ceroid-lipofuscinosis neuronal protein 5 (CLN5) were identified (18 of which were in common with the CLN3 bait). Our findings support previously suggested involvement of CLN3 in transmembrane transport, lipid homeostasis and neuronal excitability, as well as link it to G-protein signaling and protein folding/sorting in the ER.
Collapse
Affiliation(s)
- Enzo Scifo
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Anatomy, and Finnish Graduate School of Neuroscience, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Getty AL, Rothberg PG, Pearce DA. Diagnosis of neuronal ceroid lipofuscinosis: mutation detection strategies. ACTA ACUST UNITED AC 2013; 1:351-62. [PMID: 23489355 DOI: 10.1517/17530059.1.3.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL) are a group of rare genetically inherited neurodegenerative disorders in children. These diseases are classified by age of onset (congenital, infantile, late-infantile, juvenile and adult-onset) and by the gene bearing mutations (CLN10/CTSD, CLN1/PPT1, CLN2/TPP1, CLN3, CLN5, CLN6, CLN7/MFSD8 and CLN8). Enzyme activity assays are helpful in identifying several of these disorders; however confirmation of the mutation in the gene causing these diseases is vital for definitive diagnosis. There exists considerable heterogeneity in the NCLs as a whole and within each type of NCL both in phenotype (disease manifestation and progression) and genotype (type of mutation), which complicates NCL diagnosis. In order to streamline the diagnostic process, the age of symptom onset, geography and/or ethnicity, and enzyme activity may be considered together. However, these ultimately serve to guide targeting the correct route to genetic confirmation of an NCL through mutational analysis. Herein, an effective protocol to diagnose NCLs using these criteria is presented.
Collapse
Affiliation(s)
- Amanda L Getty
- University of Rochester School of Medicine and Dentistry, Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, Box 645, Rochester, New York 14642, USA +1 585 506 1972 ;
| | | | | |
Collapse
|
43
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Vidal-Donet JM, Cárcel-Trullols J, Casanova B, Aguado C, Knecht E. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One 2013; 8:e55526. [PMID: 23408996 PMCID: PMC3567113 DOI: 10.1371/journal.pone.0055526] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/27/2012] [Indexed: 12/21/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCL) are lysosomal storage disorders characterized by the accumulation of lipofuscin within lysosomes. Late infantile (LINCL) and juvenile (JNCL) are their most common forms and are caused by loss-of-function mutations in tripeptidyl peptidase 1 (TPP1), a lysosomal endopeptidase, and CLN3 protein (CLN3p), whose location and function is still controversial. LINCL patients suffer more severely from NCL consequences than JNCL patients, in spite of having in common an abnormal accumulation of material with a similar composition in the lysosomes. To identify distinctive characteristics that could explain the differences in the severity of LINCL and JNCL pathologies, we compared the protein degradation mechanisms in patientś fibroblasts. Pulse-chase experiments show a significant decrease in protein degradation by macroautophagy in fibroblasts bearing TPP1 (CLN2) and CLN3p (CLN3) mutations. In CLN2 fibroblasts, LC3-II levels and other procedures indicate an impaired formation of autophagosomes, which confirms the pulse-chase experiments. This defect is linked to an accumulation of reactive oxygen species (ROS), an upregulation of the Akt-mTOR signalling pathway and increased activities of the p38α and ERK1/2 MAPKs. In CLN3 fibroblasts, LC3-II analysis indicates impairment in autophagosome maturation and there is also a defect in fluid phase endocytosis, two alterations that can be related to an observed increase of 0.5 units in lysosomal pH. CLN3 fibroblasts also accumulate ROS but to a lower extent than CLN2. TPP1 activity is completely abrogated in CLN2 and partially diminished in CLN3 fibroblasts. TPP1 cleaves small hydrophobic proteins like subunit c of mitochondrial ATP synthase and the lack or a lower activity of this enzyme can contribute to lipofuscin accumulation. These alterations in TPP1 activity lead to an increased ROS production, especially in CLN2 in which it is aggravated by a decrease in catalase activity. This could explain the earlier appearance of the symptoms in the LINCL form.
Collapse
Affiliation(s)
| | - Jaime Cárcel-Trullols
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Carmen Aguado
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Erwin Knecht
- Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- * E-mail:
| |
Collapse
|
45
|
Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. mBio 2013; 4:e00606-12. [PMID: 23362322 PMCID: PMC3560531 DOI: 10.1128/mbio.00606-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen that replicates within a lysosome-like vacuole. A Dot/Icm type IVB secretion system is used by C. burnetii to translocate effector proteins into the host cytosol that likely modulate host factor function. To identify host determinants required for C. burnetii intracellular growth, a genome-wide screen was performed using gene silencing by small interfering RNA (siRNA). Replication of C. burnetii was measured by immunofluorescence microscopy in siRNA-transfected HeLa cells. Newly identified host factors included components of the retromer complex, which mediates cargo cycling between the endocytic pathway and the Golgi apparatus. Reducing the levels of the retromer cargo-adapter VPS26-VPS29-VPS35 complex or retromer-associated sorting nexins abrogated C. burnetii replication. Several genes, when silenced, resulted in enlarged vacuoles or an increased number of vacuoles within C. burnetii-infected cells. Silencing of the STX17 gene encoding syntaxin-17 resulted in a striking defect in homotypic fusion of vacuoles containing C. burnetii, suggesting a role for syntaxin-17 in regulating this process. Lastly, silencing host genes needed for C. burnetii replication correlated with defects in the translocation of Dot/Icm effectors, whereas, silencing of genes that affected vacuole morphology, but did not impact replication, did not affect Dot/Icm translocation. These data demonstrate that C. burnetii vacuole maturation is important for creating a niche that permits Dot/Icm function. Thus, genome-wide screening has revealed host determinants involved in sequential events that occur during C. burnetii infection as defined by bacterial uptake, vacuole transport and acidification, activation of the Dot/Icm system, homotypic fusion of vacuoles, and intracellular replication. Q fever in humans is caused by the bacterium Coxiella burnetii. Infection with C. burnetii is marked by its unique ability to replicate within a large vacuolar compartment inside cells that resembles the harsh, acidic environment of a lysosome. Central to its pathogenesis is the delivery of bacterial effector proteins into the host cell cytosol by a Dot/Icm type IVB secretion system. These proteins can interact with and manipulate host factors, thereby leading to creation and maintenance of the vacuole that the bacteria grow within. Using high-throughput genome-wide screening in human cells, we identified host factors important for several facets of C. burnetii infection, including vacuole transport and membrane fusion events that promote vacuole expansion. In addition, we show that maturation of the C. burnetii vacuole is necessary for creating an environment permissive for the Dot/Icm delivery of bacterial effector proteins into the host cytosol.
Collapse
|
46
|
Gourfinkel-An I, Baulac S, Brice A, Leguern E, Baulac M. Genetics of inherited human epilepsies. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034131 PMCID: PMC3181638 DOI: 10.31887/dcns.2001.3.1/igourfinkelan] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Major advances have recently been made in our understanding of the genetic basis of monogenic inherited epilepsies. Progress has been particularly spectacular with respect to idiopathic epilepsies, with the discovery that mutations in ion channel subunits are implicated. However, important advances have also been made in many inherited symptomatic epilepsies, for which direct molecular diagnosis is now possible, simplifying previously complex investigations, it is expected that identification of the genes implicated in familial forms of epilepsies will lead to a better understanding of the underlying pathophysiological mechanisms of these disorders and to the development of experimental models and new therapeutic strategies, in this article, we review the clinical and genetic data concerning most of the inherited human epilepsies.
Collapse
Affiliation(s)
- I Gourfinkel-An
- Unité d'Epileptologie, Hôpital Pitié-Salpêtrière, Paris, France; Service d'Electrophysiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
47
|
Uusi-Rauva K, Kyttälä A, van der Kant R, Vesa J, Tanhuanpää K, Neefjes J, Olkkonen VM, Jalanko A. Neuronal ceroid lipofuscinosis protein CLN3 interacts with motor proteins and modifies location of late endosomal compartments. Cell Mol Life Sci 2012; 69:2075-89. [PMID: 22261744 PMCID: PMC11114557 DOI: 10.1007/s00018-011-0913-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/08/2011] [Accepted: 12/29/2011] [Indexed: 01/17/2023]
Abstract
CLN3 is an endosomal/lysosomal transmembrane protein mutated in classical juvenile onset neuronal ceroid lipofuscinosis, a fatal inherited neurodegenerative lysosomal storage disorder. The function of CLN3 in endosomal/lysosomal events has remained elusive due to poor understanding of its interactions in these compartments. It has previously been shown that the localisation of late endosomal/lysosomal compartments is disturbed in cells expressing the most common disease-associated CLN3 mutant, CLN3∆ex7-8 (c.462-677del). We report here that a protracted disease causing mutant, CLN3E295K, affects the properties of late endocytic compartments, since over-expression of the CLN3E295K mutant protein in HeLa cells induced relocalisation of Rab7 and a perinuclear clustering of late endosomes/lysosomes. In addition to the previously reported disturbances in the endocytic pathway, we now show that the anterograde transport of late endosomal/lysosomal compartments is affected in CLN3 deficiency. CLN3 interacted with motor components driving both plus and minus end microtubular trafficking: tubulin, dynactin, dynein and kinesin-2. Most importantly, CLN3 was found to interact directly with active, guanosine-5'-triphosphate (GTP)-bound Rab7 and with the Rab7-interacting lysosomal protein (RILP) that anchors the dynein motor. The data presented in this study provide novel insights into the role of CLN3 in late endosomal/lysosomal membrane transport.
Collapse
Affiliation(s)
- Kristiina Uusi-Rauva
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | - Aija Kyttälä
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | - Rik van der Kant
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Jouni Vesa
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Gonda Neuroscience and Genetics Research Center, Los Angeles, CA 90095-7088 USA
| | - Kimmo Tanhuanpää
- Light Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Anu Jalanko
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| |
Collapse
|
48
|
Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull 2012; 88:43-57. [PMID: 22502604 DOI: 10.1016/j.brainresbull.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/04/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL, also known as Batten disease) is a devastating neurodegenerative diseases caused by mutations in either soluble enzymes or membrane-associated structural proteins that result in lysosome dysfunction. Different forms of NCL were defined initially by age of onset, affected population and/or type of storage material but collectively represent the most prevalent pediatric hereditary neurovisceral storage disorder. Specific gene mutations are now known for each subclass of NCL in humans that now largely define the disease: cathepsin D (CTSD) for congenital (CLN10 form); palmitoyl protein thioesterase 1 (PPT1) for infantile (CLN1 form); tripeptidyl peptidase 1 (TPP1) for classic late infantile (CLN2 form); variant late infantile-CLN5, CLN6 or CLN8 for variant late infantile forms; and CLN3 for juvenile (CLN3 form). Several mouse models of NCL have been developed, or in some cases exist sporadically, that exhibit mutations producing a progressive neurodegenerative phenotype similar to that observed in human NCL. The study of these mouse models of NCL has dramatically advanced our knowledge of NCL pathophysiology and in some cases has helped delineate the function of proteins mutated in human NCL. In addition, NCL mutant mice have been tested for several different therapeutic approaches and as such they have become important pre-clinical models for validating treatment options. In this review we will assess the current state of mouse models of NCL with regards to their unique pathophysiology and how these mice have helped investigators achieve a better understanding of human NCL disease and therapy.
Collapse
Affiliation(s)
- John J Shacka
- Neuropathology Division, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
49
|
Wang P, Ju W, Wu D, Wang L, Yan M, Zou J, He B, Jenkins EC, Brown WT, Zhong N. A two-dimensional protein fragmentation-proteomic study of neuronal ceroid lipofuscinoses: Identification and characterization of differentially expressed proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:304-16. [DOI: 10.1016/j.jchromb.2010.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 12/02/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
50
|
Chang JW, Choi H, Cotman SL, Jung YK. Lithium rescues the impaired autophagy process in CbCln3(Δex7/8/Δex7/8) cerebellar cells and reduces neuronal vulnerability to cell death via IMPase inhibition. J Neurochem 2011; 116:659-68. [PMID: 21175620 PMCID: PMC4517618 DOI: 10.1111/j.1471-4159.2010.07158.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (Batten disease) is a neurodegenerative disorder caused by mutation in CLN3. Defective autophagy and concomitant accumulation of autofluorescence enriched with mitochondrial ATP synthase subunit c were previously discovered in Cln3 mutant knock-in mice. In this study, we show that treatment with lithium reduces numbers of LC3-positive autophagosomes and accumulation of LC3-II in Cln3 mutant knock-in cerebellar cells (CbCln3(Δex7/8/Δex7/8) ). Lithium, an inhibitor of GSK3 and IMPase, reduces the accumulation of mitochondrial ATP synthase subunit c and autofluorescence in CbCln3(Δex7/8/Δex7/8) cells, and mitigates the abnormal subcellular distribution of acidic vesicles in the cells. L690,330, an IMPase inhibitor, is as effective as lithium in restoring autophagy in CbCln3(Δex7/8/Δex7/8) cells. Moreover, lithium or down-regulation of IMPase expression protects CbCln3(Δex7/8/Δex7/8) cells from cell death induced by amino acid deprivation. These results suggest that lithium overcomes the autophagic defect in CbCln3(Δex7/8/Δex7/8) cerebellar cells probably through IMPase, thereby reducing their vulnerability to cell death.
Collapse
Affiliation(s)
- Jae-Woong Chang
- Creative Research Initiative (CRI)-Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Seoul 151-747, Korea
| | - Hyunwoo Choi
- Creative Research Initiative (CRI)-Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Seoul 151-747, Korea
| | - Susan L. Cotman
- Molecular Neurogenetics Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yong-Keun Jung
- Creative Research Initiative (CRI)-Acceleration Research Laboratory, School of Biological Science/Bio-MAX Institute, Seoul National University, 599 Gwanak-ro, Seoul 151-747, Korea
| |
Collapse
|