1
|
Xie X, Zhu C, Zhao J, Fan Y, Lei H, Fan D. Combined treatment strategy of hydrogel dressing and physiotherapy for rapid wound healing. Adv Colloid Interface Sci 2025; 341:103477. [PMID: 40139070 DOI: 10.1016/j.cis.2025.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Wound care for open wounds is essential for reducing pain, protecting open wounds, speeding up the healing process and avoiding scar formation. Among the various three-dimensional (3D) carrier biomaterials such as films, sponges, and hydrogels, hydrogels are chemically and physically most similar to the natural extracellular matrix (ECM). Meanwhile, hydrogels are also common 3D carriers that can be efficiently loaded with drugs or cells. In addition, it forms a protective barrier on the wound surface to prevent secondary external infections and has the effect of directing skin cell expansion, tissue infiltration, and wound closure. However, the role of functional drugs in wound healing also faces a number of issues such as resistance, dosage, activity, and stability; therefore, a richer array of therapies is needed for wound repair and other areas of development. Physiotherapy, also known as nonpharmacological therapy, is a commonly used clinical treatment. Recently, more and more physiotherapy have been used for wound repair due to their high efficiency and low irritation. In recent reports, many researchers have tended to use hydrogel dressings in combination with physiotherapy, and this combination therapy is beneficial because it can both protect the wound microenvironment and accelerates wound healing. Therefore, this paper reviews the combined use of hydrogel dressings and physiotherapy in wound healing. We present the characteristics of hydrogel and physiotherapy and focus on the progress and problems of these two combined therapies in recent years.
Collapse
Affiliation(s)
- Xiaofei Xie
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Yanru Fan
- The College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| |
Collapse
|
2
|
Padalkar P, Yadadi SS, Vivekanandan G, Shetty SR, Andhare M, Pashine A, Vinay V, Desai V, Shetty RM. Salivary periostin levels as a non-invasive biomarker and their clinical correlates among healthy and periodontitis patients-a cross-sectional analytical study. FRONTIERS IN DENTAL MEDICINE 2025; 6:1512252. [PMID: 40177468 PMCID: PMC11961936 DOI: 10.3389/fdmed.2025.1512252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Background The diagnosis of periodontitis is primarily through clinical and radiographic assessments. However, it is difficult for clinicians to detect incipient periodontitis during the routine clinical assessment. Identifying people at risk for periodontitis and tracking disease development need a dependable biomarker. Currently, no biomarkers meet all the criteria required for an ideal diagnostic test. Therefore, the clinical utility of salivary periostin as a potential screening tool for periodontitis warrants further investigation, particularly through large samples across diverse populations. The present study aimed to investigate salivary periostin levels as a biomarker in individuals with periodontitis and healthy controls. Methods Forty-five patients with generalized periodontitis stage III grade A/B and an equivalent number of periodontally healthy controls were evaluated for plaque index (PI), gingival index (GI), pocket probing depth (PPD), and clinical attachment level (CAL). Unstimulated salivary samples from all subjects were taken, and periostin levels were quantified using an ELISA kit. Results The average salivary periostin levels were 4.63 in the healthy group and 1.24 in the periodontitis group (P < 0.05). The Spearman coefficient indicated a negative correlation between periostin levels and the gingival index (r = -0.761), plaque index (r = -0.780; P < 0.05), probing pocket depth (PPD) (r = -0.713; P < 0.05) and clinical attachment level (CAL) (r = -0.713; P < 0.05). Linear regression analysis validated the indirect correlation between salivary periostin levels and clinical indicators (Adjusted R square = 0.947). Conclusions Salivary periostin levels are associated with periodontal disease. Salivary periostin levels indirectly influence as a non-invasive biomarker of periodontitis. The biomarker periostin is effective for evaluating both healthy and diseased periodontium.
Collapse
Affiliation(s)
| | - Sunaina Shetty Yadadi
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Gopinath Vivekanandan
- Department of Periodontology, Vivekanandha Dental College for Women, Tiruchengodu, India
| | - Shishir Ram Shetty
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mangesh Andhare
- Department of Periodontology, Aditya Dental College, Beed, India
| | - Aditi Pashine
- Associate Dentist, MyDentist, Hungerford, United Kingdom
| | - Vineet Vinay
- Department of Public Health Dentistry, Sinhgad Dental College and Hospital, Pune, India
| | - Vijay Desai
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Raghavendra M. Shetty
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Pediatric and Preventive Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, India
| |
Collapse
|
3
|
Perbal B. The case of Connective Tissue Growth Factor and the pit of misleading and improper nomenclatures. J Cell Commun Signal 2025; 19:e12062. [PMID: 39712858 PMCID: PMC11656398 DOI: 10.1002/ccs3.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
|
4
|
Sakazume H, Morita T, Yamaguchi H, Tanaka A. Intracellular signaling pathways involved in the regulation of gene expression by pilocarpine. J Oral Biosci 2024; 66:81-87. [PMID: 38992855 DOI: 10.1016/j.job.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES Pilocarpine is commonly used clinically to treat dry mouth. The long-term administration of pilocarpine reportedly improves salivary secretion more effectively than short-term administration. Therefore, we hypothesized that pilocarpine alters gene expression in salivary glands via muscarinic receptor stimulation. This study aimed to investigate the effects of pilocarpine use on gene expression mediated by mitogen-activated protein kinase (MAPK) activity. METHODS The effects of pilocarpine on gene expression were investigated in rats and human salivary gland (HSY) cells using several inhibitors of intracellular signaling pathways. Gene expression in the rat submandibular gland and HSY cells was determined using reverse transcription-quantitative polymerase chain reaction analysis of total RNA. RESULTS In animal experiments, at 7 days after pilocarpine stimulation, Ctgf and Sgk1 expressions were increased in the submandibular gland. In cell culture experiments, pilocarpine increased Ctgf expression in HSY cells. The mitogen-activated protein kinase kinase inhibitor trametinib, the Src inhibitor PP2, and the muscarinic acetylcholine receptor antagonist atropine suppressed the effect of pilocarpine on gene expression. CONCLUSIONS Pilocarpine enhances Ctgf and Sgk1 expressions by activating Src-mediated MAPK activity. Although further studies are required to fully understand the roles of Ctgf and Sgk1, changes in gene expression may play an important role in improving salivary secretions.
Collapse
Affiliation(s)
- Hirohito Sakazume
- Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, Japan
| | - Takao Morita
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Japan.
| | - Haruka Yamaguchi
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Japan
| | - Akira Tanaka
- Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, Japan; Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, Japan
| |
Collapse
|
5
|
Chang SL, Tsai YJ, Shieh JM, Wu WB. The novel thromboxane prostanoid receptor mediates CTGF production to drive human nasal fibroblast self-migration through NF-κB and PKCδ-CREB signaling pathways. J Cell Physiol 2024; 239:e31390. [PMID: 39104040 DOI: 10.1002/jcp.31390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Chronic rhinosinusitis without nasal polyp (CRSsNP) is characterized by tissue repair/remodeling and the subepithelial stroma region in whose nasal mucosa has been reported by us to have thromboxane A2 (TXA2) prostanoid (TP) receptor and overexpress connective tissue growth factor (CTGF). Therefore, this study aimed to investigate the relationship between TP receptor activation and CTGF production/function in human CRSsNP nasal mucosa stromal fibroblasts. We found that TP agonists including U46619 and IBOP ([1S-[1α,2α(Z),3β(1E,3 S*),4α]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid) could promote CTGF protein/messenger RNA expression and secretion. The pharmacological intervention and TP activation assay with U46619 identified the possible participation of PKCμ, PKCδ, nuclear factor-κB (NF-κB), and cyclic AMP response element-binding protein (CREB) phosphorylation/activation in the CTGF induction. Moreover, a phorbol ester-phorbol-12-myristate 13-acetate (PMA) exhibited a similar cellular signaling and CTGF production profile to that elicited by TP activation. However, further small interfering RNA interference analysis revealed that only NF-κB and PKCδ-CREB pathways were necessarily required for TP-mediated CTGF production, which could not be completely supported by those findings from PMA. Finally, in a functional assay, although CTGF did not affect fibroblast proliferation, TP-mediated CTGF could drive novel self-migration in fibroblasts both in the scratch/wound healing and transwell apparatus assays. Meanwhile, the overall staining for stress fibers and formation of the lamellipodia and filopodia-like structures was concomitantly increased in the treated migrating cells. Collectively, we provided here that novel TP mediates CTGF production and self-migration in human nasal fibroblasts through NF-κB and PKCδ-CREB signaling pathways. More importantly, we also demonstrated that thromboxane, TP receptor, CTGF, and stromal fibroblasts may act in concert in the tissue remodeling/repair process during CRSsNP development and progression.
Collapse
Affiliation(s)
- Shih-Lun Chang
- Department of Otorhinolaryngology, Chi Mei Medical Center, Yongkang District, Tainan, Taiwan
- Department of Pet Care and Grooming, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Yih-Jeng Tsai
- Department of Otolaryngology Head and Neck Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jiunn-Min Shieh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
6
|
Chun-peng ZHANG, Tian CAO, Xue YANG. Pharmacological mechanisms of Taohe Chengqi decoction in diabetic cardiovascular complications: A systematic review, network pharmacology and molecular docking. Heliyon 2024; 10:e33308. [PMID: 39044965 PMCID: PMC11263673 DOI: 10.1016/j.heliyon.2024.e33308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background Diabetic cardiovascular complications are the leading cause of diabetes-related deaths. These complications place an enormous and growing burden on global health systems and economies. The objective of this study was to conduct a systematic review on the therapeutic mechanisms of Taohe Chengqi Decoction (THCQD) in the treatment of diabetic cardiovascular complications. To predict the potential mechanisms of action of THCQD on diabetic cardiovascular complications using network pharmacology, and to validate these predictions through molecular docking analysis. Methods To collect relevant animal experiments, we searched a total of 6 databases. Eligibility for the study was determined based on inclusion and exclusion criteria. Data extraction was then performed on the literature. Methodological quality of animal studies was assessed using SYRCLE criteria. Based on network pharmacology, intersecting genes for THCQD and diabetic cardiovascular complications were obtained using Venny, PPI analysis and topology analysis of intersecting genes were performed; GO and KEGG were used for enrichment analysis and prediction of new targets of action. Molecular docking techniques were employed to model the interactions between drug components and target genes, thereby validating the results of network pharmacology predictions. Results A total of 16 studies were finally identified that fit the direction of this review. Included 6 studies of the myocardium, 1 study of the aortic arch, 5 studies of the femoral artery, 4 studies of the thoracic aorta. THCQD exhibited anti-inflammatory, anti-fibrotic and anti-atherosclerotic effects on cardiovascular complications in diabetic rats. Network pharmacology results showed that C0363 (Resveratrol), C0041 (Emodin), and C1114 (Baicalein) were the key components in the treatment of diabetic cardiovascular complications by THCQD. PPI results showed that INS, AKT1, TNF, ALB, IL6, IL1B as the genes that interact with the top 6. KEGG enrichment analysis identified the AGE-RAGE signaling pathway in diabetic complications as the most prominent pathway enriched by THCQD for diabetic cardiovascular complications genes. The results of molecular docking showed that the key active components demonstrated favorable interactions with their corresponding target genes. Conclusion In conclusion, the results of both basic and web-based pharmacological studies support the beneficial effects of the natural herbal formulation THCQD on diabetic cardiovascular complications. This decoction has anti-inflammatory and antifibrotic properties and is effective in ameliorating diabetic cardiovascular disease. The network pharmacology results further support these ideas and identify the AGE-RAGE signaling pathway in diabetic complications as possibly the most relevant pathway for THCQD in the treatment of diabetic cardiovascular complications. The extent of the therapeutic potential of all-natural herbal components in the treatment of diabetic cardiovascular disease merits further investigation.
Collapse
Affiliation(s)
- ZHANG Chun-peng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - CAO Tian
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - YANG Xue
- Department of Traditional Chinese Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| |
Collapse
|
7
|
Iacobescu L, Ciobanu AO, Corlatescu AD, Simionescu M, Iacobescu GL, Dragomir E, Vinereanu D. The Role of Circulating MicroRNAs in Cardiovascular Diseases: A Novel Biomarker for Diagnosis and Potential Therapeutic Targets? Cureus 2024; 16:e64100. [PMID: 39114238 PMCID: PMC11305655 DOI: 10.7759/cureus.64100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs, involved in a large variety of pathological conditions, tend to be potential specific biomarkers in cardiovascular diseases. Moreover, these short, non-coding RNAs, regulate post-transcriptional gene expression and protein synthesis, making them ideal for therapeutic targets. Down-regulation and up-regulation of specific microRNAs are currently studied as a novel approach to the diagnosis and treatment of cardiovascular diseases, such as chronic and acute coronary syndromes, atherosclerosis, heart failure, and arrhythmia. MicroRNAs are interesting and attractive targets for cardiovascular-associated therapeutics because of their stability, tissue-specific expression pattern, and secretion of body fluids. Extended research on their isolation, detection, and function will provide the standardization needed for using microRNAs as biomarkers and potential therapeutic targets. This review will summarize recent data on the implication of microRNAs in cardiovascular diseases, their potential role as biomarkers for diagnosis, and also the challenges of using microRNAs as future therapeutic targets.
Collapse
Affiliation(s)
- Loredana Iacobescu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Andreea-Olivia Ciobanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | | | - Maya Simionescu
- Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Georgian L Iacobescu
- Orthopedics and Traumatology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Elena Dragomir
- Cellular Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Dragos Vinereanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| |
Collapse
|
8
|
Pérez Sánchez E, Corona-Pérez A, Arroyo-Helguera O, Soto Rodríguez I, Cruz Lumbreras SR, Rodríguez-Antolín J, Cuevas Romero E, Nicolás-Toledo L. Chronic unpredictable mild stress increases serum aldosterone without affecting corticosterone levels and induces hepatic steatosis and renal injury in young adult male rats. J Mol Histol 2024; 55:265-278. [PMID: 38583123 DOI: 10.1007/s10735-024-10188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Stress is often associated with anxiety and depressive symptoms in adolescents. Stress is associated with components of metabolic syndrome and inflammation. The present study hypothesizes that aldosterone, more than corticosterone, promotes chronic stress-hepatic steatosis and fibrosis, as well as renal inflammation and fibrosis in young adult rats. Thirty-two young adult male Wistar rats of 51 days old were divided into four groups (n = 8 per group): Control (C), chronic unpredictable mild stress (CUMS), control plus vehicle (C plus veh), CUMS plus eplerenone, a selective aldosterone blocker (CUMS plus EP). On postnatal day 51, eplerenone was administered orally through a gastric tube two hours before the start of the stress test. The CUMS paradigm was administered once daily at different times, with no repetition of the stressor sequence for four weeks. Renal inflammation and fibrosis were measured, as well as liver glycogen, triacylglycerol, and fibrosis levels. The serum concentrations of corticosterone, aldosterone, sodium, and creatinine were measured in urine and serum. The CUMS group showed a high level of serum aldosterone without affecting the level of corticosterone, increased urinary sodium, tubular atrophy, glomerular sclerosis, the presence of inflammation, and fibrosis, without affecting creatinine, increased glycogen content, triacylglycerol, and moderate fibrosis in the liver, and treatment with eplerenone prevented the inflammation, fibrosis, glycogen, and triacylglycerol. Our results show that chronic stress-induced aldosterone promotes hepatic steatosis and renal injury more than corticosterone. The prevention by eplerenone supports our hypothesis.
Collapse
Affiliation(s)
- Eliut Pérez Sánchez
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Adriana Corona-Pérez
- Licenciatura en Nutrición, Unidad Académica Multidisciplinaria Calpulalpan, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Arroyo-Helguera
- Laboratorio de Biomedicina en Salud, Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Veracruz, México
| | | | | | - Jorge Rodríguez-Antolín
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Estela Cuevas Romero
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Leticia Nicolás-Toledo
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| |
Collapse
|
9
|
Gao N, Yu FS. Lack of Elevated Expression of TGFβ3 Contributes to the Delay of Epithelial Wound Healing in Diabetic Corneas. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 38546583 PMCID: PMC10981440 DOI: 10.1167/iovs.65.3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose To investigate the mechanisms underlying the differential roles of TGFβ1 and TGFβ3 in accelerating corneal epithelial wound healing (CEWH) in diabetic (DM) corneas, with normoglycemia (NL) corneas as the control. Methods Two types of diabetic mice, human corneal organ cultures, mouse corneal epithelial progenitor cell lines, and bone marrow-derived macrophages (BMDMs) were employed to assess the effects of TGFβ1 and TGFβ3 on CEWH, utilizing quantitative PCR, western blotting, ELISA, and whole-mount confocal microscopy. Results Epithelial debridement led to an increased expression of TGFβ1 and TGFβ3 in cultured human NL corneas, but only TGFβ1 in DM corneas. TGFβ1 and TGFβ3 inhibition was significantly impeded, but exogenous TGFβ1 and, more potently, TGFβ3 promoted CEWH in cultured TKE2 cells and in NL and DM C57BL6 mouse corneas. Wounding induced similar levels of p-SMAD2/SMAD3 in NL and DM corneas but weaker ERK1/2, Akt, and EGFR phosphorylation in DM corneas compared to NL corneas. Whereas TGFβ1 augmented SMAD2/SMAD3 phosphorylation, TGFβ3 preferentially activated ERK, PI3K, and EGFR in healing DM corneas. Furthermore, TGFβ1 and TGFβ3 differentially regulated the expression of S100a9, PAI-1, uPA/tPA, and CCL3 in healing NL and DM corneas. Finally, TGFβ1 induced the expression of M1 macrophage markers iNOS, CD86, and CTGF, whereas TGFβ3 promoted the expression of M2 markers CD206 and NGF in BMDMs from db/db or db/+ mice. Conclusions Hyperglycemia disrupts the balanced expression of TGFβ3/TGFβ1, resulting in delayed CEWH, including impaired sensory nerve regeneration in the cornea. Supplementing TGFβ3 in DM wounds may hold therapeutic potential for accelerating delayed wound healing in diabetic patients.
Collapse
Affiliation(s)
- Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fu-Shin Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
10
|
Shan J, Wu MY, Zhang YC, Lin YJ, Cheng B, Gao YR, Liu ZH, Xu HM. Hsa-miR-379 down-regulates Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction by targeting connective tissue growth factor in human alveolar basal epithelial A549 cells. Cytokine 2023; 166:156191. [PMID: 37002970 DOI: 10.1016/j.cyto.2023.156191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVE This study was aimed to screen and identify miRNAs that could regulate human CTGF gene and downstream cascade reaction Rac1/MLK3/JNK/AP-1/Collagen I by bioinformatics and experimental means. METHODS TargetScan and Tarbase were used to predict miRNAs that may have regulatory effects on human CTGF gene. The dual-luciferase reporter gene assay was employed to verify the results obtained in bioinformatics. Human alveolar basal epithelial A549 cells were exposed to silica (SiO2) culture medium for 24 h to establish an in vitro model of pulmonary fibrosis, and bleomycin (BLM) of 100 ng/mL was used as a positive control. The miRNA and mRNA expression levels were determined by RT-qPCR, and the protein levels were measured by western blot in hsa-miR-379-3p overexpression group or not. RESULTS A total of 9 differentially expressed miRNAs that might regulate the human CTGF gene were predicted. Hsa-miR-379-3p and hsa-miR-411-3p were selected for the subsequent experiments. The results of the dual-luciferase reporter assay showed that hsa-miR-379-3p could bind to CTGF, but hsa-miR-411-3p could not. Compared with the control group, SiO2 exposure (25 and 50 μg/mL) could significantly reduce the expression level of hsa-miR-379-3p in A549 cells. SiO2 exposure (50 μg/mL) could significantly increase the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM in A549 cells, while CDH1 level was significantly decreased. Compared with SiO2 + NC group, the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM were significantly decreased, and CDH1 level was significantly higher when hsa-miR-379-3p was overexpressed. At the same time, overexpression of hsa-miR-379-3p improved the protein levels of CTGF, Collagen I, c-Jun and phospho-c-Jun, JNK1 and phospho-JNK1 significantly compared with SiO2 + NC group. CONCLUSION Hsa-miR-379-3p was demonstrated for the first time that could directly target and down-regulate human CTGF gene, and further affect the expression levels of key genes and proteins in Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction.
Collapse
|
11
|
Thong L, McElduff EJ, Henry MT. Trials and Treatments: An Update on Pharmacotherapy for Idiopathic Pulmonary Fibrosis. Life (Basel) 2023; 13:486. [PMID: 36836843 PMCID: PMC9963632 DOI: 10.3390/life13020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing interstitial lung disease that occurs predominantly in the older population. There is increasing incidence and prevalence in IPF globally. The emergence of anti-fibrotic therapies in the last decade have improved patient survival though a cure is yet to be developed. In this review article, we aim to summarize the existing and novel pharmacotherapies for the treatment of IPF (excluding treatments for acute exacerbations), focusing on the current knowledge on the pathophysiology of the disease, mechanism of action of the drugs, and clinical trials.
Collapse
Affiliation(s)
- Lorraine Thong
- Department of Clinical Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Enda James McElduff
- Department of Clinical Medicine, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| | - Michael Thomas Henry
- Department of Respiratory Medicine, Cork University Hospital, T12 YE02 Cork, Ireland
| |
Collapse
|
12
|
Laloglu E, Alay H. Role of transforming growth factor-beta 1 and connective tissue growth factor levels in coronavirus disease-2019-related lung Injury: a prospective, observational, cohort study. Rev Soc Bras Med Trop 2022; 55:e06152021. [PMID: 35894403 PMCID: PMC9359341 DOI: 10.1590/0037-8682-0615-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Coronavirus disease-2019 (COVID-19) results in acute lung injury. This study examined the usefulness of serum transforming growth factor-beta 1 (TGF-β1) and connective tissue growth factor (CTGF) levels in predicting disease severity in COVID-19 patients with pulmonary involvement. Methods: Fifty patients with confirmed COVID-19 and pulmonary involvement between September 2020, and February 2021 (Group 1) and 45 healthy controls (Group 2) were classified into three subgroups based on clinical severity: moderate, severe, and critical pneumonia. Serum TGF-β1 and CTGF concentrations were measured on days 1 and 7 of admission in Group 1 using an enzyme-linked immunosorbent assay. These concentrations were also measured in control cases. The mean serum TGF-β1 and CTGF levels were then compared among COVID-19 patients, based on clinical severity. Results: Significantly higher mean serum TGF-β1 and CTGF levels were observed on both days in Group 1 than in the control group. The mean serum TGF-β1 and CTGF levels on day 7 were also significantly higher than those on day 1 in Group 1. The critical patient group had the highest serum TGF-β1 and CTGF levels on both days, and the difference between this group and the moderate and severe pneumonia groups was significant. Cutoff values of 5.36 ng/mL for TGF-β1 and 626.2 pg/mL for CTGF emerged as predictors of COVID-19 with pulmonary involvement in receiver-operating characteristic curve analysis. Conclusions: TGF-β1 and CTGF are potential markers that can distinguish COVID-19 patients with pulmonary involvement and indicate disease severity. These findings may be useful for initiating treatment for early-stage COVID-19.
Collapse
Affiliation(s)
- Esra Laloglu
- Ataturk University, Faculty of Medicine, Department of Medical Biochemistry, Erzurum, Turkey
| | - Handan Alay
- Ataturk University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Erzurum, Turkey
| |
Collapse
|
13
|
Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. Int J Mol Sci 2022; 23:ijms23116064. [PMID: 35682743 PMCID: PMC9181498 DOI: 10.3390/ijms23116064] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic environment in IPF.
Collapse
|
14
|
Chen IT, Huang LT, Chen CC, Chen CM. Molecular mechanisms underlying hyperoxia-induced lung fibrosis. Pediatr Neonatol 2022; 63:109-116. [PMID: 35181258 DOI: 10.1016/j.pedneo.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Supplemental oxygen is often used to treat newborns with respiratory disorders. Exposure to high concentration of oxygen and long-term oxygen causes inflammation and acute lung injury. The acute inflammatory phase is followed by a fibroproliferative repair phase, leading to lung fibrosis. Many infants with lung fibrosis develop significant respiratory morbidities including reactive airways dysfunction and obstructive lung disease during childhood. Despite the absence of effective treatments and the incomplete understanding regarding mechanisms underlying fibrosis, extensive literature regarding lung fibrosis from in vitro and in vivo hyperoxia-exposed models is available. In this review, we discuss molecular mediators and signaling pathways responsible for increased fibroblast proliferation and collagen production, excessive extracellular matrix accumulation, and eventually, lung fibrosis. We discuss each of these mediators separately to facilitate clear understanding as well as significant interactions occurring among these molecular mediators and signaling pathways.
Collapse
Affiliation(s)
- I-Ting Chen
- Division of Neonatology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Division of Neonatology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Qin Z, He T, Guo C, Quan T. Age-related downregulation of CCN2 is regulated by cell size in a YAP/TAZ-dependent manner in human dermal fibroblasts: impact on dermal aging. JID INNOVATIONS 2022; 2:100111. [PMID: 35480397 PMCID: PMC9035808 DOI: 10.1016/j.xjidi.2022.100111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
CCN2, a member of the CCN family of matricellular proteins, is a key mediator and biomarker of tissue fibrosis. We previously reported that CCN2 is significantly reduced in aged human dermis, which contributes to dermal aging through the downregulation of collagen production, the major structural protein in the skin. In this study, we investigated the underlying mechanisms of the age-related downregulation of CCN2 in human skin dermal fibroblasts. Dermal fibroblasts isolation and laser-capture microdissection‒coupled RT-PCR from human skin confirmed that age-related reduction of CCN2 expression is regulated by epigenetics. Mechanistic investigation revealed that age-related reduction of CCN2 is regulated by impaired dermal fibroblast spreading/cell size, which is a prominent feature of aged dermal fibroblasts in vivo. Gain-of-function and loss-of-function analysis confirmed that age-related downregulation of CCN2 is regulated by YAP/TAZ in response to reduced cell size. We further confirmed that restoration of dermal fibroblast size rapidly reversed the downregulation of CCN2 in a YAP/TAZ-dependent manner. Finally, we confirmed that reduced YAP/TAZ nuclear staining is accompanied by loss of CCN2 in aged human skin in vivo. Our data reveal a mechanism by which age-related reduction in fibroblast spreading/size drives YAP/TAZ-dependent downregulation of CCN2 expression, which in turn contributes to loss of collagen in aged human skin.
Collapse
Affiliation(s)
- Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tianyuan He
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chunfang Guo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Correspondence: Taihao Quan, Department of Dermatology, University of Michigan Medical School, 1301 Catherine, Medical Science I, Room 6447, Ann Arbor, Michigan 48109-0609, USA.
| |
Collapse
|
16
|
Current Status of the Instructional Cues Provided by Notochordal Cells in Novel Disc Repair Strategies. Int J Mol Sci 2021; 23:ijms23010427. [PMID: 35008853 PMCID: PMC8745519 DOI: 10.3390/ijms23010427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 01/07/2023] Open
Abstract
Numerous publications over the past 22 years, beginning with a seminal paper by Aguiar et al., have demonstrated the ability of notochordal cell-secreted factors to confer anabolic effects upon intervertebral disc (IVD) cells. Since this seminal paper, other scientific publications have demonstrated that notochordal cells secrete soluble factors that can induce anti-inflammatory, pro-anabolic and anti-cell death effects upon IVD nucleus pulposus (NP) cells in vitro and in vivo, direct human bone marrow-derived mesenchymal stem cells toward an IVD NP-like phenotype and repel neurite ingrowth. More recently these factors have been characterized, identified, and used therapeutically to induce repair upon injured IVDs in small and large pre-clinical animal models. Further, notochordal cell-rich IVD NPs maintain a stable, healthy extracellular matrix whereas notochordal cell-deficient IVDs result in a biomechanically and extracellular matrix defective phenotype. Collectively this accumulating body of evidence indicates that the notochordal cell, the cellular originator of the intervertebral disc holds vital instructional cues to establish, maintain and possibly regenerate the intervertebral disc.
Collapse
|
17
|
Zhang Y, Luo J, Zhang Q, Deng T. Growth factors, as biological macromolecules in bioactivity enhancing of electrospun wound dressings for diabetic wound healing: A review. Int J Biol Macromol 2021; 193:205-218. [PMID: 34627847 DOI: 10.1016/j.ijbiomac.2021.09.210] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Impaired wound healing is of the most conspicuous characteristics of diabetic mellitus. Reduced blood flow, chronic inflammatory reactions, infection, endothelial dysfunction, elevated levels of reactive oxygen species, and metabolic disorders cause wounds to heal more slowly in these patients. Previous studies have reported useful impacts of growth factors in management of such wounds. However, due to their short half-life and low stability, a suitable delivery platform with sustained release profile may boost their healing potential. Controlled and localized delivery of growth factors via electrospun fibers have been extensively explored in previous studies. The electrospinning method; although not new, has turned out to be extremely effective for the preparation of delivery carriers for growth factors. Due to their structural resemblance to native tissues' extracellular matrix, high encapsulation efficacy, tunability, and high surface to volume ratio, electrospun scaffolds have gained significant attention in drug delivery and tissue engineering. In the current review, careful integration of current research regarding the applications of growth factors' delivery through electrospun fibers in diabetic wounds healing has been done. This review will not only give an insight into the current updates, but will also highlights the future perspectives and challenges.
Collapse
Affiliation(s)
- Yunwu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingsong Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Zhang
- School of Nursing, Peking University, Beijing 100191, China
| | - Tingting Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
18
|
Flores-Vergara R, Olmedo I, Aránguiz P, Riquelme JA, Vivar R, Pedrozo Z. Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-β, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules. Front Physiol 2021; 12:716721. [PMID: 34539441 PMCID: PMC8446518 DOI: 10.3389/fphys.2021.716721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Communication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue. Under pathological conditions, such as myocardial infarction, humoral factors released by these cells may induce tissue damage or protection, depending on the type and concentration of molecules secreted. Cardiac remodeling is also mediated by the factors secreted by cardiomyocytes and fibroblasts that are involved in the extensive reciprocal interactions between these cells. Identifying the molecules and cellular signal pathways implicated in these processes will be crucial for creating effective tissue-preserving treatments during or after reperfusion. Numerous therapies to protect cardiac tissue from reperfusion-induced injury have been explored, and ample pre-clinical research has attempted to identify drugs or techniques to mitigate cardiac damage. However, despite great success in animal models, it has not been possible to completely translate these cardioprotective effects to human applications. This review provides a current summary of the principal molecules, pathways, and mechanisms underlying cardiomyocyte and cardiac fibroblast crosstalk during ischemia/reperfusion injury. We also discuss pre-clinical molecules proposed as treatments for myocardial infarction and provide a clinical perspective on these potential therapeutic agents.
Collapse
Affiliation(s)
- Raúl Flores-Vergara
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Jaime Andrés Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
| | - Raúl Vivar
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
19
|
Gu X, Zhang J, Li J, Wang Z, Feng J, Li J, Pan K, Ni X, Zeng D, Jing B, Zhang D. Effects of Bacillus cereus PAS38 on Immune-Related Differentially Expressed Genes of Spleen in Broilers. Probiotics Antimicrob Proteins 2021; 12:425-438. [PMID: 31243733 DOI: 10.1007/s12602-019-09567-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study mainly explored the immunomodulatory mechanisms of the probiotic Bacillus cereus PAS38 (PB) on broiler spleen. A total of 120 avian white feather broilers were randomly divided into 4 groups (N = 30), as follows: control (CNTL, fed with basal diet), PB (fed with diet supplemented with probiotic B. cereus PAS38), vaccine (VAC, fed with basal diet and injected with Newcastle disease virus vaccine), and vaccine + PB group (PBVAC, fed with basal diet supplemented with B. cereus PAS38 and injected with NDV vaccine). The experiment was conducted for 42 days. Twelve spleens were collected from four different groups, weighed, and cut into histological sections, and transcriptome analysis was performed using RNA-seq. Results of the spleen and histological section relative weights showed that feeding with probiotic B. cereus PAS38 and vaccination had a similar tendency to promote spleen development. Compared with the CNTL group, 21 immune-related genes were significantly downregulated in the PB and PBVAC groups. These genes were mainly involved in attenuating inflammatory response. The upregulated antimicrobial peptide NK-lysin and guanylate-binding protein 1 expression levels indicated that this strain enhanced the body's antimicrobial capacity. B. cereus PAS38 also amplified the broilers' immune response to the vaccine, which mainly reflected on nonspecific immunity. Hence, probiotic B. cereus PAS38 can regulate and promote the immune function of broilers.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiao Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhenhua Wang
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Jie Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wengjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| |
Collapse
|
20
|
Alonso-Jiménez A, Fernández-Simón E, Natera-de Benito D, Ortez C, García C, Montiel E, Belmonte I, Pedrosa I, Segovia S, Piñol-Jurado P, Carrasco-Rozas A, Suárez-Calvet X, Jimenez-Mallebrera C, Nascimento A, Llauger J, Nuñez-Peralta C, Montesinos P, Alonso-Pérez J, Gallardo E, Illa I, Díaz-Manera J. Platelet Derived Growth Factor-AA Correlates With Muscle Function Tests and Quantitative Muscle Magnetic Resonance in Dystrophinopathies. Front Neurol 2021; 12:659922. [PMID: 34177765 PMCID: PMC8226260 DOI: 10.3389/fneur.2021.659922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Duchenne (DMD) and Becker (BMD) muscular dystrophy are X-linked muscular disorders produced by mutations in the DMD gene which encodes the protein dystrophin. Both diseases are characterized by progressive involvement of skeletal, cardiac, and respiratory muscles. As new treatment strategies become available, reliable biomarkers and outcome measures that can monitor disease progression are needed for clinical trials. Methods: We collected clinical and functional data and blood samples from 19 DMD patients, 13 BMD patients, and 66 healthy controls (8 pediatric and 58 adult controls), and blood samples from 15 patients with dysferlinopathy (DYSF) and studied the serum concentration of 4 growth factors involved in the process of muscle fibrosis. We correlated the serum concentration of these growth factors with several muscle function tests, spirometry results and fat fraction identified by quantitative Dixon muscle MRI. Results: We found significant differences in the serum concentration of Platelet Derived Growth Factor-AA (PDGF-AA) between DMD patients and pediatric controls, in Connective Tissue Growth Factor (CTGF) between BMD patients and adult controls, and in and Transforming Growth Factor- β1 (TGF-β1) between BMD and DYSF patients. PDGF-AA showed a good correlation with several muscle function tests for both DMD and BMD patients and with thigh fat fraction in BMD patients. Moreover, PDGF-AA levels were increased in muscle biopsies of patients with DMD and BMD as was demonstrated by immunohistochemistry and Real-Time PCR studies. Conclusion: Our study suggests that PDGF-AA should be further investigated in a larger cohort of DMD and BMD patients because it might be a good biomarker candidate to monitor the progression of these diseases.
Collapse
Affiliation(s)
- Alicia Alonso-Jiménez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Neurology Department, Neuromuscular Reference Center, University Hospital of Antwerp, Antwerp, Belgium
| | - Esther Fernández-Simón
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain.,John Walton Muscular Dystrophy Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carme García
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Montiel
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Izaskun Belmonte
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Pedrosa
- Rehabilitation and Physiotherapy Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sonia Segovia
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain
| | - Patricia Piñol-Jurado
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain.,John Walton Muscular Dystrophy Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Carrasco-Rozas
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain.,Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Departamento de Genética, Microbiología y Estadística, Universidad de Barcelona, Barcelona, Spain
| | - Andrés Nascimento
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain.,Neuromuscular Unit, Neuropediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jaume Llauger
- Radiology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudia Nuñez-Peralta
- Radiology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Jorge Alonso-Pérez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain
| | - Isabel Illa
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Departament de Medicina. Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain.,John Walton Muscular Dystrophy Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
21
|
Ghosh MK, Chen KHE, Dill-Garlow R, Ma LJ, Yonezawa T, Itoh Y, Rivera L, Radecki KC, Wu QP, Arnold AP, Muller HK, Walker AM. Sex Differences in the Immune System Become Evident in the Perinatal Period in the Four Core Genotypes Mouse. Front Endocrinol (Lausanne) 2021; 12:582614. [PMID: 34122327 PMCID: PMC8191418 DOI: 10.3389/fendo.2021.582614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
We have used the four core genotypes (FCG) mouse model, which allows a distinction between effects of gonadal secretions and chromosomal complement, to determine when sex differences in the immune system first appear and what influences their development. Using splenic T cell number as a measure that could be applied to neonates with as yet immature immune responses, we found no differences among the four genotypes at postnatal day 1, but by day 7, clear sex differences were observed. These sex differences were unexpectedly independent of chromosomal complement and similar in degree to gonadectomized FCG adults: both neonatal and gonadectomized adult females (XX and XY) showed 2-fold the number of CD4+ and 7-fold the number of CD8+ T cells versus their male (XX and XY) counterparts. Appearance of this long-lived sex difference between days 1 and 7 suggested a role for the male-specific perinatal surge of testicular testosterone. Interference with the testosterone surge significantly de-masculinized the male CD4+, but not CD8+ splenic profile. Treatment of neonates demonstrated elevated testosterone limited mature cell egress from the thymus, whereas estradiol reduced splenic T cell seeding in females. Neonatal male splenic epithelium/stroma expressed aromatase mRNA, suggesting capacity for splenic conversion of perinatal testosterone into estradiol in males, which, similar to administration of estradiol in females, would result in reduced splenic T cell seeding. These sex steroid effects affected both CD4+ and CD8+ cells and yet interference with the testosterone surge only significantly de-masculinized the splenic content of CD4+ cells. For CD8+ cells, male cells in the thymus were also found to express one third the density of sphingosine-1-phosphate thymic egress receptors per cell compared to female, a male characteristic most likely an indirect result of Sry expression. Interestingly, the data also support a previously unrecognized role for non-gonadal estradiol in the promotion of intra-thymic cell proliferation in neonates of both sexes. Microarray analysis suggested the thymic epithelium/stroma as the source of this hormone. We conclude that some immune sex differences appear long before puberty and more than one mechanism contributes to differential numbers and distribution of T cells.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Kuan-hui E. Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Riva Dill-Garlow
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Lisa J. Ma
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Tomohiro Yonezawa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Yuichiro Itoh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lorena Rivera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Kelly C. Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Quiming P. Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Arthur P. Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - H. Konrad Muller
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ameae M. Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
22
|
Wang Y, Chang T, Wu T, Ye W, Wang Y, Dou G, Du H, Hui Y, Guo C. Connective tissue growth factor promotes retinal pigment epithelium mesenchymal transition via the PI3K/AKT signaling pathway. Mol Med Rep 2021; 23:389. [PMID: 33760200 PMCID: PMC8008218 DOI: 10.3892/mmr.2021.12028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a disease leading to the formation of contractile preretinal membranes (PRMs) and is one of the leading causes of blindness. Connective tissue growth factor (CTGF) has been identified as a possible key determinant of progressive tissue fibrosis and excessive scarring. Therefore, the present study investigated the role and mechanism of action of CTGF in PVR. Immunohistochemical staining was performed to detect the expression of CTGF, fibronectin and collagen type III in PRMs from patients with PVR. The effects and mechanisms of recombinant human CTGF and its upstream regulator, TGF‑β1, on epithelial‑mesenchymal transition (EMT) and the synthesis of extracellular matrix (ECM) by retinal pigment epithelium (RPE) cells were investigated using reverse transcription‑quantitative PCR, western blotting and a [3H]proline incorporation assay. The data indicated that CTGF, fibronectin and collagen type III were highly expressed in PRMs. In vitro, CTGF significantly decreased the expression of the epithelial markers ZO‑1 and E‑cadherin and increased that of the mesenchymal markers fibronectin, N‑cadherin and α‑smooth muscle actin in a concentration‑dependent manner. Furthermore, the expression of the ECM protein collagen type III was upregulated by CTGF. However, the trends in expression for the above‑mentioned markers were reversed after knocking down CTGF. The incorporation of [3H]proline into RPE cells was also increased by CTGF. In addition, 8‑Bromoadenosine cAMP inhibited CTGF‑stimulated collagen synthesis and transient transfection of RPE cells with a CTGF antisense oligonucleotide inhibited TGF‑β1‑induced collagen synthesis. The phosphorylation of PI3K and AKT in RPE cells was promoted by CTGF and TGF‑β1 and the latter promoted the expression of CTGF. The results of the present study indicated that CTGF may promote EMT and ECM synthesis in PVR via the PI3K/AKT signaling pathway and suggested that targeting CTGF signaling may have a therapeutic or preventative effect on PVR.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yusheng Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongjun Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yannian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Changmei Guo
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
23
|
Balázs K, Antal L, Sáfrány G, Lumniczky K. Blood-Derived Biomarkers of Diagnosis, Prognosis and Therapy Response in Prostate Cancer Patients. J Pers Med 2021; 11:296. [PMID: 33924671 PMCID: PMC8070149 DOI: 10.3390/jpm11040296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is among the most frequent cancers in men worldwide. Despite the fact that multiple therapeutic alternatives are available for its treatment, it is often discovered in an advanced stage as a metastatic disease. Prostate cancer screening is based on physical examination of prostate size and prostate-specific antigen (PSA) level in the blood as well as biopsy in suspect cases. However, these markers often fail to correctly identify the presence of cancer, or their positivity might lead to overdiagnosis and consequent overtreatment of an otherwise silent non-progressing disease. Moreover, these markers have very limited if any predictive value regarding therapy response or individual risk for therapy-related toxicities. Therefore, novel, optimally liquid biopsy-based (blood-derived) markers or marker panels are needed, which have better prognostic and predictive value than the ones currently used in the everyday routine. In this review the role of circulating tumour cells, extracellular vesicles and their microRNA content, as well as cellular and soluble immunological and inflammation- related blood markers for prostate cancer diagnosis, prognosis and prediction of therapy response is discussed. A special emphasis is placed on markers predicting response to radiotherapy and radiotherapy-related late side effects.
Collapse
Affiliation(s)
| | | | | | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1221 Budapest, Hungary; (K.B.); (L.A.); (G.S.)
| |
Collapse
|
24
|
Song D, He H, Sinha I, Hases L, Yan F, Archer A, Haldosen LA, Zhao C, Williams C. Blocking Fra-1 sensitizes triple-negative breast cancer to PARP inhibitor. Cancer Lett 2021; 506:23-34. [PMID: 33652085 DOI: 10.1016/j.canlet.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The AP-1 member Fra-1 is overexpressed in TNBC and plays crucial roles in tumor progression and treatment resistance. In a previous large-scale screen, we identified PARP1 to be among 118 proteins that interact with endogenous chromatin-bound Fra-1 in TNBC cells. PARP1 inhibitor (olaparib) is currently in clinical use for treatment of BRCA-mutated TNBC breast cancer. Here, we demonstrate that the Fra-1-PARP1 interaction impacts the efficacy of olaparib treatment. We show that PARP1 interacts with and downregulates Fra-1, thereby reducing AP-1 transcriptional activity. Olaparib treatment, or silencing of PARP1, consequently, increases Fra-1 levels and enhances its transcriptional activity. Increased Fra-1 can have adverse effect, including treatment resistance. We also found that a large fraction of PARP1-regulated genes was dependent on Fra-1. We show that by inhibiting Fra-1/AP-1, non-BRCA-mutated TNBC cells can become sensitized to olaparib treatment. We identify that high PARP1 expression is indicative of a poor clinical outcome in breast cancer patients overall (P = 0.01), but not for HER-2 positive patients. In conclusion, by exploring the functionality of the Fra-1 and PARP1 interaction, we propose that targeting Fra-1 could serve as a combinatory therapeutic approach to improve olaparib treatment outcome for TNBC patients.
Collapse
Affiliation(s)
- Dandan Song
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Huan He
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Indranil Sinha
- Department of Women's and Children's Health, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Linnea Hases
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden; Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| | - Feifei Yan
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden; Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
25
|
Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111748. [PMID: 33545890 PMCID: PMC7867678 DOI: 10.1016/j.msec.2020.111748] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Bone regeneration using bioactive molecules and biocompatible materials is growing steadily with the advent of the new findings in cellular signaling. Bone Morphogenetic Protein (BMP)-9 is a considerably recent discovery from the BMP family that delivers numerous benefits in osteogenesis. The Smad cellular signaling pathway triggered by BMPs is often inhibited by Noggin. However, BMP-9 is resistant to Noggin, thus, facilitating a more robust cellular differentiation of osteoprogenitor cells into preosteoblasts and osteoblasts. This review encompasses a general understanding of the Smad signaling pathway activated by the BMP-9 ligand molecule with its specific receptors. The robust osteogenic cellular differentiation cue provided by BMP-9 has been reviewed from a bone regeneration perspective with several in vitro as well as in vivo studies reporting promising results for future research. The effect of the biomaterial, chosen in such studies as the scaffold or carrier matrix, on the activity of BMP-9 and subsequent bone regeneration has been highlighted in this review. The non-viral delivery technique for BMP-9 induced bone regeneration is a safer alternative to its viral counterpart. The recent advances in non-viral BMP-9 delivery have also highlighted the efficacy of the protein molecule at a low dosage. This opens a new horizon as a more efficient and safer alternative to BMP-2, which was prevalent among clinical trials; however, BMP-2 applications have reported its downsides during bone defect healing such as cystic bone formation.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
26
|
Ou SC, Bai KJ, Cheng WH, Chen JY, Lin CH, Wen HC, Chen BC. TGF-β Induced CTGF Expression in Human Lung Epithelial Cells through ERK, ADAM17, RSK1, and C/EBPβ Pathways. Int J Mol Sci 2020; 21:ijms21239084. [PMID: 33260349 PMCID: PMC7731197 DOI: 10.3390/ijms21239084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Lung epithelial cells play critical roles in idiopathic pulmonary fibrosis. Methods: In the present study, we investigated whether transforming growth factor-β (TGF-β)-induced expression of connective tissue growth factor (CTGF) was regulated by the extracellular signal-regulated kinase (ERK)/a disintegrin and metalloproteinase 17 (ADAM17)/ribosomal S6 kinases 1 (RSK1)/CCAAT/enhancer-binding protein β (C/EBPβ) signaling pathway in human lung epithelial cells (A549). Results: Our results revealed that TGF-β-induced CTGF expression was weakened by ADAM17 small interfering RNA (ADAM17 siRNA), TNF-α processing inhibitor-0 (TAPI-0, an ADAM17 inhibitor), U0126 (an ERK inhibitor), RSK1 siRNA, and C/EBPβ siRNA. TGF-β-induced ERK phosphorylation as well as ADAM17 phosphorylation was attenuated by U0126. The TGF-β-induced increase in RSK1 phosphorylation was inhibited by TAPI-0 and U0126. TGF-β-induced C/EBPβ phosphorylation was weakened by U0126, ADAM17 siRNA, and RSK1 siRNA. In addition, TGF-β increased the recruitment of C/EBPβ to the CTGF promoter. Furthermore, TGF-β enhanced fibronectin (FN), an epithelial–mesenchymal transition (EMT) marker, and CTGF mRNA levels and reduced E-cadherin mRNA levels. Moreover, TGF-β-stimulated FN protein expression was reduced by ADAM17 siRNA and CTGF siRNA. Conclusion: The results suggested that TGF-β induces CTGF expression through the ERK/ADAM17/RSK1/C/EBPβ signaling pathway. Moreover, ADAM17 and CTGF participate in TGF-β-induced FN expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Shu-Ching Ou
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
| | - Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wun-Hao Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
- Respiratory Therapy, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Yun Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
| | - Heng-Ching Wen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661; Fax: +886-2-27391143
| |
Collapse
|
27
|
Abstract
Peritoneal fibrosis (PF) is invariably observed in patients undergoing long-term peritoneal dialysis (PD). The condition is thought to occur in response to a variety of insults, including bioincompatible dialysates (acidic solution, high glucose, glucose degradation products, or a combination), peritonitis, uremia, and chronic inflammation. Recently, the pathophysiologic mechanisms that contribute to the fibrosing process have been intensively studied. Transforming growth factor-β has been shown to be a key mediator of PF. Loss of the mesothelial cell layer has been identified in several studies and shown to correlate with submesothelial thickening and vasculopathy. An association has also been identified between increased submesothelial thickness in the peritoneal membrane and increased solute transport, suggesting a relationship between PF and loss of ultrafiltration capacity. Thus, to maintain long-term PD and improve quality of life for patients, it is important to develop interventions for prevention and treatment of PF. Several strategies for peritoneal fibrosis intervention have been reported, including developing biocompatible dialysate, targeting mediators responsible for inflammation and fibrosis, and reconstituting the peritoneum using mesothelial or bone marrow–derived cells. Recent experimental trials in animal models and clinical studies are presented in this review.
Collapse
Affiliation(s)
- Kayo Kaneko
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Chieko Hamada
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhiko Tomino
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Tsai HT, Huang CS, Tu CC, Liu CY, Huang CJ, Ho YS, Tu SH, Tseng LM, Huang CC. Multi-gene signature of microcalcification and risk prediction among Taiwanese breast cancer. Sci Rep 2020; 10:18276. [PMID: 33106505 PMCID: PMC7588423 DOI: 10.1038/s41598-020-74982-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Microcalcification is one of the most common radiological and pathological features of breast ductal carcinoma in situ (DCIS), and to a lesser extent, invasive ductal carcinoma. We evaluated messenger RNA (mRNA) transcriptional profiles associated with ectopic mammary mineralization. A total of 109 breast cancers were assayed with oligonucleotide microarrays. The associations of mRNA abundance with microcalcifications and relevant clinical features were evaluated. Microcalcifications were present in 86 (79%) patients by pathological examination, and 81 (94%) were with coexistent DCIS, while only 13 (57%) of 23 patients without microcalcification, the invasive diseases were accompanied with DCIS (χ2-test, P < 0.001). There were 69 genes with differential mRNA abundance between breast cancers with and without microcalcifications, and 11 were associated with high-grade (comedo) type DCIS. Enriched Gene Ontology categories included glycosaminoglycan and aminoglycan metabolic processes and protein ubiquitination, indicating an active secretory process. The intersection (18 genes) of microcalcificaion-associated and DCIS-associated genes provided the best predictive accuracy of 82% with Bayesian compound covariate predictor. Ten genes were further selected for prognostic index score construction, and five-year relapse free survival was 91% for low-risk and 83% for high-risk group (log-rank test, P = 0.10). Our study suggested that microcalcification is not only the earliest detectable radiological sign for mammography screening but the phenomenon itself may reflect the underling events during mammary carcinogenesis. Future studies to evaluate the prognostic significance of microcalcifications are warranted.
Collapse
Affiliation(s)
- Hsin-Tien Tsai
- Division of General Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Shui Huang
- Division of General Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Chiang Tu
- Department of Surgery, Fu-Jen Catholic University Hospital, New Taipei, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chih-Yi Liu
- Division of Pathology, Cathay General Hospital Sijhih, New Taipei, Taiwan
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Medical Laboratory, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, ROC. .,School of Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, ROC.
| |
Collapse
|
29
|
Hellinger JW, Schömel F, Buse JV, Lenz C, Bauerschmitz G, Emons G, Gründker C. Identification of drivers of breast cancer invasion by secretome analysis: insight into CTGF signaling. Sci Rep 2020; 10:17889. [PMID: 33087801 PMCID: PMC7578015 DOI: 10.1038/s41598-020-74838-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
An altered consistency of tumor microenvironment facilitates the progression of the tumor towards metastasis. Here we combine data from secretome and proteome analysis using mass spectrometry with microarray data from mesenchymal transformed breast cancer cells (MCF-7-EMT) to elucidate the drivers of epithelial-mesenchymal transition (EMT) and cell invasion. Suppression of connective tissue growth factor (CTGF) reduced invasion in 2D and 3D invasion assays and expression of transforming growth factor-beta-induced protein ig-h3 (TGFBI), Zinc finger E-box-binding homeobox 1 (ZEB1) and lysyl oxidase (LOX), while the adhesion of cell-extracellular matrix (ECM) in mesenchymal transformed breast cancer cells is increased. In contrast, an enhanced expression of CTGF leads to an increased 3D invasion, expression of fibronectin 1 (FN1), secreted protein acidic and cysteine rich (SPARC) and CD44 and a reduced cell ECM adhesion. Gonadotropin-releasing hormone (GnRH) agonist Triptorelin reduces CTGF expression in a Ras homolog family member A (RhoA)-dependent manner. Our results suggest that CTGF drives breast cancer cell invasion in vitro and therefore could be an attractive therapeutic target for drug development to prevent the spread of breast cancer.
Collapse
Affiliation(s)
- Johanna W Hellinger
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Franziska Schömel
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Judith V Buse
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Bauerschmitz
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
30
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
31
|
In Vivo Anti-Inflammatory Effects and Related Mechanisms of Processed Egg Yolk, a Potential Anti-Inflammaging Dietary Supplement. Nutrients 2020; 12:nu12092699. [PMID: 32899660 PMCID: PMC7551027 DOI: 10.3390/nu12092699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Egg-yolk based supplements have demonstrated biological effects. We have developed a novel processed egg-yolk (PEY) complement, and we have tested whether it has inflammation modulatory properties. These were evaluated in a lipopolysaccharide (LPS)-challenge in 1-month male rats by in vivo circulating cytokine profiles measured by multiplexing techniques. Cell culture was used to explore ex vivo properties of derived serum samples. We explored growth factor composition, and mass-spectrometry metabolome and lipidome analyses of PEY to characterize it. PEY significantly prevented LPS-induced increase in IL-1 β, TNF-α, and MCP-1. Further, serum from PEY-treated animals abrogated LPS-induced iNOS build-up of the Raw 264.7 macrophage-like cell line. Immunochemical analyses demonstrated increased concentrations of insulin-like growth factor 1 (IGF-1), connective tissue growth factor (CTGF), and platelet-derived growth factor (PDGF) in the extract. PEY vs. egg-yolk comparative metabolomic analyses showed significative differences in the concentrations of at least 140 molecules, and in 357 in the lipidomic analyses, demonstrating the complexity of PEY. Globally, PEY acts as an orally-bioavailable immunomodulatory extract that may be of interest in those conditions associated with disarranged inflammation, such as inflammaging.
Collapse
|
32
|
Yu HN, Li XM, Kong LL, Ren J, Wu H, Bu LG, Ding NZ, Ni H. Connective tissue growth factor gene expression in goat endometrium during estrous cycle and early pregnancy. Theriogenology 2020; 153:85-90. [DOI: 10.1016/j.theriogenology.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022]
|
33
|
Dompe C, Kranc W, Jopek K, Kowalska K, Ciesiółka S, Chermuła B, Bryja A, Jankowski M, Perek J, Józkowiak M, Moncrieff L, Hutchings G, Janowicz K, Pawelczyk L, Bruska M, Petitte J, Mozdziak P, Kulus M, Piotrowska-Kempisty H, Spaczyński RZ, Nowicki M, Kempisty B. Muscle Cell Morphogenesis, Structure, Development and Differentiation Processes Are Significantly Regulated during Human Ovarian Granulosa Cells In Vitro Cultivation. J Clin Med 2020; 9:jcm9062006. [PMID: 32604796 PMCID: PMC7355984 DOI: 10.3390/jcm9062006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Granulosa cells (GCs) have many functions and are fundamental for both folliculogenesis and oogenesis, releasing hormones and communicating directly with the oocyte. Long-term in vitro cultures of GCs show significant stem-like characteristics. In the current study, RNA of human ovarian granulosa cells was collected at 1, 7, 15 and 30 days of long-term in vitro culture. Understanding the process of differentiation of GCs towards different cell lineages, as well as the molecular pathways underlying these mechanisms, is fundamental to revealing other possible stemness markers of this type of cell. Identifying new markers of GC plasticity may help to understand the aetiology and recurrence of a wide variety of diseases and health conditions and reveal possible clinical applications of the ovarian tissue cells, affecting not only the reproductive ability but also sex hormone production. Granulosa cells were the subject of this study, as they are readily available as remnant material leftover after in vitro fertilisation procedures and exhibit significant stem-like characteristics in culture. The change in gene expression was investigated through a range of molecular and bioinformatic analyses. Expression microarrays were used, allowing the identification of groups of genes typical of specific cellular pathways. This candidate gene study focused on ontological groups associated with muscle cell morphogenesis, structure, development and differentiation, namely, “muscle cell development”, “muscle cell differentiation”, “muscle contraction”, “muscle organ development”, “muscle organ morphogenesis”, “muscle structure development”, “muscle system process” and “muscle tissue development”. The results showed that the 10 most upregulated genes were keratin 19, oxytocin receptor, connective tissue growth factor, nexilin, myosin light chain kinase, cysteine and glycine-rich protein 3, caveolin 1, actin, activating transcription factor 3 and tropomyosin, while the 10 most downregulated consisted of epiregulin, prostaglandin-endoperoxide synthase 2, transforming growth factor, interleukin, collagen, 5-hydroxytryptmine, interleukin 4, phosphodiesterase, wingless-type MMTV integration site family and SRY-box 9. Moreover, ultrastructural observations showing heterogeneity of granulosa cell population are presented in the study. At least two morphologically different subpopulations were identified: large, light coloured and small, darker cells. The expression of genes belonging to the mentioned ontological groups suggest the potential ability of GCs to differentiate and proliferate toward muscle lineage, showing possible application in muscle regeneration and the treatment of different diseases.
Collapse
Affiliation(s)
- Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Błażej Chermuła
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Joanna Perek
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - James Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Toruń, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Robert Z. Spaczyński
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +48-61-854-6567; Fax: +48-61-854-6568
| |
Collapse
|
34
|
Koumarianou A, Alexandraki KI, Wallin G, Kaltsas G, Daskalakis K. Pathogenesis and Clinical Management of Mesenteric Fibrosis in Small Intestinal Neuroendocine Neoplasms: A Systematic Review. J Clin Med 2020; 9:E1777. [PMID: 32521677 PMCID: PMC7357094 DOI: 10.3390/jcm9061777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenteric fibrosis (MF) constitutes an underrecognized sequela in patients with small intestinal neuroendocrine neoplasms (SI-NENs), often complicating the disease clinical course. The aim of the present systematic review, carried out by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, is to provide an update in evolving aspects of MF pathogenesis and its clinical management in SI-NENs. Complex and dynamic interactions are present in the microenvironment of tumor deposits in the mesentery. Serotonin, as well as the signaling pathways of certain growth factors play a pivotal, yet not fully elucidated role in the pathogenesis of MF. Clinically, MF often results in significant morbidity by causing either acute complications, such as intestinal obstruction and/or acute ischemia or more chronic conditions involving abdominal pain, venous stasis, malabsorption and malnutrition. Surgical resection in patients with locoregional disease only or symptomatic distant stage disease, as well as palliative minimally invasive interventions in advanced inoperable cases seem clinically meaningful, whereas currently available systemic and/or targeted treatments do not unequivocally affect the development of MF in SI-NENs. Increased awareness and improved understanding of the molecular pathogenesis of MF in SI-NENs may provide better diagnostic and predictive tools for its timely recognition and intervention and also facilitates the development of agents targeting MF.
Collapse
Affiliation(s)
- Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Krystallenia I. Alexandraki
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
| | - Göran Wallin
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden;
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
| | - Kosmas Daskalakis
- 1st Department of Propaedeutic Internal Medicine, Endocrine Unit, National and Kapodistrian, University of Athens, 11527 Athens, Greece; (K.I.A.); (G.K.); (K.D.)
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden;
| |
Collapse
|
35
|
Margetts PJ, Bonniaud P. Basic Mechanisms and Clinical Implications of Peritoneal Fibrosis. Perit Dial Int 2020. [DOI: 10.1177/089686080302300604] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Peter J. Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philippe Bonniaud
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Lu M, Yan XF, Si Y, Chen XZ. CTGF Triggers Rat Astrocyte Activation and Astrocyte-Mediated Inflammatory Response in Culture Conditions. Inflammation 2020; 42:1693-1704. [PMID: 31183597 PMCID: PMC6717176 DOI: 10.1007/s10753-019-01029-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To improve clinical outcomes for patients with traumatic brain injury (TBI), it is necessary to explore the mechanism of traumatic brain injury (TBI)-induced neuroinflammation. Connective tissue growth factors (CTGF) have been reported to be involved in the process of inflammatory response or tissue repair, whereas whether and how CTGF participates in the astrocyte-mediated inflammation after TBI remains unclear. In the present study, the TBI-induced activation of astrocytes and augmentation of inflammatory response were simulated by stimulating rat astrocytes with TGF-β1 or CTGF in cultured conditions. TGF-β1 and CTGF both upregulated the expression of GFAP in astrocytes and facilitated the production of inflammatory cytokines and chemokines. Activation of astrocytes by CTGF is in an autocrine manner. According to the results of Boyden chamber assay, CTGF enhanced the recruitment of peripheral blood mononuclear cells (PBMCs) by reactive astrocytes. Besides, CTGF-mediated activation of astrocytes and augmentation of inflammatory response can be terminated by the inhibitor of ASK1 or p38 and JNK. Thus, our data suggested that CTGF could activate astrocytes in an autocrine manner and promote astrocyte-mediated inflammatory response by triggering the ASK1-p38/JNK-NF-κB/AP-1 pathways in astrocytes. Collectively, our study provided evidence that astrocyte-secreted CTGF serves as an amplifier of neuroinflammatory and could be a potential target for alleviating TBI-induced inflammation.
Collapse
Affiliation(s)
- Ming Lu
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xiao-Feng Yan
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China.
| | - Yun Si
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xin-Zhi Chen
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| |
Collapse
|
37
|
Sun S, Cui Z, Yan T, Wu J, Liu Z. CCN5 inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma cells. Cell Biol Int 2020; 44:998-1008. [PMID: 31889370 DOI: 10.1002/cbin.11296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell-cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst-positive cell number, and altered the apoptotic-related proteins (caspase-3/9, Bax, and Bcl-2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca-8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p-AKT Ser473) in Tca-8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5-silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.
Collapse
Affiliation(s)
- Shiqun Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhi Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Tongtong Yan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Jian Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhihui Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
38
|
Choi Y, Yoo JH, Lee JH, Lee Y, Bae MK, Kim YD, Kim HJ. Connective tissue growth factor (CTGF) regulates the fusion of osteoclast precursors by inhibiting Bcl6 in periodontitis. Int J Med Sci 2020; 17:647-656. [PMID: 32210715 PMCID: PMC7085216 DOI: 10.7150/ijms.41075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/11/2020] [Indexed: 11/28/2022] Open
Abstract
Connective tissue growth factor (CTGF), an extracellular matrix protein with various biological functions, is known to be upregulated in multiple chronic diseases such as liver fibrosis and congestive heart failure, but the mechanism it undertakes to cause alveolar bone loss in periodontitis remains elusive. The present study therefore investigates the pathways involving CTGF in chronic periodontitis. RNA sequencing revealed a notable increase in the expression of CTGF in chronic periodontitis tissues. Also, TRAP staining, TRAP activity and bone resorption assays showed that osteoclast formation and function is significantly facilitated in CTGF-treated bone marrow-derived macrophages (BMMs). Interestingly, western blotting and immunofluorescence staining results displayed that CTGF had little effect on the osteoclastogenic differentiation mediated by the positive regulators of osteoclastogenesis such as nuclear factor of activated T cells 1 (NFATc1). However, following results showed that both the mRNA and protein expressions of B cell lymphoma 6 (Bcl6), a transcriptional repressor of "osteoclastic" genes, were significantly downregulated by CTGF treatment. Moreover, CTGF upregulated the expressions of v-ATPase V0 subunit d2 (ATP6v0d2) and Dendritic cell-specific transmembrane protein (DC-STAMP) which are osteoclastic genes specifically required for osteoclast cell-cell fusion in pre-osteoclasts. Findings from this study suggest that CTGF promotes the fusion of pre-osteoclasts by downregulating Bcl6 and subsequently increasing the expression of DC-STAMP in periodontitis. Understanding this novel mechanism that leads to increased osteoclastogenesis in periodontitis may be employed for the development of new therapeutic targets for preventing periodontitis-associated alveolar bone resorption.
Collapse
Affiliation(s)
- YunJeong Choi
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Ji Hyun Yoo
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Jae-Hyung Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Department of Life and Nanopharmaceutical Sciences, Kyung Hee Medical Science Institute, Kyung Hee University, Seoul, Republic of Korea, 02447
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea, 41940
| | - Moon-Kyoung Bae
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| |
Collapse
|
39
|
Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon 2019; 5:e02899. [PMID: 31872111 PMCID: PMC6909108 DOI: 10.1016/j.heliyon.2019.e02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial capillaries that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs; KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3); one of them is disrupted in most CCM cases. It was demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) to modulate angiogenesis. In this report, we deployed both RNA-seq and proteomic analysis of perturbed CSC after depletion of one of three CCM genes to generate interactomes for system-wide studies. Our results demonstrated a unique portrait detailing alterations in angiogenesis and vascular integrity. Interestingly, only in-direct overlapped alterations between RNA and protein levels were detected, supporting the existence of multiple layers of regulation in CSC cascades. Notably, this is the first report identifying that both β4 integrin and CAV1 signaling are downstream of CSC, conveying the angiogenic signaling. Our results provide a global view of signal transduction modulated by the CSC, identifies novel regulatory signaling networks and key cellular factors associated with CSC.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Mariana Vasquez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Brian Grajeda
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Cameron Ellis
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
40
|
Zhou S, Zhu K, Du Y, Jiang H, Li M, Wu P, Xu A, Ding X, Sun L, Cao C, Sun G, Wang R. Estrogen administration reduces the risk of pulmonary arterial hypertension by modulating the miR-133a signaling pathways in rats. Gene Ther 2019; 27:113-126. [PMID: 31562386 DOI: 10.1038/s41434-019-0103-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
We aimed to investigate how estrogen (ES) is implicated in the pathogenesis of pulmonary arterial hypertension (PAH) potentially by reducing the extent of vascular remodeling in females. HE assay, Western Blot, IHC, and real-time PCR were carried out to observe the role of ES in regulating miR-133a expression and the levels of MYOSLID, SRF, CTGF, and vascular remodeling in rats. In addition, MTT assay and flow cytometry were utilized to observe how ES affects cell proliferation and cell cycle in PAH. Moreover, luciferase assays were carried out to clarity the regulatory relationship between miR-133a and its downstream targets. ES administration relieved the deregulation of miR-133a, MYOSLID, SRF, and CTGF in PAH rats. In addition, ES also reduced the thickening of blood vessels in PAH rats. ES could activate miR-133a promoter and arrest the cells in the G0/G1 cycle, thus dose-dependently suppressing the proliferation of cells. In addition, the presence of ES, MYOSLID siRNA, or miR-133a precursor all altered the expression of MYOSLID, SP1, SRF, and CTGF, thus establishing a molecular signaling pathway among these factors. Furthermore, miR-133a could bind to SP1, MYOSLID, SRF, and CTGF to reduce their expression. Moreover, SRF was proved to function as an activator of miR-133a promoter. Two feedback loops were established in this study: a negative feedback loop between SRF and miR-133a, and a positive loop among miR-133a/SRF/MLK1/MYOSLID. ES treatment upregulates miR-133a expression and reduces the incidence of PAH and vascular remodeling.
Collapse
Affiliation(s)
- Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, 230022, Hefei, China
| | - Ke Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Yongsheng Du
- Department of General Medicine, Hefei Second People's Hospital, Changjiang East Road, 230022, Hefei, China
| | - Huihui Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Peipei Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Aiqun Xu
- Department of General Medicine, Hefei Second People's Hospital, Changjiang East Road, 230022, Hefei, China
| | - Xing Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Chao Cao
- Department of Respiratory Medicine, Ningbo First Hospital, 315000, Ningbo, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| |
Collapse
|
41
|
Lee HS, Hua HS, Wang CH, Yu MC, Chen BC, Lin CH. Mycobacterium tuberculosis induces connective tissue growth factor expression through the TLR2-JNK-AP-1 pathway in human lung fibroblasts. FASEB J 2019; 33:12554-12564. [PMID: 31451010 DOI: 10.1096/fj.201900487r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mycobacterium tuberculosis (M.tb) infection in lung causes pulmonary fibrosis, which leads to the irreversible reduction of pulmonary function. Fibrotic protein connective tissue growth factor (CTGF) expression has been confirmed to play a crucial role in lung fibrosis. However, the underlying signal pathway and effect of M.tb on CTGF expression in human lung fibroblasts are unclear. Our results revaled that M.tb caused time- and concentration-dependent increases in CTGF expression in human lung fibroblasts. A mechanistic investigation revealed that M.tb induced CTGF expression through TLR2 but not TLR4. The promoter activity assay indicated that M.tb-induced CTGF activity was mainly controlled by the promoter region at -747 to -184 bp, which contained signal transducer and activator of transcription 3 and activator protein 1 (AP-1) binding sites. Moreover, curcumin (AP-1 inhibitor) restrained M.tb-induced CTGF expression. M.tb also induced increases in AP-1 luciferase activity and DNA binding activity of c-Jun and c-Fos on the CTGF promoter. Furthermore, the knockdown of c-Jun by small interfering RNA attenuated M.tb-induced CTGF expression and AP-1 luciferase activity. A JNK inhibitor (SP600125) and a JNK dominant-negative mutant suppressed M.tb-induced CTGF expression. We also discovered that M.tb could induce the phosphorylation of JNK and c-Jun. Furthermore, SP600125 inhibited M.tb-induced c-Jun phosphorylation and AP-1- luciferase activity. M.tb-induced fibronectin expression was inhibited by anti-CTGF antibody. These results demonstrate that M.tb is activated through TLR2 to induce JNK activation, further increasing the DNA binding activity of c-Jun and c-Fos and finally inducing CTGF expression and extracellular matrix production.-Lee, H.-S., Hua, H.-S., Wang, C.-H., Yu, M.-C., Chen, B.-C., Lin, C.-H. Mycobacterium tuberculosis induces connective tissue growth factor expression through the TLR2-JNK-AP-1 pathway in human lung fibroblasts.
Collapse
Affiliation(s)
- Hong-Sheng Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Hung-Sheng Hua
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Wang
- Department of Laboratory Medicine, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Pulmonary Research Center, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
42
|
Pan WQ, Wang JP, Tu ZH, Gan T, Hu J, Wei J, Leng XJ, Li XQ. Cloning, molecular characterization, and tissue differential expression of connective tissue growth factor (ctgf) of grass carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1431-1443. [PMID: 31267430 DOI: 10.1007/s10695-019-00653-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Connective tissue growth factor (ctgf) is involved in the proliferation, migration, adhesion of cell, and the constituent of extracellular matrix, which plays an important role in embryogenesis, angiogenesis, wound repair, and fibrosis diseases. In this study, the cDNA sequence of grass carp ctgf gene was cloned by rapid amplification of cDNA ends (RACE) method; then, the characteristics of this gene and the predicted protein sequence were analyzed by bioinformatics methods, and the tissue differential expression pattern was detected by the quantitative real-time PCR. The results showed that the grass carp ctgf gene has a full-length of 2223 bp, encoding 343 amino acids. The deduced CTGF protein is a hydrophilic and secretary protein with a molecular mass of 37,978.2 Da and an isoelectric point of 8.22. The signal peptide locates between residue positions 1 and 22 of the polypeptide chain. The protein contains α-helix, β-strand, and loops. The CTGF protein of grass carp shows a homology of 98%, 96%, 91%, and 91% with Wuchang bream (Megalobrama amblycephala), zebrafish (Danio rerio), common carp (Cyprinus carpio), and Mexican tetra (Astyanax mexicanus). The grass carp ctgf gene expressed significantly higher in blood and spleen than that in other tissues (P < 0.05). The low expression tissues included the heart, gill, skin, muscle, kidney, brain, and intestinal, and the lowest expression tissue was the liver. The results are consistent with the function of this gene.
Collapse
Affiliation(s)
- Wen-Qian Pan
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Jun-Peng Wang
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Zhi-Han Tu
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Tian Gan
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Jing Hu
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Jing Wei
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China
| | - Xiang-Jun Leng
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, No.999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center, No. 999, Huchenghuan Road, Shanghai, 201306, China.
| | - Xiao-Qin Li
- The College of Fisheries and Life Science, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, No. 999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, No.999, Huchenghuan Road, Shanghai, 201306, China.
- Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center, No. 999, Huchenghuan Road, Shanghai, 201306, China.
| |
Collapse
|
43
|
Anti-thymic stromal lymphopoietin antibody suppresses airway remodeling in asthma through reduction of MMP and CTGF. Pediatr Res 2019; 86:181-187. [PMID: 30464333 DOI: 10.1038/s41390-018-0239-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) mediates immune reaction in patients with asthma. Matrix metalloproteinase (MMP), connective tissue growth factor (CTGF), and transforming growth factor-β (TGF-β) are inflammatory mediators whose responses to the anti-TSLP antibody are unknown. This study examined the effect of an anti-TSLP antibody on MMP, CTGF, TGF-β, and airway structural changes in airway remodeling in asthma. METHODS Mice were randomly divided into phosphate-buffered-saline-challenged (PBS), ovalbumin-challenged (OVA), and ovalbumin-challenged with anti-TSLP antibody (OVA + anti-TSLP) groups. Airway responsiveness and serum ovalbumin-specific immunoglobulin E were measured. Differential cell counts and MMP-2 and MMP-9 were evaluated in bronchoalveolar lavage fluid (BALF). Airway structural changes were quantified using morphometric analysis and presentation by immunohistochemistry staining. Lung CTGF, TGF-β, and TSLP were analyzed using western blot. RESULTS Airway responsiveness was significantly lower in OVA + anti-TSLP and PBS groups than in OVA group. Airway structural changes exhibited less smooth muscle thickness in OVA + anti-TSLP and PBS groups than in OVA group. MMP-2 and MMP-9 in BALF and CTGF, TGF-β, and TSLP in lungs significantly decreased in OVA + anti-TSLP and PBS groups compared with OVA group. CONCLUSION Anti-TSLP antibody exerts the preventive effect of decreasing airway structural changes through reduction of MMP, TGF-β, and CTGF in airway remodeling of asthma.
Collapse
|
44
|
Albooshoke SN, Bakhtiarizadeh MR. Divergent gene expression through PI3K/akt signalling pathway cause different models of hypertrophy growth in chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1634498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. N. Albooshoke
- Department of Animal Science, Khuzestan Agricultural and Natural Resources, Research and Education Center, AREEO, Ahwaz, Iran
| | - M. R. Bakhtiarizadeh
- Department of Animal Science, College of Aburaihan, Iran University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Jiang L, Cao S. Role of microRNA‐26a in cartilage injury and chondrocyte proliferation and apoptosis in rheumatoid arthritis rats by regulating expression of CTGF. J Cell Physiol 2019; 235:979-992. [PMID: 31267533 DOI: 10.1002/jcp.29013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Liangde Jiang
- Department of Orthopaedics Beijing City Renhe Hospital Beijing China
| | - Shuai Cao
- Department of Orthopaedics Beijing City Renhe Hospital Beijing China
| |
Collapse
|
46
|
Wang HC, Jin CH, Kong J, Yu T, Guo JW, Hu YG, Liu Y. The research of transgenic human nucleus pulposus cell transplantation in the treatment of lumbar disc degeneration. Kaohsiung J Med Sci 2019; 35:486-492. [PMID: 31091017 DOI: 10.1002/kjm2.12084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/21/2019] [Indexed: 01/13/2023] Open
Abstract
The present study determines whether the in vivo injection of TGFβ1 and CTGF mediated by AAV2 to transfect nucleus pulposus cells in degenerative lumbar discs can reverse the biological effects of rhesus lumbar disc degeneration. A total of 42 lumbar discs obtained from six rhesus monkeys were classified into three groups: experimental group, control group, and blank group. Degenerative lumbar discs were respectively injected with double gene-transfected human nucleus pulposus cells using minimally invasive techniques. Immumohistochemical staining, RT-PCR, and western blot were performed to observe the biological effects of double gene-transfected human nucleus pulposus cells in degenerative lumbar discs on rhesus lumbar disc degeneration. At 4, 8, and 12 weeks after the transplantation of nucleus pulposus cells, the expression levels of TGF-ß1, CTGF, proteoglycan mRNA, and type-II collagen were detected by RT-PCR. The values of immumohistochemical staining and RT-PCR in the experimental group increased at 8 weeks, decreased with time at 12 weeks, and remained greater than the values in the control group, and the differences were statistically significant (P < .05). The western blot revealed that the values in the experimental group decreased with time, but remained greater than those in the PBS control group and blank control group, and the differences were statistically significant (P < .05). The double gene-transfection of human nucleus pulposus cells in degenerative lumbar discs mediated by rAAV2 can be continuously expressed in vivo after transplantation in lumbar discs of rhesus monkeys, and promotes the synthesis of proteoglycan and type II collagen, achieving the treatment purpose.
Collapse
Affiliation(s)
- Hua-Cong Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Cang-Hai Jin
- Department of Minimally Invasive Spine Surgery, Qingdao Municipal Hospital, East Branch, Qingdao, Shandong, People's Republic of China
| | - Jie Kong
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Tao Yu
- Department of Orthopedic Surgery, Rushan City People Hospital, Rushan, Shandong, P.R China
| | - Jian-Wei Guo
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - You-Gu Hu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Yong Liu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
47
|
Isolation and characterization of hypoxia inducible gene connective tissue growth factor (CTGF) in Labeo rohita. Mol Biol Rep 2019; 46:1683-1691. [PMID: 30689187 DOI: 10.1007/s11033-019-04617-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
The connective tissue growth factor gene plays important role in several biological processes and also responsive to hypoxia stress in fishes. The freshwater fish, Labeo rohita, highly cultured in Indian subcontinent for food, is reported as hypoxia sensitive but annotation and sequences of nuclear genes were not available for this species so far in the public domain, except some transcripts. In this study, an attempt was made for isolation and annotation of the CTGF gene in L. rohita using information of zebrafish from the same family. The CTGF gene sequence was obtained by aligning assembled genome of L. rohita, (NCBI BioProject ID: PRJNA437789), with the CTGF protein of zebrafish. Eight overlapping sets of forward and reverse primers from aligned region were designed for amplification of around 600 bp long successive overlapping fragments of CTGF gene in L. rohita. Assembly and annotation of overlapping fragments confirmed a complete 2421 bp long CTGF gene sequence with a full coding region that comprised of five exons between 308 and 1921 positions. This annotated CTGF gene sequence was submitted to GenBank (Acc. No. KY940466). Characterization of CTGF will be an initiative in identification of hypoxia response genes in L. rohita which may further help in understanding the mechanism of hypoxia tolerability in this species.
Collapse
|
48
|
Wawryk-Gawda E, Chłapek K, Zarobkiewicz MK, Lis-Sochocka M, Chylińska-Wrzos P, Boguszewska-Czubara A, Sławiński MA, Franczak A, Jodłowska-Jędrych B, Biała G. CB2R agonist prevents nicotine induced lung fibrosis. Exp Lung Res 2019; 44:344-351. [PMID: 30675824 DOI: 10.1080/01902148.2018.1543368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ewelina Wawryk-Gawda
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University in Lublin, Poland
| | - Katarzyna Chłapek
- Department of Financial Accounting, Cracow University of Economics, Poland
| | - Michał K. Zarobkiewicz
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University in Lublin, Poland
| | - Marta Lis-Sochocka
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University in Lublin, Poland
| | - Patrycja Chylińska-Wrzos
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University in Lublin, Poland
| | | | - Mirosław A. Sławiński
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University in Lublin, Poland
| | | | - Barbara Jodłowska-Jędrych
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University in Lublin, Poland
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University in Lublin, Poland
| |
Collapse
|
49
|
Functions of Periostin in Dental Tissues and Its Role in Periodontal Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:63-72. [PMID: 31037625 DOI: 10.1007/978-981-13-6657-4_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of periodontal regeneration therapy is to reliably restore teeth's supporting periodontal tissue, while aiding the formation of new connective tissue attached to the periodontal ligament (PDL) fibers and new alveolar bone. Periostin is a matricellular protein, primarily expressed in the periosteum and PDL of adult mice. Its biological functions have been extensively studied in the fields of cardiovascular physiology and oncology. Despite being initially identified in bone and dental tissue, the function of Periostin in PDL and the pathophysiology associated with alveolar bone are scarcely studied. Recently, several studies have suggested that Periostin may be an important regulator of periodontal tissue formation. By promoting collagen fibrillogenesis and the migration of fibroblasts and osteoblasts, Periostin might play a key role in the regeneration of PDL and alveolar bone after periodontal surgery. In this chapter, the implications of Periostin in periodontal tissue biology and its potential use in periodontal tissue regeneration are reviewed.
Collapse
|
50
|
At'kova EL, Subbot AM, Krakhovetskiy NN, Yartsev VD, Rein DA. [Influence of fibrosis mediators on the outcomes of endoscopic endonasal dacryocystorhinostomy]. Vestn Oftalmol 2019; 135:19-26. [PMID: 31573553 DOI: 10.17116/oftalma201913504119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Fibrosis is the most important pathologic condition involved in undesirable outcomes of dacryocystorhinostomy. A number of biochemical factors are currently known to have an effect on wound healing by promoting excessive scarring. Isoforms of transforming growth factor β (TGF-β1) are considered the 'main' pro-fibrotic factor, but wound healing is also affected by other cytokines such as connective tissue growth factor (CTGF), which stimulates fibrosis, and fibroblast growth factor (FGF-2), which acts as antagonist to it. PURPOSE To investigate correlations between endoscopic endonasal dacryocystorhinostomy outcomes and certain mediators of fibrosis. MATERIAL AND METHODS The study included 45 cases of endoscopic endonasal dacryocystorhinostomy. The patients were grouped according to surgery outcome: patients with unsuccessful surgical treatment were assigned to group 1 (n=10); patients with successful surgical treatment - to group 2 (n=34). One patient was excluded from the study. Full-layer biopsy specimen were taken from patients' nasal mucosa before the surgery. TGF-β1, TGF-β2, TGF-β3, CTGF, FGF-2 concentrations were evaluated using ELISA and normalized by total protein concentration. RESULTS Surgical failure was observed in 10 cases (22.72%). CTGF concentration was significantly correlated with negative outcome (p<0.05) and was elevated in most specimen obtained from group 1. No significant correlation was noted between the concentrations of other evaluated cytokines in nasal mucosa specimens and the surgical outcome. CONCLUSION The study found a correlation between CTGF concentration in nasal mucosa and dacryocystorhinostomy outcome, which supports the hypothesis suggested by several authors linking dacryocystorhinostomy failure with chronic inflammation in nasal mucosa.
Collapse
Affiliation(s)
- E L At'kova
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - A M Subbot
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - N N Krakhovetskiy
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - V D Yartsev
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - D A Rein
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|