1
|
Liang X, Qiu X, Ma Y, Xu W, Chen S, Zhang P, Liu M, Lin X. KRT18 regulates trophoblast cell migration and invasion which are essential for embryo implantation. Reprod Biol Endocrinol 2023; 21:78. [PMID: 37620903 PMCID: PMC10464462 DOI: 10.1186/s12958-023-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Female infertility is a worldwide concern that impacts the quality of life and well-being of affected couples. Failure of embryo implantation is a major cause of early pregnancy loss and is precisely regulated by a programmed molecular mechanism. Recent studies have shown that proper trophoblast adhesion and invasion are essential for embryo implantation. However, the potential regulatory mechanism involved in trophoblast adhesion and invasion has yet to be fully elucidated. KRT18 has been reported to play a critical role in early embryonic development, but its physiological function in embryo implantation remains unclear. In the present study, we revealed that KRT18 was highly expressed in trophoblast cells and that knockdown of KRT18 in mouse embryos inhibited embryo adhesion and implantation. In vitro experiments further showed that silencing KRT18 disturbed trophoblast migration and invasion. More importantly, we provide evidence that KRT18 directly binds to and stabilizes cell surface E-cadherin in trophoblast cells through microscale thermophoresis (MST) analysis and molecular biology experiments. In brief, our data reveal that KRT18, which is highly expressed in trophoblast cells, plays an important role in the regulation of trophoblast invasion and adhesion during embryo implantation by directly binding to E-cadherin.
Collapse
Affiliation(s)
- Xiaoling Liang
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Xiaoxiao Qiu
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynaecology, Taizhou Municipal Hospital, Taizhou, China
| | - Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynaecology, Tiantai People's Hospital of Zhejiang Province, Taizhou, China
| | - Mengying Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynaecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Kwak G, Lee D, Suk JS. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv 2023; 20:1531-1552. [PMID: 37946533 PMCID: PMC10872418 DOI: 10.1080/17425247.2023.2282535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiheon Lee
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Wang PB, Chen Y, Ding GR, Du HW, Fan HY. Keratin 18 induces proliferation, migration, and invasion in gastric cancer via the MAPK signalling pathway. Clin Exp Pharmacol Physiol 2021; 48:147-156. [PMID: 32860257 DOI: 10.1111/1440-1681.13401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Keratin 18 (KRT18) is a cytoskeleton protein that plays a key role in multiple cancers. The present study aims to further investigate the roles of KRT18 in gastric cancer (GC) tissues and cells. METHODS The KRT18 protein expression levels of GC tissues and cells were detected using immunohistochemistry and western blot. The relationship between KRT18 expression levels and the prognosis of GC patients was further analyzed. To explore this relationship, small interfering RNA (siRNA) was used to inhibit the endogenous expression of KRT18 in GC cells. Furthermore, the effects of KRT18 on the proliferation, invasion, migration, and apoptosis of GC cells were analyzed in vitro. In addition, the role of KRT18 in GC-specific processes was investigated. RESULTS Keratin 18 expression was shown to be up-regulated in GC tissues and associated with poor prognosis. Following KRT18 silencing with siRNA, the proliferation, invasion, and migration ability of GC cells were significantly inhibited, while the apoptotic process was promoted. Furthermore, the activation of the MAPK signalling pathway was identified as the potential mechanism through which KRT18 influenced GC processes. CONCLUSIONS Keratin 18 plays a cancer-promoting role and might be a potential therapeutic target in the treatment of GC.
Collapse
Affiliation(s)
- Peng-Bin Wang
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| | - Yan Chen
- Department of Gastroenterology, Characteristic Medical Center of Strategic Support Army, Beijing, China
| | - Guang-Rong Ding
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| | - Hong-Wei Du
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| | - Hong-Yan Fan
- Department of Gastroenterology, Lanzhou Second People's Hospital, Lanzhou, China
| |
Collapse
|
4
|
KRT18 is correlated with the malignant status and acts as an oncogene in colorectal cancer. Biosci Rep 2019; 39:BSR20190884. [PMID: 31345960 PMCID: PMC6692566 DOI: 10.1042/bsr20190884] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Keratin 18 (KRT18) has been suggested to be overexpressed in most types of human tumor, but the expression pattern of KRT18 in colorectal cancer (CRC) remained unknown. In our research, KRT18 protein expression was markedly increased in CRC cancer tissues and cell lines compared with adjacent normal colorectal tissues and normal colonic epithelial cell line, respectively. Meanwhile, we observed high KRT18 expression was associated with advanced clinical stage, deep tumor invasion, lymph node metastasis, distant metastasis, poor differentiation and unfavorable prognosis in CRC patients. Multivariate Cox regression analysis showed high expression of KRT18 was an unfavorable independent predictor for overall survival in CRC patients. The in vitro studies indicated down-regulation of KRT18 expression depressed CRC cell viability, migration and invasion. In conclusion, KRT18 serves as an oncogenic role in CRC progression and may be a therapeutic target for promoting CRC patients' prognosis.
Collapse
|
5
|
Cao H, Machuca TN, Yeung JC, Wu J, Du K, Duan C, Hashimoto K, Linacre V, Coates AL, Leung K, Wang J, Yeger H, Cutz E, Liu M, Keshavjee S, Hu J. Efficient gene delivery to pig airway epithelia and submucosal glands using helper-dependent adenoviral vectors. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e127. [PMID: 24104599 PMCID: PMC3890457 DOI: 10.1038/mtna.2013.55] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 08/02/2013] [Indexed: 11/09/2022]
Abstract
Airway gene delivery is a promising strategy to treat patients with life-threatening lung diseases such as cystic fibrosis (CF). However, this strategy has to be evaluated in large animal preclinical studies in order to translate it to human applications. Because of anatomic and physiological similarities between the human and pig lungs, we utilized pig as a large animal model to examine the safety and efficiency of airway gene delivery with helper-dependent adenoviral vectors. Helper-dependent vectors carrying human CFTR or reporter gene LacZ were aerosolized intratracheally into pigs under bronchoscopic guidance. We found that the LacZ reporter and hCFTR transgene products were efficiently expressed in lung airway epithelial cells. The transgene vectors with this delivery can also reach to submucosal glands. Moreover, the hCFTR transgene protein localized to the apical membrane of both ciliated and nonciliated epithelial cells, mirroring the location of wild-type CF transmembrane conductance regulator (CFTR). Aerosol delivery procedure was well tolerated by pigs without showing systemic toxicity based on the limited number of pigs tested. These results provide important insights into developing clinical strategies for human CF lung gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e127; doi:10.1038/mtna.2013.55; published online 8 October 2013.
Collapse
Affiliation(s)
- Huibi Cao
- Department of Physiology & Experimental Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsui LC, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med 2013; 3:a009472. [PMID: 23378595 DOI: 10.1101/cshperspect.a009472] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The positional cloning of the gene responsible for cystic fibrosis (CF) was the important first step in understanding the basic defect and pathophysiology of the disease. This study aims to provide a historical account of key developments as well as factors that contributed to the cystic fibrosis transmembrane conductance regulator (CFTR) gene identification work. A redefined gene structure based on the full sequence of the gene derived from the Human Genome Project is presented, along with brief reviews of the transcription regulatory sequences for the CFTR gene, the role of mRNA splicing in gene regulation and CF disease, and, various related sequences in the human genome and other species. Because CF mutations and genotype-phenotype correlations are covered by our colleagues (Ferec C, Cutting GR. 2012. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a009480), we only attempt to provide an introduction of the CF mutation database here for reference purposes.
Collapse
Affiliation(s)
- Lap-Chee Tsui
- The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| | | |
Collapse
|
7
|
Pringle IA, Hyde SC, Connolly MM, Lawton AE, Xu B, Nunez-Alonso G, Davies LA, Sumner-Jones SG, Gill DR. CpG-free plasmid expression cassettes for cystic fibrosis gene therapy. Biomaterials 2012; 33:6833-42. [PMID: 22727465 DOI: 10.1016/j.biomaterials.2012.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 01/03/2023]
Abstract
Clinical studies are underway for the aerosol delivery of plasmid DNA complexed with Genzyme Lipid GL67A to the lungs of patients with cystic fibrosis (CF). Plasmid vectors contain several functional elements all of which play a role in determining the efficacy of the final clinical product. To optimise the final plasmid, variations of CpG-free 5' enhancer elements and 3'UTR regions were inserted into a common CpG-free, plasmid backbone containing Luciferase or CFTR transgenes. Plasmids were compared in immortalised cell culture, human airway liquid interface primary cell cultures, and mouse lung models to determine which design directed optimal transgene expression. Following aerosol delivery to mouse lung, plasmids containing the murine CMV enhancer showed higher peak Luciferase activity than the human CMV enhancer, but the human version resulted in persistent expression. In cell culture, the SV40 3'UTR and a novel BGH2 3'UTR exhibited up to 20-fold higher Luciferase activity than the commonly used BGH 3'UTR, but in mouse lung aerosol studies the activity and duration was greater for BGH 3'UTR. Systematic evaluation of each functional component of the plasmid has resulted in an improved design, exhibiting superior levels and duration of lung gene expression.
Collapse
Affiliation(s)
- Ian A Pringle
- Gene Medicine Research Group, NDCLS, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cao H, Molday RS, Hu J. Gene therapy: light is finally in the tunnel. Protein Cell 2012; 2:973-89. [PMID: 22231356 DOI: 10.1007/s13238-011-1126-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/27/2011] [Indexed: 01/23/2023] Open
Abstract
After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.
Collapse
Affiliation(s)
- Huibi Cao
- Programme in Physiology and Experimental Medicine, Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G, 1X8, Canada
| | | | | |
Collapse
|
9
|
Yang T, Duan R, Cao H, Lee BH, Xia C, Chang Z, Keith Tanswell A, Hu J. Development of an inflammation-inducible gene expression system using helper-dependent adenoviral vectors. J Gene Med 2011; 12:832-9. [PMID: 20848669 DOI: 10.1002/jgm.1501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Clinical studies have shown that gene therapy is a promising approach for treating such genetic diseases as the eye disease, Leber's congenital amaurosis. Development of gene therapy approaches for treating chronic inflammatory diseases is, however, more challenging because it requires the production of anti-inflammatory molecules at the diseased tissues only when they are needed. METHODS We designed such a system by modifying the human interleukin (IL)-6 gene promoter to direct transgene expression and delivered the system into cultured cells as well as mouse lungs using a helper-dependent adenoviral vector. RESULTS We have demonstrated both in vitro and in vivo that the reporter LacZ or human IL-10 gene can be induced by inflammatory stimuli. CONCLUSIONS The results obtained indicate that the inflammation inducible gene expression system based on the modified human IL-6 gene promoter has the potential to be used for developing gene therapy for treating inflammatory diseases.
Collapse
Affiliation(s)
- Tianyao Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Collapse
Affiliation(s)
- Amanda Rosewell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
11
|
Abstract
After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.
Collapse
|
12
|
Piro D, Rejman J, Conese M. Stem cell therapy for cystic fibrosis: current status and future prospects. Expert Rev Respir Med 2010; 2:365-80. [PMID: 20477199 DOI: 10.1586/17476348.2.3.365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although cystic fibrosis (CF), an autosomal recessive disease caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR), seems a good candidate for gene therapy, 15 years of intense investigation and a number of clinical trials have not yet produced a viable clinical gene-therapy strategy. In addition, the duration of gene expression has been shown to be limited, only lasting 1-4 weeks. Therefore, alternative approaches involve the search for, and use of, stem cell populations. Bone marrow contains different stem cell types, including hematopoietic stem cells and multipotent mesenchymal stromal cells. Numerous studies have now demonstrated the ability of hematopoietic stem cells and mesenchymal stromal cells to home to the lung and differentiate into epithelial cells of both the conducting airways and the alveolar region. However, engraftment of bone marrow-derived stem cells into the airways is a very inefficient process. Detailed knowledge of the cellular and molecular determinants governing homing to the lung and transformation of marrow cells into lung epithelial cells would benefit this process. Despite a very low level of engraftment of donor cells into the nose and gut, significant CFTR mRNA expression and a measurable level of correction of the electrophysiological defect were observed after transplantation of wild-type marrow cells into CF mice. It is uncertain whether this effect is due to the presence of CFTR-expressing epithelial cells derived from donor cells or to the immunomodulatory role of transplanted cells. Finally, initial studies on the usefulness of umbilical cord blood and embryonic stem cells in the generation of airway epithelial cells will be discussed in this review.
Collapse
Affiliation(s)
- Donatella Piro
- Department of Biomedical Sciences, University of Foggia, c/o Ospedali Riuniti, Viale L. Pinto 1, 71100 Foggia, Italy.
| | | | | |
Collapse
|
13
|
Griesenbach U, Alton EWFW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009; 61:128-39. [PMID: 19138713 DOI: 10.1016/j.addr.2008.09.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022]
Abstract
Gene therapy is currently being developed for a wide range of acute and chronic lung diseases. The target cells, and to a degree the extra and intra-cellular barriers, are disease-specific and over the past decade the gene therapy community has recognized that no one vector is good for all applications, but that the gene transfer agent (GTA) has to be carefully matched to the specific disease target. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfils these criteria and is, therefore, a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy, but lessons learned may be applicable to other target diseases.
Collapse
Affiliation(s)
- Uta Griesenbach
- Department of Gene Therapy, Faculty of Medicine at the National Heart and Lung Institute, Imperial College London, Manresa Road, London SW36LR, UK.
| | | |
Collapse
|
14
|
Ostrowski LE, Yin W, Diggs PS, Rogers TD, O'Neal WK, Grubb BR. Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther 2007; 14:1492-501. [PMID: 17637798 DOI: 10.1038/sj.gt.3302994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful gene therapy will require that the therapeutic gene be expressed at a sufficient level in the correct cell type(s). To improve the specificity of gene transfer for cystic fibrosis (CF) and other airway diseases, we have begun to develop cell-type specific promoters to target the expression of transgenes to specific airway cell types. Using a FOXJ1 promoter construct previously shown to direct transgene expression specifically to ciliated cells, we have generated transgenic mice expressing human cystic fibrosis transmembrane conductance regulator (CFTR) in the murine tracheal and nasal epithelia. RNA analysis demonstrated levels of CFTR expression is greater than or equal to the level of endogenous mouse CFTR. Immunoprecipitation and western blotting demonstrated the production of human CFTR protein, and immunochemistry confirmed that CFTR was expressed in the apical region of ciliated cells. The transgenic animals were bred to CFTR null mice (Cftr(tm1Unc)) to determine if expression of CFTR from the FOXJ1 promoter is capable of correcting the airway defects in Cl(-) secretion and Na(+) absorption that accompany CF. Isolated trachea from neonatal CF mice expressing the FOXJ1/CFTR transgene demonstrated a correction of forskolin-stimulated Cl(-) secretion. However, expression of human CFTR in ciliated cells of the nasal epithelia failed to significantly change the nasal bioelectrics of the CF mice.
Collapse
Affiliation(s)
- L E Ostrowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Flotte TR, Ng P, Dylla DE, McCray PB, Wang G, Kolls JK, Hu J. Viral Vector–mediated and Cell-based Therapies for Treatment of Cystic Fibrosis. Mol Ther 2007; 15:229-41. [PMID: 17235299 DOI: 10.1038/sj.mt.6300002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gene and cell-based therapies are considered to be potentially powerful new approaches for the management of cystic fibrosis (CF) lung disease. Despite tremendous efforts that have been made, especially in studies to understand the obstacles to gene delivery, major challenges to the application of these approaches remain to be solved. This article will review the advancements made and challenges remaining in the development of viral vector-mediated and cell-based approaches to treat patients with CF.
Collapse
Affiliation(s)
- Terence R Flotte
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Davies LA, Seguela C, Varathalingam A, Cheng SH, Hyde SC, Gill DR. Identification of transfected cell types following non-viral gene transfer to the murine lung. J Gene Med 2007; 9:184-96. [PMID: 17351986 DOI: 10.1002/jgm.1007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Identification of the cell types transfected following gene transfer is an important factor in the selection of appropriate gene transfer agents (GTAs). Due to the relatively low gene expression mediated by non-viral GTAs, current methodologies for the detection and identification of transfected cells in the lung have proven insensitive and unreliable. We have investigated the use of the green fluorescent protein (GFP) to identify transfected cells in a mouse lung model. METHODS Direct visualisation of GFP fluorescence in frozen histological sections was used in conjunction with a panel of cell type specific antibodies to investigate the distribution and level of gene expression in mouse lungs following instillation of non-viral GTAs. RESULTS Despite considerable tissue autofluorescence, dose-dependent expression of GFP was detected following instillation of as little as 25 microg naked plasmid DNA (pDNA). Naked pDNA and pDNA complexed with polyethylenimine appeared to transfect mainly ciliated cells and Clara cells of the conducting airway, whereas expression mediated by pDNA complexed with the cationic lipid GL67 was found predominantly in type I pneumocytes. CONCLUSIONS Direct visualisation of GFP expression was used to detect transfected cell types in the mouse lung. In contrast with observations made using beta-galactosidase as a reporter, gene expression from several non-viral GTAs was readily demonstrated and no false GFP-positive cells were ever detected in untreated lung tissues. Lung delivery of different GTAs resulted in GFP expression in different cell types, confirming the importance of identification of transfected cells when screening and selecting GTAs for disease targets.
Collapse
Affiliation(s)
- Lee A Davies
- Gene Medicine Research Group, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | |
Collapse
|
17
|
Holder E, Griesenbach U, Li S, Huang L, Rogers DF, Jeffery PK, Geddes DM, Alton EWFW. Intravenously administered oligonucleotides can be delivered to conducting airway epithelium via the bronchial circulation. Gene Ther 2006; 13:1628-38. [PMID: 16791284 DOI: 10.1038/sj.gt.3302811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Topical gene transfer to the airways of cystic fibrosis (CF) patients has been inefficient, partly due to extracellular barriers such as sputum. In an attempt to circumvent these, we assessed whether airway epithelial cells can be transfected by intravenous (i.v.) administration of liposome-complexed or "naked" oligonucleotides (ODNs). The conducting airways are the likely target for CF therapy and are supplied by the bronchial circulation. Consequently, we assessed ODN transfer in the mouse trachea and main bronchi as these are supplied by the bronchial circulation. Liposome-protamine-DNA (LPD) complexes were detected in the bronchial circulation but did not transfect conducting airway epithelial cells, even in the presence of microvascular leakage. In contrast, 'naked' ODNs were delivered to 17% (inter-quartile range (IQR) 10-34%) and 35% (IQR 24-59%) of epithelial cells when injected at 500 microg/animal, without and with microvascular leakage, respectively. Two types of nuclear signal were observed; punctate in cells throughout the airways (3%, IQR 2-6%, and 6%, IQR 4-7%, of cells when delivered without and with microvascular leakage, respectively) and diffuse in a small number of epithelial cells in the proximal trachea. ODNs may be relevant to CF in a variety of ways and these data suggest one way towards implementing their use.
Collapse
Affiliation(s)
- E Holder
- Department of Gene Therapy, Faculty of Medicine, Imperial College, Manrisa Road, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA, Hohmeier HE, Newgard CB, Grayburn PA. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 2006; 103:8469-74. [PMID: 16709667 PMCID: PMC1482516 DOI: 10.1073/pnas.0602921103] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Indexed: 12/31/2022] Open
Abstract
This study describes a method of gene delivery to pancreatic islets of adult, living animals by ultrasound targeted microbubble destruction (UTMD). The technique involves incorporation of plasmids into the phospholipid shell of gas-filled microbubbles, which are then infused into rats and destroyed within the pancreatic microcirculation with ultrasound. Specific delivery of genes to islet beta cells by UTMD was achieved by using a plasmid containing a rat insulin 1 promoter (RIP), and reporter gene expression was regulated appropriately by glucose in animals that received a RIP-luciferase plasmid. To demonstrate biological efficacy, we used UTMD to deliver RIP-human insulin and RIP-hexokinase I plasmids to islets of adult rats. Delivery of the former plasmid resulted in clear increases in circulating human C-peptide and decreased blood glucose levels, whereas delivery of the latter plasmid resulted in a clear increase in hexokinase I protein expression in islets, increased insulin levels in blood, and decreased circulating glucose levels. We conclude that UTMD allows relatively noninvasive delivery of genes to pancreatic islets with an efficiency sufficient to modulate beta cell function in adult animals.
Collapse
Affiliation(s)
- Shuyuan Chen
- *Department of Internal Medicine, Cardiology Section, Baylor University Medical Center, Baylor Heart and Vascular Institute, 621 North Hall Street, Suite H030, Dallas, TX 75226
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX 75246
| | - Jia-huan Ding
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX 75246
| | | | - Bing-zhi Yang
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX 75246
| | - Ralph V. Shohet
- Department of Internal Medicine, Division of Cardiology, and
| | - Stephen A. Johnston
- Center for Biomedical Invention, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Hans E. Hohmeier
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27710
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27710
| | - Paul A. Grayburn
- *Department of Internal Medicine, Cardiology Section, Baylor University Medical Center, Baylor Heart and Vascular Institute, 621 North Hall Street, Suite H030, Dallas, TX 75226
| |
Collapse
|
19
|
Gene Therapy for Lung Diseases. PRINCIPLES OF MOLECULAR MEDICINE 2006. [PMCID: PMC7121178 DOI: 10.1007/978-1-59259-963-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene therapy is under development for a variety of lung disease, both those caused by single gene defects, such as cystic fibrosis and α1-antitrypsin deficiency, and multifactorial diseases such as cancer, asthma, lung fibrosis, and ARDS. Both viral and nonviral approaches have been explored, the major limitation to the former being the inability to repeatedly administer, which renders this approach perhaps more applicable to conditions requiring single administration, such as cancer. Progress in development and clinical trials in each of these diseases is reviewed, together with some potential newer approaches for the future.
Collapse
|
20
|
Abstract
Given both the accessibility and the genetic basis of several pulmonary diseases, the lungs and airways initially seemed ideal candidates for gene therapy. Several routes of access are available, many of which have been refined and optimized for nongene drug delivery. Two respiratory diseases, cystic fibrosis (CF) and alpha1-antitrypsin (alpha1-AT) deficiency, are relatively common; the single gene responsible has been identified and current treatment strategies are not curative. This type of inherited disease was the obvious initial target for gene therapy, but it has become clear that nongenetic and acquired diseases, including cancer, may also be amenable to this approach. The majority of preclinical and clinical studies in the airway have involved viral vectors, although for diseases such as CF, likely to require repeated application, non-viral delivery systems have clear advantages. However, with both approaches a range of barriers to gene expression have been identified that are limiting success in the airway and alveolar region. This chapter reviews these issues, strategies aimed at overcoming them, and progress into clinical trials with non-viral vectors in a variety of pulmonary diseases.
Collapse
Affiliation(s)
- Jane C Davies
- Department of Gene Therapy, Imperial College London, London SW3 6LR, United Kingdom
| | | |
Collapse
|
21
|
Abstract
A decade ago it was widely anticipated that cystic fibrosis would be one of the first diseases to be treated by gene therapy. The difficult hurdle of cloning the responsible gene had been accomplished, its function was established and the lung appeared readily accessible for gene replacement. Since the first clinical trials for cystic fibrosis lung disease in the early 1990s it has become increasingly apparent that successful lung-directed gene therapy is significantly more complex than was first envisioned. Numerous obstacles including vector toxicity, inefficient transgene expression and limited vector production have delayed progress. An increased understanding of vector biology and host interaction has led to the development of novel strategies to enhance the efficiency and selectivity of gene delivery to the lung. Although significant challenges remain, there is now a realistic prospect of a clinically effective treatment in the next 10 years.
Collapse
Affiliation(s)
- Stephen Tate
- Belfast City Hospital, Department of Respiratory Medicine, Northern Ireland.
| | | |
Collapse
|
22
|
Carpenter M, Epperly MW, Agarwal A, Nie S, Hricisak L, Niu Y, Greenberger JS. Inhalation delivery of manganese superoxide dismutase-plasmid/liposomes protects the murine lung from irradiation damage. Gene Ther 2005; 12:685-93. [PMID: 15750616 DOI: 10.1038/sj.gt.3302468] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intratracheal injection of manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) complexes has been demonstrated to delay the onset and reduce the extent of ionizing irradiation-induced murine pulmonary organizing alveolitis/fibrosis. To facilitate translation of this modality to clinical fractionated radiotherapy, inhalation delivery of MnSOD-PL was developed using an ultrasonic nebulizer. Transgene product was quantitated by immunohistochemical quantitation and pulmonary tissue levels of MnSOD biochemical activity. C57BL/6NHsd female mice demonstrated a plasmid dose-dependent increased expression of MnSOD transgene product over the range of 250 microg-2.5 mg of MnSOD-PL administered over a constant 5 min interval. Delivery of a constant concentration of 500 microg of MnSOD-PL with varying times of administration ranging from 0.5 to 10 min demonstrated optimal MnSOD expression at 5 min. Mice pretreated by inhalation delivery of MnSOD-PL demonstrated significantly improved survival after 20 Gy single fraction irradiation to both lungs compared to LacZ-PL inhalation-treated or irradiated control mice. Mice receiving 10 fractions of 3.5 cGy demonstrated increased pulmonary MnSOD transgene product activity by a protocol of every Monday-Wednesday or daily inhalation of MnSOD-PL. Thus, inhalation radioprotective gene therapy using MnSOD-PL provides a practical and effective method for delivery of lung-specific radioprotection during fractionated radiotherapy protocols in a mouse model.
Collapse
Affiliation(s)
- M Carpenter
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Balaban AT, Ilies MA. Recent developments in cationic lipid-mediated gene delivery and gene therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.11.1729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Koehler DR, Frndova H, Leung K, Louca E, Palmer D, Ng P, McKerlie C, Cox P, Coates AL, Hu J. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med 2005; 7:1409-20. [PMID: 15999396 DOI: 10.1002/jgm.797] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Poor transduction of the ciliated airway epithelium and inefficient airway delivery of viral vectors are common difficulties encountered in lung gene therapy trials with large animals and humans. METHODS We delivered a helper-dependent adenovirus vector, incorporating a human epithelial cell-specific expression cassette, to rabbit lung. An intratracheal device was used to aerosolize a moderate dose of virus (5 x 10(11) particles), mixed with the enhancing agent LPC (L-alpha-lysophosphatidylcholine), directly into the airways. Lung mechanics, body weight and temperature, transgene expression and histopathology were studied at day 5. RESULTS Transgene expression was seen in the epithelium of large and small airways, from trachea to terminal bronchioles, with a strong tendency toward the right lung. All cell types of the surface epithelium were transduced. Extensive transduction of the epithelium (66% of cells in trachea) was obtained using virus formulated in isotonic 0.1% LPC, while virus formulated in 0.01% LPC transduced fewer cells (24% in trachea). A transient decrease in dynamic lung compliance was observed immediately following aerosol delivery. Fever and mild-to-moderate patchy pneumonia without edema were also observed. CONCLUSION These data demonstrate a strategy for efficient and effective transduction of airway epithelium in a large animal.
Collapse
Affiliation(s)
- David R Koehler
- Program in Lung Biology Research, The Hospital for Sick Children, Toronto, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Griesenbach U, Geddes DM, Alton EWFW. Gene therapy for cystic fibrosis: an example for lung gene therapy. Gene Ther 2004; 11 Suppl 1:S43-50. [PMID: 15454956 PMCID: PMC7092152 DOI: 10.1038/sj.gt.3302368] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene therapy is currently being evaluated for a wide range of acute and chronic lung diseases. The requirement of gene transfer into the individual cell types of the complex lung structure will very much depend on the target disease. Over the last decade, the gene therapy community has recognized that there is not even one vector that is good for all applications, but that the gene transfer agent has to be carefully chosen. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfills these criteria and is therefore a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy and discuss the progress made in this field over the last couple of years.
Collapse
Affiliation(s)
- U Griesenbach
- Department of Gene Therapy, Faculty of Medicine at the National Heart and Lung Institute, Imperial College, London, UK
| | | | | |
Collapse
|
26
|
Klink D, Schindelhauer D, Laner A, Tucker T, Bebok Z, Schwiebert EM, Boyd AC, Scholte BJ. Gene delivery systems—gene therapy vectors for cystic fibrosis. J Cyst Fibros 2004; 3 Suppl 2:203-12. [PMID: 15463959 DOI: 10.1016/j.jcf.2004.05.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gene delivery systems (GDS) play a central role in the development of gene therapy strategies for Cystic Fibrosis (CF). Further, these systems are important tools in studies with cultured cells and in animal models. In this review, we describe the properties of several viral and synthetic gene delivery systems, and evaluate their possible application in gene therapy of CF. While many gene delivery systems give satisfactory results in cultured or animal studies, none of these systems has been shown to fulfil all the requirements of safety and efficacy for use in CF patients. The intact airway epithelium, the most important target in CF gene therapy, proves to be well protected against invading vector systems.
Collapse
Affiliation(s)
- Daniel Klink
- Department of Cell Biology, Erasmus MC, Erasmus University, P.O. Box 1738, Rotterdam DR 3000, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ostrowski LE, Hutchins JR, Zakel K, O'Neal WK. Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter. Mol Ther 2004; 8:637-45. [PMID: 14529837 DOI: 10.1016/s1525-0016(03)00221-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many of the vectors being investigated for gene therapy utilize viral promoters or promoters from ubiquitously expressed genes (e.g., CMV, beta-actin). These promoters are active in many cell types and generally result in high levels of transgene expression. However, the use of these promoters for gene therapy of cystic fibrosis (CF) may produce undesirable effects by directing high levels of CFTR expression in cells that normally do not synthesize this protein. In contrast, a vector containing a ciliated cell-specific promoter and delivered to the lung would be active only in the ciliated cells that line the surface of the airways. Ciliated cells express CFTR and are in direct contact with the airway surface liquid normally regulated by CFTR. To develop a ciliated cell-specific promoter for CF gene therapy, we have characterized the promoter region of the FOXJ1 gene, a transcription factor required for ciliated cell differentiation. A fragment of the human FOXJ1 promoter region was inserted into an EGFP expression cassette and used to produce transgenic mice. Transgene-positive animals demonstrated strong EGFP expression in the ciliated cells of tracheal, bronchial, and nasal epithelium. Our results demonstrate that elements within the FOXJ1 promoter region are sufficient to target expression of transgenes to ciliated cells and may be useful for gene therapy of CF.
Collapse
Affiliation(s)
- Lawrence E Ostrowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
28
|
Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 2004; 56:600-12. [PMID: 14616419 PMCID: PMC1884297 DOI: 10.1046/j.1365-2125.2003.01893.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research in the area of pulmonary drug delivery has gathered momentum in the last several years, with increased interest in using the lung as a means of delivering drugs systemically. Advances in device technology have led to the development of more efficient delivery systems capable of delivering larger doses and finer particles into the lung. As more efficient pulmonary delivery devices and sophisticated formulations become available, physicians and health professionals will have a choice of a wide variety of device and formulation combinations that will target specific cells or regions of the lung, avoid the lung's clearance mechanisms and be retained within the lung for longer periods. It is now recognized that it is not enough just to have inhalation therapy available for prescribing; physicians and other healthcare providers need a basic understanding of aerosol science, inhaled formulations, delivery devices, and bioequivalence of products to prescribe these therapies optimally.
Collapse
Affiliation(s)
- N R Labiris
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
29
|
Koehler DR, Sajjan U, Chow YH, Martin B, Kent G, Tanswell AK, McKerlie C, Forstner JF, Hu J. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci U S A 2003; 100:15364-9. [PMID: 14673110 PMCID: PMC307573 DOI: 10.1073/pnas.2436478100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed a helper-dependent adenoviral vector for cystic fibrosis lung gene therapy. The vector expresses cystic fibrosis transmembrane conductance regulator (Cftr) using control elements from cytokeratin 18. The vector expressed properly localized CFTR in cultured cells and in the airway epithelia of mice. Cftr RNA and protein were present in whole lung and bronchioles, respectively, for 28 days after a vector dose. Acute inflammation was minimal to moderate. To test the therapeutic potential of the vector, we challenged mice with a clinical strain of Burkholderia cepacia complex (Bcc). Cftr knockout mice (but not Cftr+/+ littermates) challenged with Bcc developed severe lung histopathology and had high lung bacteria counts. Cftr knockout mice receiving gene therapy 7 days before Bcc challenge had less severe histopathology, and the number of lung bacteria was reduced to the level seen in Cftr+/+ littermates. These data suggest that gene therapy could benefit cystic fibrosis patients by reducing susceptibility to opportunistic pathogens.
Collapse
Affiliation(s)
- David R Koehler
- Programme in Lung Biology Research and Canadian Institutes of Health Research Group in Lung Development, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Delépine P, Guillaume C, Montier T, Clément JC, Yaouanc JJ, Des Abbayes H, Berthou F, Le Pape A, Férec C. Biodistribution study of phosphonolipids: a class of non-viral vectors efficient in mice lung-directed gene transfer. J Gene Med 2003; 5:600-8. [PMID: 12825199 DOI: 10.1002/jgm.385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND A multitude of cationic lipids have been synthesized since they were first proposed for use in gene therapy. Cationic lipids are able to efficiently transfect cells both in vitro and in vivo. Whereas most research groups have focused their investigations on the toxicity of these molecules, and on the location of expression of the DNA transferred by these vectors, little has been done to determine their biodistribution and elimination pathways. Our group has developed a family of cationic lipids termed phosphonolipids. Following a large in vitro screening experiment, we have selected several molecules for in vivo testing, with some of these phosphonolipids forming lipoplexes efficient in transfecting mouse lungs. It was thus of interest to study their fate after intravenous injection. METHODS The respective biodistributions of both the GLB43 phosphonolipid and plasmid DNA were investigated and compared with DNA expression sites. Using the optimal conditions determined for phosphonolipids, we followed the gene transfer agent and plasmid DNA distributions versus time by radiolabeling them with (14)C and (32)P, respectively. Otherwise, we performed imaging by radiolabeling plasmid DNA with (99m)Tc. RESULTS The lipoplexes appear to be directly located in the lung after administration. Secondly, the plasmid is released mainly into the lungs and the phosphonolipid vector is rapidly degraded. The hydrophilic moiety of the phosphonolipid is eliminated in the urine, as is the free plasmid. CONCLUSIONS This study reveals that there are slight differences in the observed results depending on the technique used to label the DNA; secondly, results show that the residence time of phosphonolipids in the mouse body is related to the DNA binding time.
Collapse
Affiliation(s)
- P Delépine
- Inserm EMI-U 01-15: génétique moléculaire et épidémiologie génétique, 46 rue Félix Le Dantec, BP 454, 29275 Brest, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Toietta G, Koehler DR, Finegold MJ, Lee B, Hu J, Beaudet AL. Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. Mol Ther 2003; 7:649-58. [PMID: 12718908 DOI: 10.1016/s1525-0016(03)00059-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Efforts have been made to deliver transgenes to the airway epithelia of laboratory animals and humans to develop gene therapy for cystic fibrosis. These investigations have been disappointing due to combinations of transient and low-level gene expression, acute toxicity, and inflammation. We have developed new helper-dependent adenoviral vectors to deliver an epithelial cell-specific keratin 18 expression cassette driving the beta-galactosidase (beta-gal) or human alpha-fetoprotein (AFP) reporter genes. Following intranasal administration to mice, we found that the reporter genes were widely expressed in airway epithelial and submucosal cells, and secreted human AFP was also detectable in serum. In contrast to a first-generation adenoviral vector, inflammation was negligible at doses providing efficient transduction, and expression lasted longer than typically reported-up to 28 days with beta-gal and up to 15 weeks with human AFP. These results suggest that delivery to the airway of helper-dependent adenoviral vectors utilizing a tissue-specific promoter could be a significant advance in the development of gene therapy for cystic fibrosis.
Collapse
Affiliation(s)
- Gabriele Toietta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lu QL, Bou-Gharios G, Partridge TA. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 2003; 10:131-42. [PMID: 12571642 DOI: 10.1038/sj.gt.3301874] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ever since the publication of the first reports in 1990 using skeletal muscle as a direct target for expressing foreign transgenes, an avalanche of papers has identified a variety of proteins that can be synthesized and correctly processed by skeletal muscle. The impetus to the development of such applications is not only amelioration of muscle diseases, but also a range of therapeutic applications, from immunization to delivery of therapeutic proteins, such as clotting factors and hormones. Although the most efficient way of introducing transgenes into muscle fibres has been by a variety of recombinant viral vectors, there are potential benefits in the use of non-viral vectors. In this review we assess the recent advances in construction and delivery of naked plasmid DNA to skeletal muscle and highlight the options available for further improvements to raise efficiency to therapeutic levels.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, London W12 0NN, UK
| | | | | |
Collapse
|
33
|
Abstract
Clinical trials of gene therapy for cystic fibrosis suggest that current levels of gene transfer efficiency are probably too low to result in clinical benefit, largely as a result of the barriers faced by gene transfer vectors within the airways. The respiratory epithelium has evolved a complex series of extracellular barriers (mucus, lack of receptors, immune surveillance, etc.) aimed at preventing penetration of lumenally delivered materials, including gene therapy vectors. In addition, once in the cell, further hurdles have to be overcome, including DNA degradation, nuclear import and the ability to maintain long-term transgene expression. Strategies to overcome these barriers will be addressed in this review and include the use of: (i) clinically relevant adjuncts to overcome the extra- and intracellular barriers; (ii) less-conventional delivery routes, such as intravenous or in utero administration; (iii) more efficient non-viral vectors and 'stealth' viruses which can be re-administered; and (iv) new approaches to prolong transgene expression by means of alternative promoters or integrating vectors. These advances have the potential to improve the efficiency of gene delivery to the airway epithelium, thus making gene therapy a more realistic option for cystic fibrosis.
Collapse
Affiliation(s)
- Stefano Ferrari
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College Faculty of Medicine, UK Cystic fibrosis Gene Therapy Consortium, Edinburgh-London-Oxford, UK, London SW3 6LR, UK.
| | | | | |
Collapse
|
34
|
Abstract
Since the cloning of the cystic fibrosis gene (CFTR) in 1989, 18 clinical trials have been carried out, including five in the 2 years reviewed here. Most trials demonstrated proof-of-principle for gene transfer to the airway. However, gene transfer efficiency with each of the three gene transfer agents (adenovirus (Ad), adeno-associated virus 2 (AAV2) and cationic liposomes) was low, and most likely insufficient to achieve clinical benefit. Here, we will review the clinical and pre-clinical progress for the last 2 years (2000-2001) and briefly speculate on future prospects for the next 2 in CF gene therapy.
Collapse
Affiliation(s)
- U Griesenbach
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College, Faculty of Medicine, London, UK
| | | | | | | |
Collapse
|