1
|
George KA, Anding AL, van der Flier A, Tomassy GS, Berger KI, Zhang TY, Sardi SP. Pompe disease: Unmet needs and emerging therapies. Mol Genet Metab 2024; 143:108590. [PMID: 39418752 DOI: 10.1016/j.ymgme.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Pompe disease is a debilitating and life-threatening disease caused by aberrant accumulation of glycogen resulting from reduced acid alpha-glucosidase activity. The first treatment for Pompe disease, the enzyme replacement therapy, Myozyme® (recombinant human acid alpha-glucosidase, alglucosidase alfa), is a lifesaving treatment for the most severe form of the disease and provided clinically meaningful benefits to patients with milder phenotypes. Nonetheless, many patients display suboptimal responses or clinical decline following years of alglucosidase alfa treatment. The approval of avalglucosidase alfa (Nexviazyme®) and cipaglucosidase alfa (Pombiliti®) with miglustat (Opfolda®) represents a new generation of enzyme replacement therapies seeking to further improve patient outcomes beyond alglucosidase alfa. However, the emergence of a complicated new phenotype with central nervous system involvement following long-term treatment, coupled with known and anticipated unmet needs of patients receiving enzyme replacement therapy, has prompted development of innovative new treatments. This review provides an overview of the challenges of existing treatments and a summary of emerging therapies currently in preclinical or clinical development for Pompe disease and related lysosomal storage disorders. Key treatments include tissue-targeted enzyme replacement therapy, which seeks to enhance enzyme concentration in target tissues such as the central nervous system; substrate reduction therapy, which reduces intracellular glycogen concentrations via novel mechanisms; and gene therapy, which may restore endogenous production of deficient acid alpha-glucosidase. Each of these proposed treatments shows promise as a future therapeutic option to improve quality of life in Pompe disease by more efficiently treating the underlying cause of disease progression: glycogen accumulation.
Collapse
|
2
|
Jauze L, Vie M, Miagoux Q, Rossiaud L, Vidal P, Montalvo-Romeral V, Saliba H, Jarrige M, Polveche H, Nozi J, Le Brun PR, Bocchialini L, Francois A, Cosette J, Rouillon J, Collaud F, Bordier F, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele NF, Gross DA, Hoch L, Nissan X, Ronzitti G. Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver. JCI Insight 2024; 9:e172614. [PMID: 38753465 PMCID: PMC11382881 DOI: 10.1172/jci.insight.172614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.
Collapse
Affiliation(s)
- Louisa Jauze
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Mallaury Vie
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Quentin Miagoux
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucille Rossiaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Valle Montalvo-Romeral
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Hanadi Saliba
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Margot Jarrige
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Helene Polveche
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Justine Nozi
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Luca Bocchialini
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Amandine Francois
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Jérémy Rouillon
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Fanny Collaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | | | | | | | | | | | - David-Alexandre Gross
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| |
Collapse
|
3
|
Muñoz S, Bertolin J, Jimenez V, Jaén ML, Garcia M, Pujol A, Vilà L, Sacristan V, Barbon E, Ronzitti G, El Andari J, Tulalamba W, Pham QH, Ruberte J, VandenDriessche T, Chuah MK, Grimm D, Mingozzi F, Bosch F. Treatment of infantile-onset Pompe disease in a rat model with muscle-directed AAV gene therapy. Mol Metab 2024; 81:101899. [PMID: 38346589 PMCID: PMC10877955 DOI: 10.1016/j.molmet.2024.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.
Collapse
Affiliation(s)
- Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Maria Luisa Jaén
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Miquel Garcia
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Elena Barbon
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Quang Hong Pham
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Jesus Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), B-1090, Brussels, Belgium; Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, 3000, Leuven, Belgium
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, BioQuant Center, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Federico Mingozzi
- INTEGRARE, Genethon, INSERM UMR951, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
4
|
Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele N, Richard I, Gross DA, Mingozzi F, Collaud F, Ronzitti G. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa -/- mice. J Inherit Metab Dis 2024; 47:119-134. [PMID: 37204237 DOI: 10.1002/jimd.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Collapse
Affiliation(s)
- P Sellier
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - P Vidal
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - B Bertin
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - E Gicquel
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | | | | | | | | | | | - I Richard
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - D A Gross
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Mingozzi
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Collaud
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - G Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
5
|
Querin G, Colella M. Gene therapy for primary myopathies: literature review and prospects. Arch Pediatr 2023; 30:8S18-8S23. [PMID: 38043978 DOI: 10.1016/s0929-693x(23)00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy has emerged as a promising frontier in the pursuit of effective treatments for primary myopathies. This scientific review explores the application of viral vectors and more specifically of recombinant adeno-associated virus (rAAV) vectors as a potent gene delivery tool in the context of primary myopathies, highlighting its transformative potential. Focusing on primary myopathies, including Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophies (LGMDs), X-linked myotubular myopathy (XLMTM), and Pompe disease, we review the ongoing pre-clinical and clinical trials that underscore the therapeutic promise of rAAV-based gene therapies. Recent developments in gene therapy have unveiled innovative gene transfer approaches, particularly with rAAV vectors. These vectors offer a well-tolerated and efficient means of delivering corrective genetic material to diseased muscles, thereby addressing the root causes of primary myopathies. Encouraging data from pre-clinical studies and early clinical trials have demonstrated the potential to ameliorate muscle function, reduce pathological manifestations, and enhance the quality of life for patients afflicted with these devastating diseases. However, the transition from bench to bedside is not without challenges. This review emphasizes the critical need for a comprehensive risk management strategy to better handle potential side effects and immune responses associated with gene therapy. As the field of gene therapy for primary myopathies is advancing, it is imperative to refine and optimize safety measures, ensuring that the transformative potential of these therapies is realized while the risks are minimized. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Giorgia Querin
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre référent pour les maladies neuromusculaires Nord/Est/Ile de France, Paris, France; Institut de Myologie, I-Motion clinical trials platform, Paris, France.
| | - Marina Colella
- Institut de Myologie, I-Motion clinical trials platform, Paris, France; APHP, Pediatric Neurology Department, Hôpital Armand Trousseau, Centre référent pour les maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| |
Collapse
|
6
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
7
|
Burban A, Pucyło S, Sikora A, Opolski G, Grabowski M, Kołodzińska A. Hypertrophic Cardiomyopathy versus Storage Diseases with Myocardial Involvement. Int J Mol Sci 2023; 24:13239. [PMID: 37686045 PMCID: PMC10488064 DOI: 10.3390/ijms241713239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
One of the main causes of heart failure is cardiomyopathies. Among them, the most common is hypertrophic cardiomyopathy (HCM), characterized by thickening of the left ventricular muscle. This article focuses on HCM and other cardiomyopathies with myocardial hypertrophy, including Fabry disease, Pompe disease, and Danon disease. The genetics and pathogenesis of these diseases are described, as well as current and experimental treatment options, such as pharmacological intervention and the potential of gene therapies. Although genetic approaches are promising and have the potential to become the best treatments for these diseases, further research is needed to evaluate their efficacy and safety. This article describes current knowledge and advances in the treatment of the aforementioned cardiomyopathies.
Collapse
Affiliation(s)
- Anna Burban
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Szymon Pucyło
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Aleksandra Sikora
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Grzegorz Opolski
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Marcin Grabowski
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Agnieszka Kołodzińska
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| |
Collapse
|
8
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
9
|
Unnisa Z, Yoon JK, Schindler JW, Mason C, van Til NP. Gene Therapy Developments for Pompe Disease. Biomedicines 2022; 10:302. [PMID: 35203513 PMCID: PMC8869611 DOI: 10.3390/biomedicines10020302] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.
Collapse
Affiliation(s)
- Zeenath Unnisa
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | - John K. Yoon
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Advanced Centre for Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Niek P. van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Eggers M, Vannoy CH, Huang J, Purushothaman P, Brassard J, Fonck C, Meng H, Prom MJ, Lawlor MW, Cunningham J, Sadhu C, Mavilio F. Muscle-directed gene therapy corrects Pompe disease and uncovers species-specific GAA immunogenicity. EMBO Mol Med 2022; 14:e13968. [PMID: 34850579 PMCID: PMC8749482 DOI: 10.15252/emmm.202113968] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/21/2022] Open
Abstract
Pompe disease is a severe disorder caused by loss of acid α-glucosidase (GAA), leading to glycogen accumulation in tissues and neuromuscular and cardiac dysfunction. Enzyme replacement therapy is the only available treatment. AT845 is an adeno-associated viral vector designed to express human GAA specifically in skeletal muscle and heart. Systemic administration of AT845 in Gaa-/- mice led to a dose-dependent increase in GAA activity, glycogen clearance in muscles and heart, and functional improvement. AT845 was tolerated in cynomolgus macaques at low doses, while high doses caused anti-GAA immune response, inflammation, and cardiac abnormalities resulting in unscheduled euthanasia of two animals. Conversely, a vector expressing the macaque GAA caused no detectable pathology, indicating that the toxicity observed with AT845 was an anti-GAA xenogeneic immune response. Western blot analysis showed abnormal processing of human GAA in cynomolgus muscle, adding to the species-specific effects of enzyme expression. Overall, these studies show that AAV-mediated GAA delivery to muscle is efficacious in Gaa-/- mice and highlight limitations in predicting the toxicity of AAV vectors encoding human proteins in non-human species.
Collapse
Affiliation(s)
- Michelle Eggers
- Nonclinical, Pharmacology/ToxicologyAudentes TherapeuticsSan FranciscoCAUSA
| | - Charles H Vannoy
- Nonclinical, Pharmacology/ToxicologyAudentes TherapeuticsSan FranciscoCAUSA
| | - Jianyong Huang
- Nonclinical, Pharmacology/ToxicologyAudentes TherapeuticsSan FranciscoCAUSA
| | | | | | - Carlos Fonck
- Nonclinical, Pharmacology/ToxicologyAudentes TherapeuticsSan FranciscoCAUSA
| | - Hui Meng
- Department of Pathology and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Mariah J Prom
- Department of Pathology and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Michael W Lawlor
- Department of Pathology and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Justine Cunningham
- Nonclinical, Pharmacology/ToxicologyAudentes TherapeuticsSan FranciscoCAUSA
- Present address:
Sana BiotechnologySouth San FranciscoCAUSA
| | - Chanchal Sadhu
- Nonclinical, Pharmacology/ToxicologyAudentes TherapeuticsSan FranciscoCAUSA
| | - Fulvio Mavilio
- Nonclinical, Pharmacology/ToxicologyAudentes TherapeuticsSan FranciscoCAUSA
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
11
|
Muhuri M, Zhan W, Maeda Y, Li J, Lotun A, Chen J, Sylvia K, Dasgupta I, Arjomandnejad M, Nixon T, Keeler AM, Manokaran S, He R, Su Q, Tai PWL, Gao G. Novel Combinatorial MicroRNA-Binding Sites in AAV Vectors Synergistically Diminish Antigen Presentation and Transgene Immunity for Efficient and Stable Transduction. Front Immunol 2021; 12:674242. [PMID: 33995418 PMCID: PMC8113644 DOI: 10.3389/fimmu.2021.674242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) platforms hold promise for in vivo gene therapy but are undermined by the undesirable transduction of antigen presenting cells (APCs), which in turn can trigger host immunity towards rAAV-expressed transgene products. In light of recent adverse events in patients receiving high systemic AAV vector doses that were speculated to be related to host immune responses, development of strategies to mute innate and adaptive immunity is imperative. The use of miRNA binding sites (miR-BSs) to confer endogenous miRNA-mediated regulation to detarget transgene expression from APCs has shown promise for reducing transgene immunity. Studies have shown that designing miR-142BSs into rAAV1 vectors were able to repress costimulatory signals in dendritic cells (DCs), blunt the cytotoxic T cell response, and attenuate clearance of transduced muscle cells in mice to allow sustained transgene expression in myofibers with negligible anti-transgene IgG production. In this study, we screened individual and combinatorial miR-BS designs against 26 miRNAs that are abundantly expressed in APCs, but not in skeletal muscle. The highly immunogenic ovalbumin (OVA) transgene was used as a proxy for foreign antigens. In vitro screening in myoblasts, mouse DCs, and macrophages revealed that the combination of miR-142BS and miR-652-5pBS strongly mutes transgene expression in APCs but maintains high myoblast and myocyte expression. Importantly, rAAV1 vectors carrying this novel miR-142/652-5pBS cassette achieve higher transgene levels following intramuscular injections in mice than previous detargeting designs. The cassette strongly inhibits cytotoxic CTL activation and suppresses the Th17 response in vivo. Our approach, thus, advances the efficiency of miRNA-mediated detargeting to achieve synergistic reduction of transgene-specific immune responses and the development of safe and efficient delivery vehicles for gene therapy.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Yukiko Maeda
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jennifer Chen
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Katelyn Sylvia
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Thomas Nixon
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ran He
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Phillip W. L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
12
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
13
|
McCall AL, Dhindsa JS, Bailey AM, Pucci LA, Strickland LM, ElMallah MK. Glycogen accumulation in smooth muscle of a Pompe disease mouse model. J Smooth Muscle Res 2021; 57:8-18. [PMID: 33883348 PMCID: PMC8053439 DOI: 10.1540/jsmr.57.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pompe disease is a lysosomal storage disease caused by mutations within the
GAA gene, which encodes acid α-glucosidase (GAA)—an enzyme necessary
for lysosomal glycogen degradation. A lack of GAA results in an accumulation of glycogen
in cardiac and skeletal muscle, as well as in motor neurons. The only FDA approved
treatment for Pompe disease—an enzyme replacement therapy (ERT)—increases survival of
patients, but has unmasked previously unrecognized clinical manifestations of Pompe
disease. These clinical signs and symptoms include tracheo-bronchomalacia, vascular
aneurysms, and gastro-intestinal discomfort. Together, these previously unrecognized
pathologies indicate that GAA-deficiency impacts smooth muscle in addition to skeletal and
cardiac muscle. Thus, we sought to characterize smooth muscle pathology in the airway,
vascular, gastrointestinal, and genitourinary in the Gaa−/−
mouse model. Increased levels of glycogen were present in smooth muscle cells of the
aorta, trachea, esophagus, stomach, and bladder of Gaa−/−
mice, compared to wild type mice. In addition, there was an increased
abundance of both lysosome membrane protein (LAMP1) and autophagosome membrane protein
(LC3) indicating vacuolar accumulation in several tissues. Taken together, we show that
GAA deficiency results in subsequent pathology in smooth muscle cells, which may lead to
life-threatening complications if not properly treated.
Collapse
Affiliation(s)
- Angela L McCall
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Justin S Dhindsa
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aidan M Bailey
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Logan A Pucci
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Laura M Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
14
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
15
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|
16
|
Fusco AF, McCall AL, Dhindsa JS, Zheng L, Bailey A, Kahn AF, ElMallah MK. The Respiratory Phenotype of Pompe Disease Mouse Models. Int J Mol Sci 2020; 21:ijms21062256. [PMID: 32214050 PMCID: PMC7139647 DOI: 10.3390/ijms21062256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.
Collapse
|
17
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
19
|
Abstract
Pompe disease (PD) is caused by the deficiency of the lysosomal enzyme acid α-glucosidase (GAA), resulting in systemic pathological glycogen accumulation. PD can present with cardiac, skeletal muscle, and central nervous system manifestations, as a continuum of phenotypes among two main forms: classical infantile-onset PD (IOPD) and late-onset PD (LOPD). IOPD is caused by severe GAA deficiency and presents at birth with cardiac hypertrophy, muscle hypotonia, and severe respiratory impairment, leading to premature death, if not treated. LOPD is characterized by levels of residual GAA activity up to ∼20% of normal and presents both in children and adults with a varied severity of muscle weakness and motor and respiratory deficit. Enzyme replacement therapy (ERT), based on repeated intravenous (i.v.) infusions of recombinant human GAA (rhGAA), represents the only available treatment for PD. Upon more than 10 years from its launch, it is becoming evident that ERT can extend the life span of IOPD and stabilize disease progression in LOPD; however, it does not represent a cure for PD. The limited uptake of the enzyme in key affected tissues and the high immunogenicity of rhGAA are some of the hurdles that limit ERT efficacy. GAA gene transfer with adeno-associated virus (AAV) vectors has been shown to reduce glycogen storage and improve the PD phenotype in preclinical studies following different approaches. Here, we present an overview of the different gene therapy approaches for PD, focusing on in vivo gene transfer with AAV vectors and discussing the potential opportunities and challenges in developing safe and effective gene therapies for the disease. Based on emerging safety and efficacy data from clinical trials for other protein deficiencies, in vivo gene therapy with AAV vectors appears to have the potential to provide a therapeutically relevant, stable source of GAA enzyme, which could be highly beneficial in PD.
Collapse
Affiliation(s)
- Pasqualina Colella
- Genethon, Evry, France.,Department of Pediatrics, Stanford University, Stanford, California
| | - Federico Mingozzi
- Genethon, Evry, France.,Spark Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, Vaught L, Falk DJ, McCall A, Corti M. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:290. [PMID: 31392202 DOI: 10.21037/atm.2019.05.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pompe disease is a neuromuscular disease caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase leading to lysosomal and cytoplasmic glycogen accumulation in neurons and striated muscle. In the decade since availability of first-generation enzyme replacement therapy (ERT) a better understanding of the clinical spectrum of disease has emerged. The most severe form of early onset disease is typically identified with symptoms in the first year of life, known as infantile-onset Pompe disease (IOPD). Infants are described at floppy babies with cardiac hypertrophy in the first few months of life. A milder form with late onset (LOPD) of symptoms is mostly free of cardiac involvement with slower rate of progression. Glycogen accumulation in the CNS and skeletal muscle is observed in both IOPD and LOPD. In both circumstances, multi-system disease (principally motoneuron and myopathy) leads to progressive weakness with associated respiratory and feeding difficulty. In IOPD the untreated natural history leads to cardiorespiratory failure and death in the first year of life. In the current era of ERT clinical outcomes are improved, yet, many patients have an incomplete response and a substantial unmet need remains. Since the neurological manifestations of the disease are not amenable to peripheral enzyme replacement, we set out to better understand the pathophysiology and potential for treatment of disease manifestations using adeno-associated virus (AAV)-mediated gene transfer, with the first clinical gene therapy studies initiated by our group in 2006. This review focuses on the preclinical studies and clinical study findings which are pertinent to the development of a comprehensive gene therapy strategy for both IOPD and LOPD. Given the advent of newborn screening, a significant focus of our recent work has been to establish the basis for repeat administration of AAV vectors to enhance neuromuscular therapeutic efficacy over the life span.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Nathalie Clement
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Kirsten Coleman
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Brian Cleaver
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Lauren Vaught
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | | | - Angela McCall
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Manuela Corti
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Ronzitti G, Collaud F, Laforet P, Mingozzi F. Progress and challenges of gene therapy for Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:287. [PMID: 31392199 DOI: 10.21037/atm.2019.04.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pompe disease (PD) is a monogenic disorder caused by mutations in the acid alpha-glucosidase gene (Gaa). GAA is a lysosomal enzyme essential for the degradation of glycogen. Deficiency of GAA results in a severe, systemic disorder that, in its most severe form, can be fatal. About a decade ago, the prognosis of PD has changed dramatically with the marketing authorization of an enzyme replacement therapy (ERT) based on recombinant GAA. Despite the breakthrough nature of ERT, long-term follow-up of both infantile and late-onset Pompe disease patients (IOPD and LOPD, respectively), revealed several limitations of the approach. In recent years several investigational therapies for PD have entered preclinical and clinical development, with a few next generation ERTs entering late-stage clinical development. Gene therapy holds the potential to change dramatically the way we treat PD, based on the ability to express the Gaa gene long-term, ideally driving enhanced therapeutic efficacy compared to ERT. Several gene therapy approaches to PD have been tested in preclinical animal models, with a handful of early phase clinical trials started or about to start. The complexity of PD and of the endpoints used to measure efficacy of investigational treatments remains a challenge, however the hope is for a future with more therapeutic options for both IOPD and LOPD patients.
Collapse
Affiliation(s)
| | | | - Pascal Laforet
- Raymond Poincaré Teaching Hospital, APHP, Garches, France.,Nord/Est/Ile de France Neuromuscular Center, France
| | | |
Collapse
|
22
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol 2019; 42:261-285. [PMID: 31132295 PMCID: PMC6687348 DOI: 10.1590/1678-4685-gmb-2018-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited conditions caused by impaired lysosomal function and consequent substrate storage, leading to a range of clinical manifestations, including cardiovascular disease. This may lead to significant symptoms and even cardiac failure, which is an important cause of death among patients. Currently available treatments do not completely correct cardiac involvement in the LSDs. Gene therapy has been tested as a therapeutic alternative with promising results for the heart disease. In this review, we present the results of different approaches of gene therapy for LSDs, mainly in animal models, and its effects in the heart, focusing on protocols with cardiac functional analysis.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Lim JA, Yi H, Gao F, Raben N, Kishnani PS, Sun B. Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:233-245. [PMID: 30809555 PMCID: PMC6376130 DOI: 10.1016/j.omtm.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
Pompe disease, a severe and often fatal neuromuscular disorder, is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The disease is characterized by the accumulation of excess glycogen in the heart, skeletal muscle, and CNS. Currently approved enzyme replacement therapy or experimental adeno-associated virus (AAV)-mediated gene therapy has little effect on CNS correction. Here we demonstrate that a newly developed AAV-PHP.B vector can robustly transduce both the CNS and skeletal muscles in GAA-knockout (GAAKO) mice. A single intravenous injection of an AAV-PHP.B vector expressing human GAA under the control of cytomegalovirus (CMV) enhancer-chicken β-actin (CB) promoter into 2-week-old GAAKO mice resulted in widespread GAA expression in the affected tissues. Glycogen contents were reduced to wild-type levels in the brain and heart, and they were significantly decreased in skeletal muscle by the AAV treatment. The histological assay showed no visible glycogen in any region of the brain and spinal cord of AAV-treated mice. In this study, we describe a set of behavioral tests that can detect early neurological deficits linked to extensive lysosomal glycogen accumulation in the CNS of untreated GAAKO mice. Furthermore, we demonstrate that the therapy can help prevent the development of these abnormalities.
Collapse
Affiliation(s)
- Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Haiqing Yi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
24
|
Abstract
Pompe disease is a rare and deadly muscle disorder. As a clinical entity, the disease has been known for over 75 years. While an optimist might be excited about the advances made during this time, a pessimist would note that we have yet to find a cure. However, both sides would agree that many findings in basic science-such as the Nobel prize-winning discoveries of glycogen metabolism, the lysosome, and autophagy-have become the foundation of our understanding of Pompe disease. The disease is a glycogen storage disorder, a lysosomal disorder, and an autophagic myopathy. In this review, we will discuss how these past discoveries have guided Pompe research and impacted recent therapeutic developments.
Collapse
Affiliation(s)
- Lara Kohler
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Keeler AM, Zieger M, Todeasa SH, McCall AL, Gifford JC, Birsak S, Choudhury SR, Byrne BJ, Sena-Esteves M, ElMallah MK. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Hum Gene Ther 2018; 30:57-68. [PMID: 29901418 DOI: 10.1089/hum.2018.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pompe disease is an autosomal recessive glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption in muscle and the central nervous system (CNS). Adeno-associated virus (AAV) gene therapy is ideal for Pompe disease, since a single systemic injection may correct both muscle and CNS pathologies. Using the Pompe mouse (B6;129-GaaTm1Rabn/J), this study sought to explore if AAVB1, a newly engineered vector with a high affinity for muscle and CNS, reduces systemic weakness and improves survival in adult mice. Three-month-old Gaa-/- animals were injected with either AAVB1 or AAV9 vectors expressing GAA and tissues were harvested 6 months later. Both AAV vectors prolonged survival. AAVB1-treated animals had a robust weight gain compared to the AAV9-treated group. Vector genome levels, GAA enzyme activity, and histological analysis indicated that both vectors transduced the heart efficiently, leading to glycogen clearance, and transduced the diaphragm and CNS at comparable levels. AAVB1-treated mice had higher GAA activity and greater glycogen clearance in the tongue. Finally, AAVB1-treated animals showed improved respiratory function comparable to wild-type animals. In conclusion, AAVB1-GAA offers a promising therapeutic option for the treatment of muscle and CNS in Pompe disease.
Collapse
Affiliation(s)
- Allison M Keeler
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Marina Zieger
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sophia H Todeasa
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Angela L McCall
- 4 Department of Pediatrics, Duke University, Durham, North Carolina
| | - Jennifer C Gifford
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Samantha Birsak
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sourav R Choudhury
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Barry J Byrne
- 5 Department of Pediatrics, University of Florida, Gainesville, Florida.,6 Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Miguel Sena-Esteves
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Mai K ElMallah
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,4 Department of Pediatrics, Duke University, Durham, North Carolina
| |
Collapse
|
26
|
Puzzo F, Colella P, Biferi MG, Bali D, Paulk NK, Vidal P, Collaud F, Simon-Sola M, Charles S, Hardet R, Leborgne C, Meliani A, Cohen-Tannoudji M, Astord S, Gjata B, Sellier P, van Wittenberghe L, Vignaud A, Boisgerault F, Barkats M, Laforet P, Kay MA, Koeberl DD, Ronzitti G, Mingozzi F. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci Transl Med 2018; 9:9/418/eaam6375. [PMID: 29187643 DOI: 10.1126/scitranslmed.aam6375] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/13/2017] [Indexed: 12/26/2022]
Abstract
Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa-/-) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa-/- mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector-mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease.
Collapse
Affiliation(s)
- Francesco Puzzo
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Maria G Biferi
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Deeksha Bali
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC 27710, USA
| | - Nicole K Paulk
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Patrice Vidal
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Marcelo Simon-Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Romain Hardet
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Christian Leborgne
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Amine Meliani
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | | | - Stephanie Astord
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Bernard Gjata
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Pauline Sellier
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | | | - Alban Vignaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Florence Boisgerault
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Martine Barkats
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Pascal Laforet
- Paris-Est Neuromuscular Center, Pitié-Salpêtrière Hospital and Raymond Poincaré Teaching Hospital, Garches, APHP, Paris, France
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics and Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France.
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France. .,University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| |
Collapse
|
27
|
Mingozzi F, High KA. Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu Rev Virol 2017; 4:511-534. [PMID: 28961410 DOI: 10.1146/annurev-virology-101416-041936] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune responses in gene therapy with adeno-associated virus (AAV) vectors have been the object of almost two decades of study. Although preclinical models helped to define and predict certain aspects of interactions between the vector and the host immune system, most of our current knowledge has come from clinical trials. These studies have allowed development of effective interventions for modulating immunotoxicities associated with vector administration, resulting in therapeutic advances. However, the road to full understanding and effective modulation of immune responses in gene therapy is still long; the determinants of the balance between tolerance and immunogenicity in AAV vector-mediated gene transfer are not fully understood, and effective solutions for overcoming preexisting neutralizing antibodies are still lacking. However, despite these challenges, the goal of reliably delivering effective gene-based treatments is now in sight.
Collapse
Affiliation(s)
- Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; .,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651 Paris, France
| | | |
Collapse
|
28
|
Sun B, Brooks ED, Koeberl DD. Preclinical Development of New Therapy for Glycogen Storage Diseases. Curr Gene Ther 2016; 15:338-47. [PMID: 26122079 DOI: 10.2174/1566523215666150630132253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.
Collapse
|
29
|
Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15053. [PMID: 26858964 PMCID: PMC4729315 DOI: 10.1038/mtm.2015.53] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease.
Collapse
Affiliation(s)
- Phillip A Doerfler
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Sushrusha Nayak
- Department of Medicine, Karolinska Institute , Stockholm, Sweden
| | - Manuela Corti
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
30
|
Doerfler PA, Todd AG, Clément N, Falk DJ, Nayak S, Herzog RW, Byrne BJ. Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease. Hum Gene Ther 2016; 27:43-59. [PMID: 26603344 PMCID: PMC4741206 DOI: 10.1089/hum.2015.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa(-/-) mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders.
Collapse
Affiliation(s)
- Phillip A. Doerfler
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Adrian G. Todd
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Darin J. Falk
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Sushrusha Nayak
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Roland W. Herzog
- Division of Cellular & Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| |
Collapse
|
31
|
Han SO, Li S, Brooks ED, Masat E, Leborgne C, Banugaria S, Bird A, Mingozzi F, Waldmann H, Koeberl D. Enhanced efficacy from gene therapy in Pompe disease using coreceptor blockade. Hum Gene Ther 2015; 26:26-35. [PMID: 25382056 DOI: 10.1089/hum.2014.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Enzyme replacement therapy (ERT) is the standard-of-care treatment of Pompe disease, a lysosomal storage disorder caused by deficiency of acid α-glucosidase (GAA). One limitation of ERT with recombinant human (rh) GAA is antibody formation against GAA. Similarly, in adeno-associated virus (AAV) vector-mediated gene transfer for Pompe disease, development of antibodies against the GAA transgene product and the AAV vector prevents therapeutic efficacy and vector readministration, respectively. Here a nondepleting anti-CD4 monoclonal antibody (mAb) was administrated intravenously prior to administration of an AAV2/9 vector encoding GAA to suppress anti-GAA responses, leading to a substantial reduction of anti-GAA immunoglobulins, including IgG1, IgG2a, IgG2b, IgG2c, and IgG3. Transduction efficiency in liver with a subsequent AAV2/8 vector was massively improved by the administration of anti-CD4 mAb with the initial AAV2/9 vector, indicating a spread of benefit derived from control of the immune response to the first AAV2/9 vector. Anti-CD4 mAb along with AAV2/9-CBhGAApA significantly increased GAA activity in heart and skeletal muscles along with a significant reduction of glycogen accumulation. Taken together, these data demonstrated that the addition of nondepleting anti-CD4 mAb with gene therapy controls humoral immune responses to both vector and transgene, resulting in clear therapeutic benefit in mice with Pompe disease.
Collapse
Affiliation(s)
- Sang-oh Han
- 1 Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center , Durham, NC 27710
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Swiderski K, Lynch GS. Therapeutic potential of orphan drugs for the rare skeletal muscle diseases. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1085858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Byrne PIBJ, Collins S, Mah CC, Smith B, Conlon T, Martin SD, Corti M, Cleaver B, Islam S, Lawson LA. Phase I/II trial of diaphragm delivery of recombinant adeno-associated virus acid alpha-glucosidase (rAAaV1-CMV-GAA) gene vector in patients with Pompe disease. HUM GENE THER CL DEV 2015; 25:134-63. [PMID: 25238277 DOI: 10.1089/humc.2014.2514] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
34
|
Doerfler PA, Nayak S, Herzog RW, Morel L, Byrne BJ. BAFF blockade prevents anti-drug antibody formation in a mouse model of Pompe disease. Clin Immunol 2015; 158:140-7. [PMID: 25842186 DOI: 10.1016/j.clim.2015.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/09/2023]
Abstract
Antibodies formed against the therapeutic protein are a life-threatening complication that arises during enzyme replacement therapy for Pompe disease (acid α-glucosidase deficiency; GAA). To provide an effective alternative to current practices, we investigated the capacity of anti-B-cell activating factor (BAFF) as a novel drug candidate to prevent antibody formation in a Pompe disease mouse model. A BAFF-neutralizing antibody was administered prophylactically and with maintenance doses in association with enzyme replacement therapy using recombinant human GAA in Gaa(-/-) mice. BAFF blockade delayed antibody production and increased GAA activity within tissues with protection from anaphylaxis. Anti-BAFF also resolved antibody formation during an immune response and precluded the maturation of antibody secreting cells from entering the bone marrow compartment. This treatment modality may therefore be a viable alternative for the clinical management of antibody formation for Pompe disease and has potential use against antibody formation in other protein replacement therapies.
Collapse
Affiliation(s)
| | - Sushrusha Nayak
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15007. [PMID: 26029718 PMCID: PMC4445006 DOI: 10.1038/mtm.2015.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/13/2022]
Abstract
Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa–/– mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES) or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT)). Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa–/– animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc) at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea). However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.
Collapse
|
36
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
37
|
Abstract
Adeno-associated virus (AAV) is a small, nonenveloped virus that was adapted 30 years ago for use as a gene transfer vehicle. It is capable of transducing a wide range of species and tissues in vivo with no evidence of toxicity, and it generates relatively mild innate and adaptive immune responses. We review the basic biology of AAV, the history of progress in AAV vector technology, and some of the clinical and research applications where AAV has shown success.
Collapse
Affiliation(s)
- R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas Muzyczka
- Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
38
|
Kuroda M, Bujo H, Aso M, Saito Y. Adipocytes as a vehicle for ex vivo gene therapy: Novel replacement therapy for diabetes and other metabolic diseases. J Diabetes Investig 2014; 2:333-40. [PMID: 24843509 PMCID: PMC4019298 DOI: 10.1111/j.2040-1124.2011.00133.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Because of its availability and recent advances in cell biology, adipose tissue is now considered an ideal target site for the preparation of recipient cells and for the transplantation of gene‐transduced cells for supplementation of therapeutic proteins. Inherited or acquired serum protein deficiencies are the ideal targets for gene therapy. However, to develop an effective ex vivo gene therapy‐based protein replacement treatment, the requirements for the recipient cells are different from those for standard gene therapy that is intended to correct the function of the recipient cells themselves. To meet the requirements for such a therapeutic strategy, recent in vitro and animal model studies have developed new methods for the preparation, culture, expansion and manipulation of adipose cells using advanced gene transduction methods and transplantation scaffolds. In this short review, we introduce the progress made in novel adipose tissue‐based therapeutic strategies for the treatment of protein deficiencies by our group and other investigators, and describe their future applications for diabetes and other metabolic diseases. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00133.x, 2011)
Collapse
Affiliation(s)
| | - Hideaki Bujo
- Department of Genome Research and Clinical Application, Graduate School of Medicine
| | | | | |
Collapse
|
39
|
Mah CS, Soustek MS, Todd AG, McCall A, Smith BK, Corti M, Falk DJ, Byrne BJ. Adeno-associated virus-mediated gene therapy for metabolic myopathy. Hum Gene Ther 2014; 24:928-36. [PMID: 24164240 DOI: 10.1089/hum.2013.2514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metabolic myopathies are a diverse group of rare diseases in which impaired breakdown of stored energy leads to profound muscle dysfunction ranging from exercise intolerance to severe muscle wasting. Metabolic myopathies are largely caused by functional deficiency of a single gene and are generally subcategorized into three major types of metabolic disease: mitochondrial, lipid, or glycogen. Treatment varies greatly depending on the biochemical nature of the disease, and unfortunately no definitive treatments exist for metabolic myopathy. Since this group of diseases is inherited, gene therapy is being explored as an approach to personalized medical treatment. Adeno-associated virus-based vectors in particular have shown to be promising in the treatment of several forms of metabolic myopathy. This review will discuss the most recent advances in gene therapy efforts for the treatment of metabolic myopathies.
Collapse
Affiliation(s)
- Cathryn S Mah
- 1 Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida , Gainesville, FL 32610
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Conlon TJ, Erger K, Porvasnik S, Cossette T, Roberts C, Combee L, Islam S, Kelley J, Cloutier D, Clément N, Abernathy CR, Byrne BJ. Preclinical toxicology and biodistribution studies of recombinant adeno-associated virus 1 human acid α-glucosidase. HUM GENE THER CL DEV 2014; 24:127-33. [PMID: 24021025 DOI: 10.1089/humc.2013.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A biodistribution and toxicology study was performed to test the acute toxicities of intradiaphragmatic injection of a recombinant adeno-associated virus (rAAV) 2/1-human acid alpha-Glucosidase (hGAA) driven by a cytomegalovirus (CMV) promoter (rAAV1-CMV-hGAA) in New Zealand white rabbits and in the rodent Pompe disease model by injecting at the right quadriceps. Studies performed using fluoroscopy and AAV2-GFP demonstrated spread upon intradiaphragmatic injection, and the ability of AAV to infect and express acid α-glucosidase (GAA) throughout the diaphragm. For the preclinical study, 10 rabbits (5 male, 5 female) were divided into two groups, vehicle control (Lactated Ringer's) and test article (1.5×10(12) vector genomes [vg] rAAV1-CMV-hGAA), and euthanized on day 21. After direct visualization, the left hemidiaphragm was injected at three locations. There was up to a 2,500-fold increase in circulating anti-AAV1 antibodies directed to the vector capsids. In addition, up to an 18-fold increase in antibodies against the GAA protein was generated. Injection sites maintained up to 1.0×10(5) vg/μg genomic DNA (gDNA), while uninjected sites had up to 1.0×10(4) vg/μg gDNA. Vector DNA was present in blood at 24 hr postinjection at up to 1.0×10(6) vg/μg gDNA, followed by a decrease to 1.0×10(3) vg/μg gDNA at euthanization on day 21. Nominal amounts of vector DNA were present in peripheral organs, including the brain, spinal cord, gonads, and skeletal muscle. Upon histopathological examination, fibroplasias of the serosal surface were noted at diaphragm injections sites of both groups. In addition, an increase in mononuclear cell infiltration in the diaphragm and esophagus in vector-dosed animals was found. Elevated creatine phosphokinase levels, an indicator of muscle repair, was observed in all animals postprocedure but persisted in vector-injected rabbits until euthanization. A follow-up study suggested that this was directed against the human transgene expression in a foreign species. Overall, this study demonstrates diffusion of vector throughout the diaphragm after localized injections.
Collapse
Affiliation(s)
- Thomas J Conlon
- 1 Department of Pediatrics, University of Florida College of Medicine , Gainesville, FL, 32610
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Asokan A, Samulski RJ. An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 2013; 24:906-13. [PMID: 24164238 PMCID: PMC3815036 DOI: 10.1089/hum.2013.2515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The naturally occurring adeno-associated virus (AAV) isolates display diverse tissue tropisms in different hosts. Robust cardiac transduction in particular has been reported for certain AAV strains. Successful applications of these AAV strains in preclinical and clinical settings with a focus on treating cardiovascular disease continue to be reported. At the same time, these studies have highlighted challenges such as cross-species variability in AAV tropism, transduction efficiency, and immunity. Continued progress in our understanding of AAV capsid structure and biology has provided the rationale for designing improved vectors that can possibly address these concerns. The current report provides an overview of cardiotropic AAV, existing gaps in our knowledge, and newly engineered AAV strains that are viable candidates for the cardiac gene therapy clinic.
Collapse
Affiliation(s)
- Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| | - R. Jude Samulski
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516
| |
Collapse
|
42
|
Intrapleural administration of AAV9 improves neural and cardiorespiratory function in Pompe disease. Mol Ther 2013; 21:1661-7. [PMID: 23732990 DOI: 10.1038/mt.2013.96] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/04/2013] [Indexed: 12/19/2022] Open
Abstract
Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood-brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa(-/-) mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA-treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa(-/-). In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa(-/-). This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.
Collapse
|
43
|
|
44
|
Qiu K, Falk DJ, Reier PJ, Byrne BJ, Fuller DD. Spinal delivery of AAV vector restores enzyme activity and increases ventilation in Pompe mice. Mol Ther 2011; 20:21-7. [PMID: 22008916 DOI: 10.1038/mt.2011.214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pompe disease is a form of muscular dystrophy due to lysosomal storage of glycogen caused by deficiency of acid α-glucosidase (GAA). Respiratory failure in Pompe disease has been attributed to respiratory muscle dysfunction. However, evaluation of spinal tissue from Pompe patients and animal models indicates glycogen accumulation and lower motoneuron pathology. We hypothesized that restoring GAA enzyme activity in the region of the phrenic motor nucleus could lead to improved breathing in a murine Pompe model (the Gaa(-/-) mouse). Adeno-associated virus serotype 5 (AAV5), encoding either GAA or green fluorescent protein (GFP), was delivered at the C(3)-C(4) spinal level of adult Gaa(-/-) mice and the spinal cords were harvested 4 weeks later. AAV5-GAA injection restored spinal GAA enzyme activity and GAA immunostaining was evident throughout the cervical ventral horn. The periodic acid Schiff (PAS) method was used to examine neuronal glycogen accumulation, and spinal PAS staining was attenuated after AAV5-GAA injection. Lastly, plethysmography revealed that minute ventilation was greater in unanesthetized AAV5-GAA versus AAV5-GFP treated Gaa(-/-) mice at 1-4 months postinjection. These results support the hypothesis that spinal cord pathology substantially contributes to ventilatory dysfunction in Gaa(-/-) mice and therefore requires further detailed evaluation in patients with Pompe disease.
Collapse
Affiliation(s)
- Kai Qiu
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
45
|
Richard E, Douillard-Guilloux G, Caillaud C. New insights into therapeutic options for Pompe disease. IUBMB Life 2011; 63:979-86. [PMID: 22002928 DOI: 10.1002/iub.529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/31/2011] [Indexed: 12/20/2022]
Abstract
Glycogen storage disease type II or Pompe disease (GSD II, MIM 232300) is a rare inherited metabolic myopathy caused by a deficiency of lysosomal acid α-glucosidase or acid maltase (GAA; EC 3.2.1.20), resulting in a massive lysosomal glycogen accumulation in cardiac and skeletal muscles. Affected individuals exhibit either severe hypotonia associated with hypertrophic cardiomyopathy (infantile forms) or progressive muscle weakness (late-onset forms). Even if enzyme replacement therapy has recently become a standard treatment, it suffers from several limitations. This review will present the main results of enzyme replacement therapy and the recent findings concerning alternative treatments for Pompe disease, such as gene therapy, enzyme enhancement therapy, and substrate reduction therapy.
Collapse
Affiliation(s)
- Emmanuel Richard
- Université de Bordeaux, Biothérapies des Maladies Génétiques et Cancers, U1035, F-33000 Bordeaux, France.
| | | | | |
Collapse
|
46
|
AAV vectors for cardiac gene transfer: experimental tools and clinical opportunities. Mol Ther 2011; 19:1582-90. [PMID: 21792180 DOI: 10.1038/mt.2011.124] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the first demonstration of in vivo gene transfer into myocardium there have been a series of advancements that have driven the evolution of cardiac gene delivery from an experimental tool into a therapy currently at the threshold of becoming a viable clinical option. Innovative methods have been established to address practical challenges related to tissue-type specificity, choice of delivery vehicle, potency of the delivered material, and delivery route. Most importantly for therapeutic purposes, these strategies are being thoroughly tested to ensure safety of the delivery system and the delivered genetic material. This review focuses on the development of recombinant adeno-associated virus (rAAV) as one of the most valuable cardiac gene transfer agents available today. Various forms of rAAV have been used to deliver "pre-event" cardiac protection and to temper the severity of hypertrophy, cardiac ischemia, or infarct size. Adeno-associated virus (AAV) vectors have also been functional delivery tools for cardiac gene expression knockdown studies and successfully improving the cardiac aspects of several metabolic and neuromuscular diseases. Viral capsid manipulations along with the development of tissue-specific and regulated promoters have greatly increased the utility of rAAV-mediated gene transfer. Important clinical studies are currently underway to evaluate AAV-based cardiac gene delivery in humans.
Collapse
|
47
|
Byrne BJ, Falk DJ, Pacak CA, Nayak S, Herzog RW, Elder ME, Collins SW, Conlon TJ, Clement N, Cleaver BD, Cloutier DA, Porvasnik SL, Islam S, Elmallah MK, Martin A, Smith BK, Fuller DD, Lawson LA, Mah CS. Pompe disease gene therapy. Hum Mol Genet 2011; 20:R61-8. [PMID: 21518733 DOI: 10.1093/hmg/ddr174] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pompe disease is an autosomal recessive metabolic myopathy caused by the deficiency of the lysosomal enzyme acid alpha-glucosidase and results in cellular lysosomal and cytoplasmic glycogen accumulation. A wide spectrum of disease exists from hypotonia and severe cardiac hypertrophy in the first few months of life due to severe mutations to a milder form with the onset of symptoms in adulthood. In either condition, the involvement of several systems leads to progressive weakness and disability. In early-onset severe cases, the natural history is characteristically cardiorespiratory failure and death in the first year of life. Since the advent of enzyme replacement therapy (ERT), the clinical outcomes have improved. However, it has become apparent that a new natural history is being defined in which some patients have substantial improvement following ERT, while others develop chronic disability reminiscent of the late-onset disease. In order to improve on the current clinical outcomes in Pompe patients with diminished clinical response to ERT, we sought to address the cause and potential for the treatment of disease manifestations which are not amenable to ERT. In this review, we will focus on the preclinical studies that are relevant to the development of a gene therapy strategy for Pompe disease, and have led to the first clinical trial of recombinant adeno-associated virus-mediated gene-based therapy for Pompe disease. We will cover the preliminary laboratory studies and rationale for a clinical trial, which is based on the treatment of the high rate of respiratory failure in the early-onset patients receiving ERT.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gel-mediated delivery of AAV1 vectors corrects ventilatory function in Pompe mice with established disease. Mol Ther 2010; 18:502-10. [PMID: 20104213 DOI: 10.1038/mt.2009.305] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pompe disease is a muscular dystrophy that results in respiratory insufficiency. We characterized the outcomes of targeted delivery of recombinant adeno-associated virus serotype 1 (rAAV2/1) vector to diaphragms of Pompe mice with varying stages of disease progression. We observed significant improvement in diaphragm contractile strength in mice treated at 3 months of age that is sustained at least for 1 year and enhanced contractile strength in mice treated at 9 and 21 months of age, measured 3 months post-treatment. Ventilatory parameters including tidal volume/inspiratory time ratio, minute ventilation/expired CO2 ratio, and peak inspiratory airflow were significantly improved in mice treated at 3 months and tested at 6 months. Despite early improvement, mice treated at 3 months and tested at 1 year had diminished normoxic ventilation, potentially due to attenuation of correction over time or progressive degeneration of nontargeted accessory tissues. However, for all rAAV2/1-treated mice (treated at 3, 9, and 21 months, assayed 3 months later; treated at 3 months, assayed at 1 year), minute ventilation and peak inspiratory flows were significantly improved during respiratory challenge. These results demonstrate that gel-mediated delivery of rAAV2/1 vectors can significantly augment ventilatory function at initial and late phases of disease in a model of muscular dystrophy.
Collapse
|
49
|
Neonatal gene transfer using lentiviral vector for murine Pompe disease: long-term expression and glycogen reduction. Gene Ther 2009; 17:521-30. [PMID: 20033064 DOI: 10.1038/gt.2009.160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pompe disease results from the deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to accumulated glycogen in the heart and the skeletal muscles, which causes cardiomyopathy and muscle weakness. In this study, we tested the feasibility of gene therapy for Pompe disease using a lentivirus vector (LV). Newborn GAA knockout mice were treated with intravenous injection of LV encoding human GAA (hGAA) through the facial superficial temporal vein. The transgene expression in the tissues was analyzed up to 24 weeks after treatment. Our results showed that the recombinant LV was efficient not only in increasing the GAA activity in tissues but also in decreasing their glycogen content. The examination of histological sections showed clearence of the glycogen storage in skeletal and cardiac muscles 16 and 24 weeks after a single vector injection. Levels of expressed hGAA could be detected in serum of treated animals until 24 weeks. No significant immune reaction to transgene was detected in most treated animals. Therefore, we show that LV-mediated delivery system was effective in correcting the biochemical abnormalities and that this gene transfer system might be suitable for further studies on delivering GAA to Pompe disease mouse models.
Collapse
|
50
|
Sexually dimorphic patterns of episomal rAAV genome persistence in the adult mouse liver and correlation with hepatocellular proliferation. Mol Ther 2009; 17:1548-54. [PMID: 19568224 DOI: 10.1038/mt.2009.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recombinant adeno-associated virus vectors (rAAVs) show exceptional promise for liver-targeted gene therapy, with phenotype correction in small and large animal disease models being reported with increasing frequency. Success in humans, however, remains a considerable challenge that demands greater understanding of host-vector interactions, notably those governing the efficiency of initial gene transfer and subsequent long-term persistence of gene expression. In this study, we examined long-term enhanced green fluorescent protein (eGFP) expression and vector genome persistence in the mouse liver after rAAV2/8-mediated gene transfer in early adulthood. Two intriguing findings emerged of considerable scientific and clinical interest. First, adult female and male mice showed distinctly different patterns of persistence of eGFP expression across the hepatic lobule after exhibiting similar patterns initially. Female mice retained a predominantly perivenous pattern of expression, whereas male mice underwent inversion of this pattern with preferential loss of perivenous expression and relative retention of periportal expression. Second, these changing patterns of expression correlated with sexually dimorphic patterns of genome persistence that appear linked both spatially and temporally to underlying hepatocellular proliferation. Observation of the equivalent phenomenon in man could have significant implications for the long-term therapeutic efficacy of rAAV-mediated gene transfer, particularly in the context of correction of liver functions showing metabolic zonation.
Collapse
|