1
|
Koob GF, Vendruscolo L. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit/Stress Surfeit Disorder. Curr Top Behav Neurosci 2023. [PMID: 37421551 DOI: 10.1007/7854_2023_424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Alcohol use disorder (AUD) can be defined by a compulsion to seek and take alcohol, the loss of control in limiting intake, and the emergence of a negative emotional state when access to alcohol is prevented. Alcohol use disorder impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). Compulsive drug seeking that is associated with AUD can be derived from multiple neuroadaptations, but the thesis argued herein is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of specific neurochemical elements that are involved in reward and stress within basal forebrain structures that involve the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include decreases in reward neurotransmission (e.g., decreases in dopamine and opioid peptide function in the ventral striatum) and the recruitment of brain stress systems (e.g., corticotropin-releasing factor [CRF]) in the extended amygdala, which contributes to hyperkatifeia and greater alcohol intake that is associated with dependence. Glucocorticoids and mineralocorticoids may play a role in sensitizing the extended amygdala CRF system. Other components of brain stress systems in the extended amygdala that may contribute to the negative motivational state of withdrawal include norepinephrine in the bed nucleus of the stria terminalis, dynorphin in the nucleus accumbens, hypocretin and vasopressin in the central nucleus of the amygdala, and neuroimmune modulation. Decreases in the activity of neuropeptide Y, nociception, endocannabinoids, and oxytocin in the extended amygdala may also contribute to hyperkatifeia that is associated with alcohol withdrawal. Such dysregulation of emotional processing may also significantly contribute to pain that is associated with alcohol withdrawal and negative urgency (i.e., impulsivity that is associated with hyperkatifeia during hyperkatifeia). Thus, an overactive brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of AUD. The combination of the loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement that at least partially drives the compulsivity of AUD.
Collapse
Affiliation(s)
- George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Leandro Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
2
|
Wiese BM, Alvarez Reyes A, Vanderah TW, Largent-Milnes TM. The endocannabinoid system and breathing. Front Neurosci 2023; 17:1126004. [PMID: 37144090 PMCID: PMC10153446 DOI: 10.3389/fnins.2023.1126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Recent changes in cannabis accessibility have provided adjunct therapies for patients across numerous disease states and highlights the urgency in understanding how cannabinoids and the endocannabinoid (EC) system interact with other physiological structures. The EC system plays a critical and modulatory role in respiratory homeostasis and pulmonary functionality. Respiratory control begins in the brainstem without peripheral input, and coordinates the preBötzinger complex, a component of the ventral respiratory group that interacts with the dorsal respiratory group to synchronize burstlet activity and drive inspiration. An additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory group drives active expiration during conditions of exercise or high CO2. Combined with the feedback information from the periphery: through chemo- and baroreceptors including the carotid bodies, the cranial nerves, stretch of the diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial nerves, our respiratory system can fine tune motor outputs that ensure we have the oxygen necessary to survive and can expel the CO2 waste we produce, and every aspect of this process can be influenced by the EC system. The expansion in cannabis access and potential therapeutic benefits, it is essential that investigations continue to uncover the underpinnings and mechanistic workings of the EC system. It is imperative to understand the impact cannabis, and exogenous cannabinoids have on these physiological systems, and how some of these compounds can mitigate respiratory depression when combined with opioids or other medicinal therapies. This review highlights the respiratory system from the perspective of central versus peripheral respiratory functionality and how these behaviors can be influenced by the EC system. This review will summarize the literature available on organic and synthetic cannabinoids in breathing and how that has shaped our understanding of the role of the EC system in respiratory homeostasis. Finally, we look at some potential future therapeutic applications the EC system has to offer for the treatment of respiratory diseases and a possible role in expanding the safety profile of opioid therapies while preventing future opioid overdose fatalities that result from respiratory arrest or persistent apnea.
Collapse
Affiliation(s)
- Beth M. Wiese
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Angelica Alvarez Reyes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- *Correspondence: Tally M. Largent-Milnes,
| |
Collapse
|
3
|
AlKhelb D, Kirunda A, Ho TC, Makriyannis A, Desai RI. Effects of the cannabinoid CB 1-receptor neutral antagonist AM4113 and antagonist/inverse agonist rimonabant on fentanyl discrimination in male rats. Drug Alcohol Depend 2022; 240:109646. [PMID: 36191533 DOI: 10.1016/j.drugalcdep.2022.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023]
Abstract
Evidence suggests the existence of a functional interaction between endogenous cannabinoid (CB) and opioid systems. Thus, targeting CB1 receptors might be a viable approach to develop new medications for opioid use disorders (OUD). The present studies were undertaken to evaluate the effects of the neutral CB1 antagonist AM4113 and the CB1 antagonist/inverse agonist rimonabant in male rats trained to discriminate 0.032 mg/kg fentanyl from saline under a 10-response fixed-ratio (FR-10) schedule of food reinforcement. Results show that the µ-opioid agonists (fentanyl, oxycodone, and morphine) substituted fully and dose-dependently for fentanyl, whereas pretreatment with the µ-opioid antagonist naltrexone antagonized fentanyl's discriminative-stimulus effects. In interaction studies, AM4113 (0.32 or 1.0 mg/kg) was more effective in blocking fentanyl discrimination at 10-fold lower doses that did not modify rates of food-maintained responding, whereas rimonabant (1.0-10 mg/kg) produced some attenuation of fentanyl's discriminative-stimulus effects at the highest dose tested which also significantly decreased response rates. These results extend our recent work showing that AM4113 can effectively block the behavioral effects of heroin without producing rimonabant-like adverse effects. Taken together, these data suggests that CB1 neutral antagonists effectively block the behavioral effects of structurally distinct morphinan (heroin) and phenylpiperidine-based (fentanyl) opioids and may provide a novel therapeutic option for the treatment of OUD.
Collapse
Affiliation(s)
- Dalal AlKhelb
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Andre Kirunda
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Thanh C Ho
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Rajeev I Desai
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Psychiatry, Behavioral Biology Program, Integrative Neurochemistry Laboratory, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Ikeda AS, Knopik VS, Bidwell LC, Parade SH, Goodman SH, Emory EK, Palmer RHC. A Review of Associations between Externalizing Behaviors and Prenatal Cannabis Exposure: Limitations & Future Directions. TOXICS 2022; 10:toxics10010017. [PMID: 35051059 PMCID: PMC8779620 DOI: 10.3390/toxics10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023]
Abstract
In utero cannabis exposure can disrupt fetal development and increase risk for various behavioral disruptions, including hyperactivity, inattention, delinquent behaviors, and later substance abuse, among others. This review summarizes the findings from contemporary investigations linking prenatal cannabis exposure to the development of psychopathology and identifies the limitations within the literature, which constrain our interpretations and generalizability. These limitations include a lack of genetic/familial control for confounding and limited data examining real world products, the full range of cannabinoids, and motives for use specifically in pregnant women. Taken together, our review reveals the need to continue to improve upon study designs in order to allow researchers to accurately draw conclusions about the development of behavioral consequences of prenatal cannabis exposure. Findings from such studies would inform policy and practices regarding cannabis use during pregnancy and move the field toward developing a comprehensive teratogenic profile of cannabis similar to what is characterized in the prenatal alcohol and tobacco literature.
Collapse
Affiliation(s)
- Ami S. Ikeda
- Behavioral Genetics of Addiction Laboratory, Emory University, Atlanta, GA 30322, USA
- Department of Psychology, Emory University, Atlanta, GA 30322, USA; (S.H.G.); (E.K.E.)
- Correspondence: (A.S.I.); (R.H.C.P.)
| | - Valerie S. Knopik
- Department of Human Development and Family Studies, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - L. Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Stephanie H. Parade
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI 02903, USA;
- Bradley/Hasbro Children’s Research Center, E.P. Bradley Hospital, East Providence, RI 02915, USA
| | - Sherryl H. Goodman
- Department of Psychology, Emory University, Atlanta, GA 30322, USA; (S.H.G.); (E.K.E.)
| | - Eugene K. Emory
- Department of Psychology, Emory University, Atlanta, GA 30322, USA; (S.H.G.); (E.K.E.)
| | - Rohan H. C. Palmer
- Behavioral Genetics of Addiction Laboratory, Emory University, Atlanta, GA 30322, USA
- Department of Psychology, Emory University, Atlanta, GA 30322, USA; (S.H.G.); (E.K.E.)
- Correspondence: (A.S.I.); (R.H.C.P.)
| |
Collapse
|
5
|
Ross JA, Van Bockstaele EJ. The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 2020; 52:2429-2465. [PMID: 32125035 DOI: 10.1111/ejn.14714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Emotional arousal is one of several factors that determine the strength of a memory and how efficiently it may be retrieved. The systems at play are multifaceted; on one hand, the dopaminergic mesocorticolimbic system evaluates the rewarding or reinforcing potential of a stimulus, while on the other, the noradrenergic stress response system evaluates the risk of threat, commanding attention, and engaging emotional and physical behavioral responses. Sex-specific patterns in the anatomy and function of the arousal system suggest that sexually divergent therapeutic approaches may be advantageous for neurological disorders involving arousal, learning, and memory. From the lens of the triple network model of psychopathology, we argue that post-traumatic stress disorder and opiate substance use disorder arise from maladaptive learning responses that are perpetuated by hyperarousal of the salience network. We present evidence that catecholamine-modulated learning and stress-responsive circuitry exerts substantial influence over the salience network and its dysfunction in stress-related psychiatric disorders, and between the sexes. We discuss the therapeutic potential of targeting the endogenous cannabinoid system; a ubiquitous neuromodulator that influences learning, memory, and responsivity to stress by influencing catecholamine, excitatory, and inhibitory synaptic transmission. Relevant preclinical data in male and female rodents are integrated with clinical data in men and women in an effort to understand how ideal treatment modalities between the sexes may be different.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Sánchez-Gutiérrez T, Fernandez-Castilla B, Barbeito S, González-Pinto A, Becerra-García JA, Calvo A. Cannabis use and nonuse in patients with first-episode psychosis: A systematic review and meta-analysis of studies comparing neurocognitive functioning. Eur Psychiatry 2020; 63:e6. [PMID: 32093788 PMCID: PMC8057396 DOI: 10.1192/j.eurpsy.2019.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The implications of cannabis use in the onset of early psychosis and the severity of psychotic symptoms have resulted in a proliferation of studies on this issue. However, few have examined the effects of cannabis use on the cognitive symptoms of psychosis (i.e., neurocognitive functioning) in patients with first-episode psychosis (FEP). This systematic review and meta-analysis aim to assess the neurocognitive functioning of cannabis users (CU) and nonusers (NU) with FEP. METHODS Of the 110 studies identified through the systematic review of 6 databases, 7 met the inclusion criteria, resulting in 14 independent samples and 78 effect sizes. The total sample included 304 CU with FEP and 369 NU with FEP. The moderator variables were age at first use, duration of use, percentage of males, and age. RESULTS Effect sizes were not significantly different from zero in any neurocognitive domain when users and NU were compared. Part of the variability in effect sizes was explained by the inclusion of the following moderator variables: (1) frequency of cannabis use (β = 0.013, F = 7.56, p = 0.017); (2) first-generation antipsychotics (β = 0.019, F = 34.46, p ≤ 0.001); and (3) country where the study was carried out (β = 0.266, t = 2.06, p = 0.043). CONCLUSIONS This meta-analysis indicates that cannabis use is not generally associated with neurocognitive functioning in patients with FEP. However, it highlights the deleterious effect of low doses of cannabis in some patients. It also stresses the importance of the type of antipsychotic prescription and cannabis dose as moderator variables in the neurocognitive functioning of CU with FEP.
Collapse
Affiliation(s)
| | - Belén Fernandez-Castilla
- Faculty of Psychology and Educational Sciences, KU Leuven, University of Leuven, Leuven. Belgium
| | - Sara Barbeito
- Faculty of Health Science, Universidad Internacional de La Rioja (UNIR), Madrid, Spain
| | - Ana González-Pinto
- Hospital Universitario de Alava, Servicio de Psiquiatría, BIOARABA, CIBERSAM, Universidad del País Vasco, Leioa, Spain
| | | | - Ana Calvo
- Faculty of Health Science, Universidad Internacional de La Rioja (UNIR), Madrid, Spain
| |
Collapse
|
7
|
Medical Marijuana: Facts and Questions. Am J Ther 2019; 26:e502-e510. [PMID: 29324465 DOI: 10.1097/mjt.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Canseco-Alba A, Rodríguez-Manzo G. Endocannabinoids Interact With the Dopaminergic System to Increase Sexual Motivation: Lessons From the Sexual Satiety Phenomenon. Front Behav Neurosci 2019; 13:184. [PMID: 31474840 PMCID: PMC6702338 DOI: 10.3389/fnbeh.2019.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
In male rats, copulation to satiety induces a long-lasting sexual inhibitory state, considered to rely on a decreased sexual motivation. Dopaminergic transmission at the mesolimbic system plays a central role in the regulation of male sexual motivation. Endocannabinoids (eCBs) modulate the activity of the mesolimbic system and both dopamine (DA) and cannabinoid receptor activation reverses the sexual inhibition that characterizes sexually satiated rats. The eCB anandamide reverses sexual satiety when systemically administered or infused into the ventral tegmental area (VTA), the region where the activity of mesolimbic dopaminergic neurons is regulated. Thus, it could be thought that sexual motivation is diminished during the long-lasting sexual inhibition of sexually satiated rats and that eCBs reverse that inhibition through the modulation of the dopaminergic system. To test this hypothesis, we assessed the motivational state of sexually satiated male rats and determined if 2-arachidonoylglycerol (2-AG), the most abundant eCB and a full cannabinoid receptor agonist, also reversed the sexual inhibitory state. To establish the possible interaction between 2-AG and anandamide with the dopaminergic system for the reversal of sexual satiety, we analyzed the effects of the co-administration of each eCB and DA receptor agonists or antagonists. Results showed that 24-h after copulation to satiety, when the sexual inhibition is well established, the males’ sexual motivation is diminished as measured in the sexual incentive motivation test. 2-AG, similarly to anandamide, reverses sexual satiety through the activation of CB1 receptors and both eCBs interact with the dopaminergic system to reverse the sexual inhibitory state. 2-AG effects are mediated by the modulation of the D2-like DA receptor family, whereas anandamide’s effects are clearly mediated by the modulation of the D1-like DA receptor family and the activation of D2-like DA receptors. Present results evidence that a reduced sexual motivation underlies the sexual inhibitory state of sexually satiated rats and support the notion that eCBs reverse sexual satiety by modulating dopaminergic transmission, presumably at the mesolimbic system. Anandamide and 2-AG have a different interaction with D1-like and D2-like DA receptor families. Altogether present data endorse the association of the eCB system with the regulation of the motivational tone at the mesolimbic system.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, México
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, México
| |
Collapse
|
9
|
Brisbois TD, Hutton JL, Baracos VE, Wismer WV. Taste and Smell Abnormalities as an Independent Cause of Failure of Food Intake in Patients with Advanced Cancer—an Argument for the Application of Sensory Science. J Palliat Care 2019. [DOI: 10.1177/082585970602200208] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tristin Dawne Brisbois
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Joanne Louise Hutton
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - Wendy Victoria Wismer
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Pecina M, Zubieta JK. Expectancy Modulation of Opioid Neurotransmission. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 138:17-37. [PMID: 29681324 PMCID: PMC6314670 DOI: 10.1016/bs.irn.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Expectancies are powerful modulators of cognitive and emotional experiences, as well as the neurobiological responses linked to these processes. In medicine, placebo effects are a clear example of how expectancies activate opioid neurotransmission in a treatment context, leading to the experience of analgesia and the improvement of emotional states, among other symptoms. Molecular neuroimaging techniques using positron emission tomography (PET) and the selective μ-opioid receptor tracer [11C]carfentanil have significantly contributed to our understanding of the neurobiological systems involved in the formation of placebo effects. This line of research has described neural and neurotransmitter networks implicated in placebo effects and provided the technical tools to examine inter-individual differences in the function of placebo responsive mechanisms. As a consequence, the capacity to activate endogenous opioid networks during the administration of placebos has been linked to the concept of resiliency mechanisms, partially determined by genetic factors, and uncovered by the cognitive emotional integration of the expectations created by the therapeutic environment and its maintenance through learning mechanisms. This evidence has contributed to the understanding of the biological bases of the cognitive and psychological mechanisms implicated in the response to treatments, and opened up new opportunities for drug development and the enhancement of treatment responses. Further, delineation of these processes within and across diseases is critical to understand neural systems that could be enhanced to promote symptomatic improvement and modify disease progression.
Collapse
MESH Headings
- Analgesia/psychology
- Brain/diagnostic imaging
- Brain/metabolism
- Brain/physiology
- Depressive Disorder, Major/diagnostic imaging
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Health Knowledge, Attitudes, Practice
- Humans
- Nociception/physiology
- Personality/physiology
- Placebo Effect
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/physiology
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Marta Pecina
- University of Pittsburgh, Pittsburgh, PA, United States.
| | - Jon-Kar Zubieta
- University Neuropsychiatric Institute, University of Utah Health Sciences Center, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Abstract
OBJECTIVE The relationship between cannabis use and the onset of psychosis is well established. Aberrant salience processing is widely thought to underpin many of these symptoms. Literature explicitly investigating the relationship between aberrant salience processing and cannabis use is scarce; with those few studies finding that acute tetrahydrocannabinol (THC) administration (the main psychoactive component of cannabis) can result in abnormal salience processing in healthy cohorts, mirroring that observed in psychosis. Nevertheless, the extent of and mechanisms through which cannabis has a modulatory effect on aberrant salience, following both acute and chronic use, remain unclear. METHODS Here, we systematically review recent findings on the effects of cannabis use - either through acute THC administration or in chronic users - on brain regions associated with salience processing (through functional MRI data); and performance in cognitive tasks that could be used as either direct or indirect measures of salience processing. We identified 13 studies either directly or indirectly exploring salience processing. Three types of salience were identified and discussed - incentive/motivational, emotional/affective, and attentional salience. RESULTS The results demonstrated an impairment of immediate salience processing, following acute THC administration. Amongst the long-term cannabis users, normal salience performance appeared to be underpinned by abnormal neural processes. CONCLUSIONS Overall, the lack of research specifically exploring the effects of cannabis use on salience processing, weaken any conclusions drawn. Additional research explicitly focussed on salience processing and cannabis use is required to advance our understanding of the neurocognitive mechanisms underlying the association between cannabis use and development of psychosis.
Collapse
|
12
|
Koob GF. Antireward, compulsivity, and addiction: seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction. Psychopharmacology (Berl) 2017; 234:1315-1332. [PMID: 28050629 DOI: 10.1007/s00213-016-4484-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023]
Abstract
RATIONALE AND OBJECTIVES Addiction is defined as a chronically relapsing disorder characterized by compulsive drug seeking that is hypothesized to derive from multiple sources of motivational dysregulation. METHODS AND RESULTS Dr. Athina Markou made seminal contributions to our understanding of the neurobiology of addiction with her studies on the dysregulation of reward function using animal models with construct validity. Repeated overstimulation of the reward systems with drugs of abuse decreases reward function, characterized by brain stimulation reward and presumbably reflecting dysphoria-like states. The construct of negative reinforcement, defined as drug taking that alleviates a negative emotional state that is created by drug abstinence, is particularly relevant as a driving force in both the withdrawal/negative affect and preoccupation/anticipation stages of the addiction cycle. CONCLUSIONS The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of key neurochemical circuits that drive incentive-salience/reward systems (dopamine, opioid peptides) in the ventral striatum and from the recruitment of brain stress systems (corticotropin-releasing factor, dynorphin) within the extended amygdala. As drug taking becomes compulsive-like, the factors that motivate behavior are hypothesized to shift to drug-seeking behavior that is driven not only by positive reinforcement but also by negative reinforcement. This shift in motivation is hypothesized to reflect the allostatic misregulation of hedonic tone such that drug taking makes the hedonic negative emotional state worse during the process of seeking temporary relief with compulsive drug taking.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, 5635 Fishers Lane, Room 2001, Suite 2000, Rockville, MD, 20852, USA.
| |
Collapse
|
13
|
Abstract
Addiction has been conceptualized as a three-stage cycle—binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation—that worsens over time and involves allostatic changes in hedonic function via changes in the brain reward and stress systems. Using the withdrawal/negative affect stage and negative reinforcement as an important source of motivation for compulsive drug seeking, we outline the neurobiology of the stress component of the withdrawal/negative affect stage and relate it to a derivative of the Research Domain Criteria research construct for the study of psychiatric disease, known as the Addictions Neuroclinical Assessment. Using the Addictions Neuroclinical Assessment, we outline five subdomains of negative emotional states that can be operationally measured in human laboratory settings and paralleled by animal models. We hypothesize that a focus on negative emotionality and stress is closely related to the acute neurobiological alterations that are experienced in addiction and may serve as a bridge to a reformulation of the addiction nosology to better capture individual differences in patients for whom the withdrawal/negative affect stage drives compulsive drug taking.
Collapse
Affiliation(s)
- Laura E Kwako
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology (Berl) 2016; 233:1845-66. [PMID: 27026633 PMCID: PMC5073892 DOI: 10.1007/s00213-016-4244-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/09/2016] [Indexed: 11/27/2022]
Abstract
RATIONALE The reinforcing effects of most abused drugs have been consistently demonstrated and studied in animal models, although those of marijuana were not, until the demonstration 15 years ago that delta-9-tetrahydrocannabinol (THC) could serve as a reinforcer in self-administration (SA) procedures in squirrel monkeys. Until then, those effects were inferred using indirect assessments. OBJECTIVES The aim of this manuscript is to review the primary preclinical procedures used to indirectly and directly infer reinforcing effects of cannabinoid drugs. METHODS Results will be reviewed from studies of cannabinoid discrimination, intracranial self-stimulation (ICSS), conditioned place preference (CPP), as well as change in levels of dopamine assessed in brain areas related to reinforcement, and finally from self-administration procedures. For each procedure, an evaluation will be made of the predictive validity in detecting the potential abuse liability of cannabinoids based on seminal papers, with the addition of selected reports from more recent years especially those from Dr. Goldberg's research group. RESULTS AND CONCLUSIONS ICSS and CPP do not provide consistent results for the assessment of potential for abuse of cannabinoids. However, drug discrimination and neurochemistry procedures appear to detect potential for abuse of cannabinoids, as well as several novel "designer cannabinoid drugs." Though after 15 years transfer of the self-administration model of marijuana abuse from squirrel monkeys to other species remains somewhat problematic, studies with the former species have substantially advanced the field, and several reports have been published with consistent self-administration of cannabinoid agonists in rodents.
Collapse
|
15
|
Holmes RD, Tiwari AK, Kennedy JL. Mechanisms of the placebo effect in pain and psychiatric disorders. THE PHARMACOGENOMICS JOURNAL 2016; 16:491-500. [PMID: 27001122 DOI: 10.1038/tpj.2016.15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
Placebo effect research over the past 15 years has improved our understanding of how placebo treatments reduce patient symptoms. The expectation of symptom improvement is the primary factor underlying the placebo effect. Such expectations are shaped by past experiences, contextual cues and biological traits, which ultimately modulate one's degree of response to a placebo. The body of evidence that describes the physiology of the placebo effect has been derived from mechanistic studies primarily restricted to the setting of pain. Imaging findings support the role of endogenous opioid and dopaminergic networks in placebo analgesia in both healthy patients as well as patients with painful medical conditions. In patients with psychiatric illnesses such as anxiety disorders or depression, a vast overlap in neurological changes is observed in drug responders and placebo responders supporting the role of serotonergic networks in placebo response. Molecular techniques have been relatively underutilized in understanding the placebo effect until recently. We present an overview of the placebo responder phenotypes and genetic markers that have been associated with the placebo effect in pain, schizophrenia, anxiety disorders and depression.
Collapse
Affiliation(s)
- R D Holmes
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - A K Tiwari
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - J L Kennedy
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Reddy DS, Golub VM. The Pharmacological Basis of Cannabis Therapy for Epilepsy. J Pharmacol Exp Ther 2016; 357:45-55. [PMID: 26787773 DOI: 10.1124/jpet.115.230151] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/15/2016] [Indexed: 12/30/2022] Open
Abstract
Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy, both adults and children, who do not respond to current medications. There is a large unmet medical need for new antiepileptics that would not interfere with normal function in patients with refractory epilepsy and conditions associated with refractory seizures. The two chief cannabinoids are Δ-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major nonpsychoactive component of marijuana. Claims of clinical efficacy in epilepsy of CBD-predominant cannabis or medical marijuana come mostly from limited studies, surveys, or case reports. However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy. CBD is anticonvulsant, but it has a low affinity for the cannabinoid receptors CB1 and CB2; therefore the exact mechanism by which it affects seizures remains poorly understood. A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy of their use in the treatment of epilepsy. Identification of mechanisms underlying the anticonvulsant efficacy of CBD is also critical for identifying other potential treatment options.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
17
|
Molecular Mechanisms of Cannabis Signaling in the Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:123-47. [PMID: 26810000 DOI: 10.1016/bs.pmbts.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cannabis has been cultivated and used by humans for thousands of years. Research for decades was focused on understanding the mechanisms of an illegal/addictive drug. This led to the discovery of the vast endocannabinoid system. Research has now shifted to understanding fundamental biological questions related to one of the most widespread signaling systems in both the brain and the body. Our understanding of cannabinoid signaling has advanced significantly in the last two decades. In this review, we discuss the state of knowledge on mechanisms of Cannabis signaling in the brain and the modulation of key brain neurotransmitter systems involved in both brain reward/addiction and psychiatric disorders. It is highly probable that various cannabinoids will be found to be efficacious in the treatment of a number of psychiatric disorders. However, while there is clearly much potential, marijuana has not been properly vetted by the medical-scientific evaluation process and there are clearly a range of potentially adverse side-effects-including addiction. We are at crossroads for research on endocannabinoid function and therapeutics (including the use of exogenous treatments such as Cannabis). With over 100 cannabinoid constituents, the majority of which have not been studied, there is much Cannabis research yet to be done. With more states legalizing both the medicinal and recreational use of marijuana the rigorous scientific investigation into cannabinoid signaling is imperative.
Collapse
|
18
|
Wakeford AGP, Flax SM, Pomfrey RL, Riley AL. Adolescent delta-9-tetrahydrocannabinol (THC) exposure fails to affect THC-induced place and taste conditioning in adult male rats. Pharmacol Biochem Behav 2015; 140:75-81. [PMID: 26577749 DOI: 10.1016/j.pbb.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/02/2015] [Accepted: 11/10/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Adolescent initiation of drug use has been linked to problematic drug taking later in life and may represent an important variable that changes the balance of the rewarding and/or aversive effects of abused drugs which may contribute to abuse vulnerability. The current study examined the effects of adolescent THC exposure on THC-induced place preference (rewarding effects) and taste avoidance (aversive effects) conditioning in adulthood. METHODS Forty-six male Sprague-Dawley adolescent rats received eight injections of an intermediate dose of THC (3.2mg/kg) or vehicle. After these injections, animals were allowed to mature and then trained in a combined CTA/CPP procedure in adulthood (PND ~90). Animals were given four trials of conditioning with intervening water-recovery days, a final CPP test and then a one-bottle taste avoidance test. RESULTS THC induced dose-dependent taste avoidance but did not produce place conditioning. None of these effects was impacted by adolescent THC exposure. CONCLUSIONS Adolescent exposure to THC had no effect on THC taste and place conditioning in adulthood. The failure to see an effect of adolescent exposure was addressed in the context of other research that has assessed exposure of drugs of abuse during adolescence on drug reactivity in adulthood.
Collapse
Affiliation(s)
- Alison G P Wakeford
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | - Shaun M Flax
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA
| | - Rebecca L Pomfrey
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| |
Collapse
|
19
|
Klineburger PC, Harrison DW. The dynamic functional capacity theory: A neuropsychological model of intense emotions. COGENT PSYCHOLOGY 2015. [DOI: 10.1080/23311908.2015.1029691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Philip C. Klineburger
- Clinical Psychology, Virginia Polytechnic Institute and State University, Blacksburg 24060, VA, USA
| | - David W. Harrison
- Clinical Psychology, Virginia Polytechnic Institute and State University, Blacksburg 24060, VA, USA
| |
Collapse
|
20
|
Koob GF. The dark side of emotion: the addiction perspective. Eur J Pharmacol 2015; 753:73-87. [PMID: 25583178 PMCID: PMC4380644 DOI: 10.1016/j.ejphar.2014.11.044] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Emotions are "feeling" states and classic physiological emotive responses that are interpreted based on the history of the organism and the context. Motivation is a persistent state that leads to organized activity. Both are intervening variables and intimately related and have neural representations in the brain. The present thesis is that drugs of abuse elicit powerful emotions that can be interwoven conceptually into this framework. Such emotions range from pronounced euphoria to a devastating negative emotional state that in the extreme can create a break with homeostasis and thus an allostatic hedonic state that has been considered key to the etiology and maintenance of the pathophysiology of addiction. Drug addiction can be defined as a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain incentive salience and stress systems. Specific neurochemical elements in these structures include not only decreases in incentive salience system function in the ventral striatum (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF), dynorphin-κ opioid systems, and norepinephrine, vasopressin, hypocretin, and substance P in the extended amygdala (between-system opponent processes). Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for drugs similar to a CRF1 receptor antagonist. Other stress buffers include nociceptin and endocannabinoids, which may also work through interactions with the extended amygdala. The thesis argued here is that the brain has specific neurochemical neurocircuitry coded by the hedonic extremes of pleasant and unpleasant emotions that have been identified through the study of opponent processes in the domain of addiction. These neurochemical systems need to be considered in the context of the framework that emotions involve the specific brain regions now identified to differentially interpreting emotive physiological expression.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA.
| |
Collapse
|
21
|
Molecular mechanisms of placebo responses in humans. Mol Psychiatry 2015; 20:416-23. [PMID: 25510510 PMCID: PMC4372496 DOI: 10.1038/mp.2014.164] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
Abstract
Endogenous opioid and non-opioid mechanisms (for example, dopamine (DA), endocannabinoids (eCB)) have been implicated in the formation of placebo analgesic effects, with initial reports dating back three decades. Besides the perspective that placebo effects confound randomized clinical trials, the information so far acquired points to neurobiological systems that when activated by positive expectations and maintained through conditioning and reward learning are capable of inducing physiological changes that lead to the experience of analgesia and improvements in emotional state. Molecular neuroimaging techniques with positron emission tomography and the selective μ-opioid and D2/3 radiotracers [(11)C]carfentanil and [(11)C]raclopride have significantly contributed to our understanding of the neurobiological systems involved in the formation of placebo effects. This line of research has described neural and neurotransmitter networks implicated in placebo responses and provided the technical tools to examine inter-individual differences in the function of placebo-responsive mechanisms, and potential surrogates (biomarkers). As a consequence, the formation of biological placebo effects is now being linked to the concept of resiliency mechanisms, partially determined by genetic factors, and uncovered by the cognitive emotional integration of the expectations created by the therapeutic environment and its maintenance through learning mechanisms. Further work needs to extend this research into clinical conditions where the rates of placebo responses are high and its neurobiological mechanisms have been largely unexplored (for example, mood and anxiety disorders, persistent pain syndromes or even Parkinson disease and multiple sclerosis). The delineation of these processes within and across diseases would point to biological targets that have not been contemplated in traditional drug development.
Collapse
|
22
|
Neurobiological Bases of Cue- and Nicotine-induced Reinstatement of Nicotine Seeking: Implications for the Development of Smoking Cessation Medications. Curr Top Behav Neurosci 2015; 24:125-54. [PMID: 25638336 DOI: 10.1007/978-3-319-13482-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A better understanding of the neurobiological factors that contribute to relapse to smoking is needed for the development of efficacious smoking cessation medications. Reinstatement procedures allow the preclinical assessment of several factors that contribute to relapse in humans, including re-exposure to nicotine via tobacco smoking and the presentation of stimuli that were previously associated with nicotine administration (i.e., conditioned stimuli). This review provides an integrated discussion of the results of animal studies that used reinstatement procedures to assess the efficacy of pharmacologically targeting various neurotransmitter systems in attenuating the cue- and nicotine-induced reinstatement of nicotine seeking. The results of these animal studies have increased our understanding of the neurobiological processes that mediate the conditioned effects of stimuli that trigger reinstatement to nicotine seeking. Thus, these findings provide important insights into the neurobiological substrates that modulate relapse to tobacco smoking in humans and the ongoing search for novel efficacious smoking cessation medications.
Collapse
|
23
|
Abstract
OBJECTIVE Substance dependence disorder is a chronically relapsing condition characterised by neurobiological changes leading to loss of control in restricting a substance intake, compulsion and withdrawal syndrome. In the past few years, (endo)cannabinoids have been raised as a possible target in the aetiology of drug addiction. On the other hand, although the exact mechanisms of the genesis of addiction remain poorly understood, it is possible that neuroinflammation might also play a role in the pathophysiology of this condition. Studies demonstrated that (endo)cannabinoids act as immunomodulators by inhibiting cytokines production and microglial cell activation. Thus, in the present review, we explore the possible role of neuroinflammation on the therapeutic effects of cannabinoids on drug addiction. METHODS We conducted an evidence-based review of the literature in order to assess the role of cannabinoids on the neuroinflammatory hypothesis of addiction (terms: addiction, cannabinoids and inflammation). We searched PubMed and BioMedCentral databases up to April 2014 with no date restrictions. RESULTS In all, 165 eligible articles were included in the present review. Existing evidence suggests that disruption in cannabinoid signalling during the drug addiction process leads to microglial activation and neuroinflammation. CONCLUSION The literature showed that inflammation and changes in endocannabinod signalling occur in drug abuse; however, it remains uncertain whether these changes are causally or coincidentally associated with addiction. Additional studies, therefore, are needed to elucidate the contribution of neuroinflammation on the behavioural and neuroprotective effects of cannabinoids on drug addiction.
Collapse
|
24
|
Peciña M, Martínez-Jauand M, Hodgkinson C, Stohler C, Goldman D, Zubieta J. FAAH selectively influences placebo effects. Mol Psychiatry 2014; 19:385-91. [PMID: 24042479 PMCID: PMC4222079 DOI: 10.1038/mp.2013.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Abstract
Endogenous opioid and cannabinoid systems are thought to act synergistically regulating antinociceptive and reward mechanisms. To further understand the human implications of the interaction between these two systems, we investigated the role of the common, functional missense variant Pro129Thr of the gene coding fatty acid amide hydrolase (FAAH), the major degrading enzyme of endocannabinoids, on psychophysical and neurotransmitter (dopaminergic, opioid) responses to pain and placebo-induced analgesia in humans. FAAH Pro129/Pro129 homozygotes, who constitute nearly half of the population, reported higher placebo analgesia and more positive affective states immediately and 24 h after placebo administration; no effects on pain report in the absence of placebo were observed. Pro129/Pro129 homozygotes also showed greater placebo-induced μ-opioid, but not D(2/3) dopaminergic, enhancements in neurotransmission in regions known involved in placebo effects. These results show that a common genetic variation affecting the function of the cannabinoid system is serving as a probe to demonstrate the involvement of cannabinoid and opioid transmitters on the formation of placebo effects.
Collapse
Affiliation(s)
- M. Peciña
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - C. Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - C.S. Stohler
- School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - D. Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - J.K. Zubieta
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, Department of Radiology, University of Michigan, Ann Arbor, MI, USA,Correspondence to: Jon-Kar Zubieta, MD., PhD. Molecular and Behavioral Neuroscience Institute University of Michigan 205 Zina Pitcher Place Ann Arbor, MI 48109-0720 Telephone: 734-763-6843 Fax: 734-647-4130
| |
Collapse
|
25
|
Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, Schmeichel B, Vendruscolo LF, Wade CL, Whitfield TW, George O. Addiction as a stress surfeit disorder. Neuropharmacology 2014; 76 Pt B:370-82. [PMID: 23747571 PMCID: PMC3830720 DOI: 10.1016/j.neuropharm.2013.05.024] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 12/15/2022]
Abstract
Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress/anti-reward system that contributes to compulsive drug seeking. Thus, brain stress response systems are hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the development and persistence of addiction. The recruitment of anti-reward systems provides a powerful neurochemical basis for the negative emotional states that are responsible for the dark side of addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Alcoholism, more generically drug addiction, can be defined as a chronically relapsing disorder characterized by: (1) compulsion to seek and take the drug (alcohol); (2) loss of control in limiting (alcohol) intake; and (3) emergence of a negative emotional state (e.g., dysphoria, anxiety, irritability), reflecting a motivational withdrawal syndrome, when access to the drug (alcohol) is prevented (defined here as dependence). The compulsive drug seeking associated with alcoholism can be derived from multiple neuroadaptations, but the thesis argued here, derived largely from animal models, is that a key component involves decreased brain reward function, increased brain stress function, and compromised executive function, all of which contribute to the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from decreases in reward neurotransmission in the ventral striatum, such as decreased dopamine and opioid peptide function in the nucleus accumbens (ventral striatum), but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Data from animal models that support this thesis show that acute withdrawal from chronic alcohol, sufficient to produce dependence, increases reward thresholds, increases anxiety-like responses, decreases dopamine system function, and increases extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. Alcoholism also involves substantial neuroadaptations that persist beyond acute withdrawal and trigger relapse and deficits in cognitive function that can also fuel compulsive drinking. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of alcoholism. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include increases in norepinephrine function, increases in dynorphin activity, and decreases in neuropeptide Y. The combination of impairment of function in reward circuitry and recruitment of brain stress system circuitry provides a powerful neurochemical basis for the negative emotional states that are responsible for the negative reinforcement that drives the compulsivity of alcoholism.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
27
|
Abstract
Drug addiction can be defined by a three-stage cycle - binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation - that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF) and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes). CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction.
Collapse
Affiliation(s)
- George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
28
|
Archie P, Bruera E, Cohen L. Music-based interventions in palliative cancer care: a review of quantitative studies and neurobiological literature. Support Care Cancer 2013; 21:2609-24. [PMID: 23715815 PMCID: PMC3728458 DOI: 10.1007/s00520-013-1841-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/21/2013] [Indexed: 12/23/2022]
Abstract
PURPOSE This study aimed to review quantitative literature pertaining to studies of music-based interventions in palliative cancer care and to review the neurobiological literature that may bare relevance to the findings from these studies. METHODS A narrative review was performed, with particular emphasis on RCTs, meta-analyses, and systematic reviews. The Cochrane Library, Ovid, PubMed, CINAHL Plus, PsycINFO, and ProQuest were searched for the subject headings music, music therapy, cancer, oncology, palliative care, pain, anxiety, depression, mood, quality of life, prevalence, neuroscience, functional imaging, endogenous opioids, GABA, 5HT, dopamine, and permutations of these same search terms. Data for the review were comprised of articles published between 1970 and 2012. References of all the cited articles were also reviewed. RESULTS Available evidence suggests that music-based interventions may have a positive impact on pain, anxiety, mood disturbance, and quality of life in cancer patients. Advances in neurobiology may provide insight into the potential mechanisms by which music impacts these outcomes. CONCLUSIONS More research is needed to determine what subpopulation of cancer patients is most likely to respond to music-based interventions, what interventions are most effective for individual outcomes, and what measurement parameters best gauge their effectiveness.
Collapse
Affiliation(s)
- Patrick Archie
- Celilo Cancer Center, Mid-Columbia Medical Center, 1800 East 19th Street, The Dalles, OR 97058, USA.
| | | | | |
Collapse
|
29
|
Dubreucq S, Durand A, Matias I, Bénard G, Richard E, Soria-Gomez E, Glangetas C, Groc L, Wadleigh A, Massa F, Bartsch D, Marsicano G, Georges F, Chaouloff F. Ventral tegmental area cannabinoid type-1 receptors control voluntary exercise performance. Biol Psychiatry 2013; 73:895-903. [PMID: 23237313 DOI: 10.1016/j.biopsych.2012.10.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/09/2012] [Accepted: 10/26/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND We have shown that the endogenous stimulation of cannabinoid type-1 (CB₁) receptors is a prerequisite for voluntary running in mice, but the precise mechanisms through which the endocannabinoid system exerts a tonic control on running performance remain unknown. METHODS We analyzed the respective impacts of constitutive/conditional CB₁ receptor mutations and of CB₁ receptor blockade on wheel-running performance. We then assessed the consequences of ventral tegmental area (VTA) CB₁ receptor blockade on the wheel-running performances of wildtype (gamma-aminobutyric acid [GABA]-CB₁⁺/⁺) and mutant (GABA-CB₁⁻/⁻) mice for CB₁ receptors in brain GABA neurons. Using in vivo electrophysiology, the consequences of wheel running on VTA dopamine (DA) neuronal activity were examined in GABA-CB₁⁺/⁺ and GABA-CB₁⁻/⁻ mice. RESULTS Conditional deletion of CB₁ receptors from brain GABA neurons, but not from several other neuronal populations or from astrocytes, decreased wheel-running performance in mice. The inhibitory consequences of either the systemic or the intra-VTA administration of CB1 receptor antagonists on running behavior were abolished in GABA-CB₁⁻/⁻ mice. The absence of CB1 receptors from GABAergic neurons led to a depression of VTA DA neuronal activity after acute/repeated wheel running. CONCLUSIONS This study provides evidence that CB₁ receptors on VTA GABAergic terminals exert a permissive control on rodent voluntary running performance. Furthermore, it is shown that CB₁ receptors located on GABAergic neurons impede negative consequences of voluntary exercise on VTA DA neuronal activity. These results position the endocannabinoid control of inhibitory transmission as a prerequisite for wheel-running performance in mice.
Collapse
Affiliation(s)
- Sarah Dubreucq
- Institut National de la Santé et de la Recherche Médicale-INSERM, U862, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Interactions between Δ(9)-tetrahydrocannabinol and heroin: self-administration in rhesus monkeys. Behav Pharmacol 2013; 23:754-61. [PMID: 23044830 DOI: 10.1097/fbp.0b013e32835a3907] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cannabinoid receptor agonist Δ(9)-tetrahydrocannabinol (THC) enhances the antinociceptive effects of µ-opioid receptor agonists, raising the possibility of using a combination of THC and opioids for treating pain. This study examined the effects of noncontingent and contingent administration of THC on intravenous heroin self-administration in rhesus monkeys. Self-administration of different unit doses of heroin (0.0001-0.1 mg/kg/infusion) generated a typical inverted U-shaped dose-response curve. In one experiment (n=4), noncontingent THC (0.1-1.0 mg/kg) dose dependently shifted the heroin dose-response curve downward in three monkeys and slightly leftward in one monkey. In a second experiment (n=4), monkeys could self-administer THC alone (0.0032-0.032 mg/kg/infusion), heroin alone, or a mixture of THC and heroin. THC alone did not maintain responding above that obtained with saline; however, increasing the THC dose with heroin dose dependently decreased the number of infusions received and the rate of responding, as compared with data that were obtained with heroin alone. These results indicate that THC does not significantly enhance the positive reinforcing effects of heroin, further supporting the view that combining cannabinoid and opioid receptor agonists (e.g. for treating pain) does not increase, and might decrease, the abuse liability of individual drugs.
Collapse
|
31
|
Dissanayake DW, Mason R, Marsden CA. Sensory gating, Cannabinoids and Schizophrenia. Neuropharmacology 2013; 67:66-77. [DOI: 10.1016/j.neuropharm.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
|
32
|
Addy C, Li S, Agrawal N, Stone J, Majumdar A, Zhong L, Li H, Yuan J, Maes A, Rothenberg P, Cote J, Rosko K, Cummings C, Warrington S, Boyce M, Gottesdiener K, Stoch A, Wagner J. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamic Properties of Taranabant, a Novel Selective Cannabinoid-1 Receptor Inverse Agonist, for the Treatment of Obesity: Results From a Double-Blind, Placebo-Controlled, Single Oral Dose Study in Health. J Clin Pharmacol 2013; 48:418-27. [DOI: 10.1177/0091270008314467] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Ahn KH, Mahmoud MM, Samala S, Lu D, Kendall DA. Profiling two indole-2-carboxamides for allosteric modulation of the CB1 receptor. J Neurochem 2013. [PMID: 23205875 DOI: 10.1111/jnc.12115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allosteric modulation of G-protein coupled receptors (GPCRs) represents a novel approach for fine-tuning GPCR functions. The cannabinoid CB1 receptor, a GPCR associated with the CNS, has been implicated in the treatment of drug addiction, pain, and appetite disorders. We report here the synthesis and pharmacological characterization of two indole-2-carboxamides:5-chloro-3-ethyl-1-methyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-a) and 5-chloro-3-pentyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (ICAM-b). Although both ICAM-a and ICAM-b enhanced CP55, 940 binding, ICAM-b exhibited the strongest positive cooperativity thus far demonstrated for enhancing agonist binding to the CB1 receptor. Although it displayed negative modulatory effects on G-protein coupling to CB1, ICAM-b induced β-arrestin-mediated downstream activation of extracellular signal-regulated kinase (ERK) signaling. These results indicate that this compound represents a novel class of CB1 ligands that produce biased signaling via CB1.
Collapse
Affiliation(s)
- Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | |
Collapse
|
34
|
Koob GF. Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. Curr Top Behav Neurosci 2013; 13:3-30. [PMID: 21744309 PMCID: PMC3448980 DOI: 10.1007/7854_2011_129] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcoholism can be defined by a compulsion to seek and take drug, loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug is prevented. Alcoholism impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). The compulsive drug seeking associated with alcoholism can be derived from multiple neuroadaptations, but the thesis argued here is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of specific neurochemical elements involved in reward and stress within the basal forebrain structures involving the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreased dopamine and γ-aminobutyric acid function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Acute withdrawal from chronic alcohol, sufficient to produce dependence, increases reward thresholds, increases anxiety-like responses, decreases dopamine system function, and increases extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of alcoholism. Other components of brain stress systems in the extended amygdala that interact with CRF and that may contribute to the negative motivational state of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least partially, the compulsivity of alcoholism.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Abstract
Obesity is a complex disease that affects all ethnic populations worldwide. The etiology of this disease is based on the interaction of genetic factors, environment and lifestyles indicators. Genetic contribution to the epidemic has gained attention from 2 sources: monogenic syndromes that display severe obesity, and the polygenic model of common obesity. Single mutations can render a syndrome with severe obesity resulting from alteration in central o peripheral appetite control mechanisms. The interaction of several polymorphisms and epigenetic modifications constitute the basic plot for common obesity, molecular ingredients that should not confuse the investigator-they make this riddle even harder to decipher.
Collapse
|
36
|
Iemolo A, Valenza M, Tozier L, Knapp CM, Kornetsky C, Steardo L, Sabino V, Cottone P. Withdrawal from chronic, intermittent access to a highly palatable food induces depressive-like behavior in compulsive eating rats. Behav Pharmacol 2012; 23:593-602. [PMID: 22854309 PMCID: PMC3934429 DOI: 10.1097/fbp.0b013e328357697f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased availability of highly palatable foods is a major contributing factor toward the development of compulsive eating in obesity and eating disorders. It has been proposed that compulsive eating may develop as a form of self-medication to alleviate the negative emotional state associated with withdrawal from highly palatable foods. This study was aimed at determining whether withdrawal from chronic, intermittent access to a highly palatable food was responsible for the emergence of depressive-like behavior. For this purpose, a group of male Wistar rats was provided a regular chow diet 7 days a week (Chow/Chow), whereas a second group of rats was provided chow for 5 days a week, followed by a 2-day access to a highly palatable sucrose diet (Chow/Palatable). Following 7 weeks of diet alternation, depressive-like behavior was assessed during withdrawal from the highly palatable diet and following renewed access to it, using the forced swim test, the sucrose consumption test, and the intracranial self-stimulation threshold procedure. It was found that Chow/Palatable rats withdrawn from the highly palatable diet showed increased immobility time in the forced swim test and decreased sucrose intake in the sucrose consumption test compared with the control Chow/Chow rats. Interestingly, the increased immobility in the forced swim test was abolished by renewing access to the highly palatable diet. No changes were observed in the intracranial self-stimulation threshold procedure. These results validate the hypothesis that withdrawal from highly palatable food is responsible for the emergence of depressive-like behavior, and they also show that compulsive eating relieves the withdrawal-induced negative emotional state.
Collapse
Affiliation(s)
- Attilio Iemolo
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Marta Valenza
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pharmacology and Human Physiology, University of Bari, Bari
| | - Lisa Tozier
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Clifford M. Knapp
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Conan Kornetsky
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Luca Steardo
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Méndez-Díaz M, Rueda-Orozco PE, Ruiz-Contreras AE, Prospéro-García O. The endocannabinoid system modulates the valence of the emotion associated to food ingestion. Addict Biol 2012; 17:725-35. [PMID: 21182571 PMCID: PMC3116974 DOI: 10.1111/j.1369-1600.2010.00271.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endocannabinoids (eCBs) are mediators of the homeostatic and hedonic systems that modulate food ingestion. Hence, eCBs, by regulating the hedonic system, may be modulating the valence of the emotion associated to food ingestion (positive: pleasant or negative: unpleasant). Our first goal was to demonstrate that palatable food induces conditioned place preference (CPP), hence a positive-valence emotion. Additionally, we analyzed if this CPP is blocked by AM251, inducing a negative valence emotion, meaning avoiding the otherwise pursued compartment. The second goal was to demonstrate that CPP induced by regular food would be strengthened by the simultaneous administration of anandamide or oleamide, and if such, CPP is blocked by AM251. Finally, we tested the capacity of eCBs (without food) to induce CPP. Our results indicate that rats readily developed CPP to palatable food, which was blocked by AM251. The CPP induced by regular food was strengthened by eCBs and blocked by AM251. Finally, oleamide, unlike anandamide, induced CPP. These results showed that eCBs mediate the positive valence (CPP) of the emotion associated to food ingestion. It was also observed that the blockade of the CB1 receptor causes a loss of correlation between food and CPP (negative valence: avoidance). These data further support the role of eCBs as regulators of the hedonic value of food.
Collapse
Affiliation(s)
- Mónica Méndez-Díaz
- Grupo de Neurociencias, Laboratorio de Canabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| | | | | | | |
Collapse
|
38
|
George O, Le Moal M, Koob GF. Allostasis and addiction: role of the dopamine and corticotropin-releasing factor systems. Physiol Behav 2012; 106:58-64. [PMID: 22108506 PMCID: PMC3288230 DOI: 10.1016/j.physbeh.2011.11.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 11/16/2022]
Abstract
Allostasis, originally conceptualized to explain persistent morbidity of arousal and autonomic function, is defined as the process of achieving stability through physiological or behavioral change. Two types of biological processes have been proposed to describe the mechanisms underlying allostasis in drug addiction, a within-system adaptation and a between-system adaptation. In the within-system process, the drug elicits an opposing, neutralizing reaction within the same system in which the drug elicits its primary and unconditioned reinforcing actions, while in the between-system process, different neurobiological systems that the one initially activated by the drug are recruited. In this review, we will focus our interest on alterations in the dopaminergic and corticotropin releasing factor systems as within-system and between-system neuroadaptations respectively, that underlie the opponent process to drugs of abuse. We hypothesize that repeated compromised activity in the dopaminergic system and sustained activation of the CRF-CRF1R system with withdrawal episodes may lead to an allostatic load contributing significantly to the transition to drug addiction.
Collapse
Affiliation(s)
- Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
39
|
Farkas S, Nagy K, Jia Z, Harkany T, Palkovits M, Donohou SR, Pike VW, Halldin C, Máthé D, Csiba L, Gulyás B. The decrease of dopamine D₂/D₃ receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB₁ cannabinoid receptors in Parkinson's disease: a preliminary autoradiographic study with the selective dopamine D₂/D₃ antagonist [³H]raclopride and the novel CB₁ inverse agonist [¹²⁵I]SD7015. Brain Res Bull 2012; 87:504-10. [PMID: 22421165 DOI: 10.1016/j.brainresbull.2012.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/24/2023]
Abstract
Cannabinoid type-1 receptors (CB₁Rs) modulate synaptic neurotransmission by participating in retrograde signaling in the adult brain. Increasing evidence suggests that cannabinoids through CB₁Rs play an important role in the regulation of motor activities in the striatum. In the present study, we used human brain samples to examine the relationship between CB₁R and dopamine receptor density in case of Parkinson's disease (PD). Post mortem putamen, nucleus caudatus and medial frontal gyrus samples obtained from PD patients were used for CB₁R and dopamine D₂/D₃ receptor autoradiography. [¹²⁵I]SD7015, a novel selective CB₁R inverse agonist, developed by a number of the present co-authors, and [³H]raclopride, a dopamine D₂/D₃ antagonist, were used as radioligands. Our results demonstrate unchanged CB₁R density in the putamen and nucleus caudatus of deceased PD patients, treated with levodopa (L-DOPA). At the same time dopamine D₂/D₃ receptors displayed significantly decreased density levels in case of PD putamen (control: 47.97 ± 10.00 fmol/g, PD: 3.73 ± 0.07 fmol/g (mean ± SEM), p<0.05) and nucleus caudatus (control: 30.26 ± 2.48 fmol/g, PD: 12.84 ± 5.49 fmol/g, p<0.0005) samples. In contrast to the putamen and the nucleus caudatus, in the medial frontal gyrus neither receptor densities were affected. Our data suggest the presence of an unaltered CB₁R population even in late stages of levodopa treated PD. This further supports the presence of an intact CB₁R population which, in line with the conclusion of earlier publications, may be utilized as a pharmacological target in the treatment of PD. Furthermore we found discrepancy between a maintained CB₁R population and a decreased dopamine D₂/D₃ receptor population in PD striatum. The precise explanation of this conundrum requires further studies with simultaneous examination of the central cannabinoid and dopaminergic systems in PD using higher sample size.
Collapse
Affiliation(s)
- Szabolcs Farkas
- Department of Neurology, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ahn KH, Mahmoud MM, Kendall DA. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J Biol Chem 2012; 287:12070-82. [PMID: 22343625 DOI: 10.1074/jbc.m111.316463] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cannabinoid receptor 1 (CB1), a member of the class A G protein-coupled receptor family, is expressed in brain tissue where agonist stimulation primarily activates the pertussis toxin-sensitive inhibitory G protein (G(i)). Ligands such as CP55940 ((1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3- hydroxypropyl)cyclohexan-1-ol) and Δ(9)-tetrahydrocannabinol are orthosteric agonists for the receptor, bind the conventional binding pocket, and trigger G(i)-mediated effects including inhibition of adenylate cyclase. ORG27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide) has been identified as an allosteric modulator that displays positive cooperativity for CP55940 binding to CB1 yet acts as an antagonist of G protein coupling. To examine this apparent conundrum, we used the wild-type CB1 and two mutants, T210A and T210I (D'Antona, A. M., Ahn, K. H., and Kendall, D. A. (2006) Biochemistry 45, 5606-5617), which collectively cover a spectrum of receptor states from inactive to partially active to more fully constitutively active. Using these receptors, we demonstrated that ORG27569 induces a CB1 receptor state that is characterized by enhanced agonist affinity and decreased inverse agonist affinity consistent with an active conformation. Also consistent with this conformation, the impact of ORG27569 binding was most dramatic on the inactive T210A receptor and less pronounced on the already active T210I receptor. Although ORG27569 antagonized CP55940-induced guanosine 5'-3-O-(thio)triphosphate binding, which is indicative of G protein coupling inhibition in a concentration-dependent manner, the ORG27569-induced conformational change of the CB1 receptor led to cellular internalization and downstream activation of ERK signaling, providing the first case of allosteric ligand-biased signaling via CB1. ORG27569-induced ERK phosphorylation persisted even after pertussis toxin treatment to abrogate G(i) and occurs in HEK293 and neuronal cells.
Collapse
Affiliation(s)
- Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
41
|
Abush H, Akirav I. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats. PLoS One 2012; 7:e31731. [PMID: 22348124 PMCID: PMC3278466 DOI: 10.1371/journal.pone.0031731] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg) for two weeks during the late adolescence period (post-natal days 45–60) and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP) in the ventral subiculum (vSub)-nucleus accumbens (NAc) pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.
Collapse
Affiliation(s)
- Hila Abush
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
42
|
Nguyen VH, Wang H, Verdurand M, Zavitsanou K. Differential treatment regimen-related effects of HU210 on CB(1) and D(2)-like receptor functionality in the rat basal ganglia. Pharmacology 2012; 89:64-73. [PMID: 22301450 DOI: 10.1159/000335368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Functional linkages between the cannabinoid CB(1) and the dopaminergic systems have been reported although the observations and the mechanisms hypothesizing their interactions at the G protein-coupled receptor (GPCR) functionality level are conflicting. METHODS Administration of a potent cannabinoid agonist, HU210, at various doses (25-100 μg/kg) and treatment regimens (1- to 14-day treatment) in rats was carried out to investigate the effect of HU210 treatment on the CB(1) and D(2)-like agonist-mediated GPCR activation. RESULTS The desensitizations (reduced coupling) of both D(2) agonist- and CB(1) agonist-mediated GPCR activation was found to be treatment duration dependent and region specific, suggesting implication of receptor tolerance and adaptation due to the cannabinoid treatment. The effect of HU210 on the CB(1) agonist-mediated GPCR desensitization in all treatment groups was not dose dependent. CONCLUSIONS The desensitization of D(2)-like receptors found after a cannabinoid treatment in this study strengthens the evidence that the two neurotransmitter systems interact at the intercellular level; this interaction might occur via multiple mechanisms, which also vary according to region.
Collapse
Affiliation(s)
- Vu H Nguyen
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, N.S.W., Australia.
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
44
|
Acute blockade of CB1 receptor leads to reinstatement of MDMA-induced conditioned place preference. Pharmacol Biochem Behav 2011; 100:33-9. [DOI: 10.1016/j.pbb.2011.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 01/02/2023]
|
45
|
Li C, Bowe JE, Huang GC, Amiel SA, Jones PM, Persaud SJ. Cannabinoid receptor agonists and antagonists stimulate insulin secretion from isolated human islets of Langerhans. Diabetes Obes Metab 2011; 13:903-10. [PMID: 21564460 DOI: 10.1111/j.1463-1326.2011.01422.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The role of cannabinoid receptors in human islets of Langerhans has not been investigated in any detail, so the current study examined CB1 and CB2 receptor expression by human islets and the effects of pharmacological cannabinoid receptor agonists and antagonists on insulin secretion. METHODS Human islets were isolated from pancreases retrieved from heart-beating organ donors. Messenger RNAs encoding human CB1 and CB2 receptors were amplified from human islet RNA by RT-PCR and receptor localization within islets was identified by immunohistochemistry. Dynamic insulin secretion from human islets perifused with buffers supplemented with CB1 and CB2 receptor agonists and antagonists was quantified by radioimmunoassay. RESULTS RT-PCR showed that both CB1 and CB2 receptors are expressed by human islets and immunohistochemistry indicated that receptor expression co-localized with insulin-expressing β-cells. Perifusion experiments using isolated human islets showed that insulin secretion was reversibly stimulated by both CB1 and CB2 receptor agonists, with CB1 receptor activation associated with increased basal secretion whereas CB2 receptors were coupled to initiation and potentiation of insulin secretion. Antagonists at CB1 (N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and CB2 (N-(1,3-Benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinoline carboxamide) receptors failed to inhibit the stimulatory effects of the respective agonists and, unexpectedly, reversibly stimulated insulin secretion. CONCLUSIONS These data confirm the expression of CB1 and CB2 receptors by human islets and indicate that both receptor subtypes are coupled to the stimulation of insulin secretion. They also implicate involvement of CB1/2 receptor-independent pathways in the antagonist-induced stimulatory effects.
Collapse
MESH Headings
- Humans
- Immunohistochemistry
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- RNA, Messenger/genetics
- Radioimmunoassay
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- C Li
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
46
|
Duka T, Crombag HS, Stephens DN. Experimental medicine in drug addiction: towards behavioral, cognitive and neurobiological biomarkers. J Psychopharmacol 2011; 25:1235-55. [PMID: 21169391 DOI: 10.1177/0269881110388324] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several theoretical frameworks have been developed to understand putative processes and mechanisms involved in addiction. Whilst these 'theories of addiction' disagree about importance and/or nature of a number of key psychological processes (e.g. the necessity of craving and/or the involvement of drug-value representations), a number of commonalities exist. For instance, it is widely accepted that Pavlovian associations between cues and environmental contexts and the drug effects acquired over the course of addiction play a critical role, especially in relapse vulnerability in detoxified addicts. Additionally, all theories of addiction (explicitly or implicitly) propose that chronic drug exposure produces persistent neuroplastic changes in neurobiological circuitries underlying critical emotional, cognitive and motivational processes, although disagreement exists as to the precise nature of these neurobiological changes and/or their psychological consequences. The present review, rather than limiting itself to any particular theoretical stance, considers various candidate psychological, neurobiological and/or behavioral processes in addiction and outlines conceptual and procedural approaches for the experimental medicine laboratory. The review discusses (1) extinction, renewal and (re)consolidation of learned associations between cues and drugs, (2) the drug reward value, (3) motivational states contributing to drug seeking and (4) reflective (top-down) and sensory (bottom-up) driven decision-making. In evaluating these psychological and/or behavioral processes and their relationship to addiction we make reference to putative underlying brain structures identified by basic animal studies and/or imaging studies with humans.
Collapse
Affiliation(s)
- Theodora Duka
- Behavioral and Clinical Neuroscience Research Group, School of Psychology, University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
47
|
Lane DA, Chan J, Lupica CR, Pickel VM. Cannabinoid-1 receptor gene deletion has a compartment-specific affect on the dendritic and axonal availability of μ-opioid receptors and on dopamine axons in the mouse nucleus accumbens. Synapse 2011; 64:886-97. [PMID: 20939059 DOI: 10.1002/syn.20807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cannabinoid-type 1 (CB1) receptors are implicated in μ-opioid receptor (μ-OR)-dependent reward ascribed partially to mesolimbic dopamine release in the nucleus accumbens (Acb) shell. Thus, CB1 receptor gene deletion may preferentially alter the availability of μ-ORs and/or dopamine innervation in this brain region, which is functionally distinct from the motor-associated Acb core. To test this hypothesis, we examined the electron microscopic immunolabeling of the μ-OR and the dopamine-synthesizing enzyme, tyrosine hydroxylase (TH) in Acb shell, and core of adult C57BL/6J wild-type (WT) and CB1-knock-out (KO) mice. The μ-OR-immunogold particles were observed in the cytoplasm and on the plasmalemma in dendrites, dendritic spines, and axon terminals throughout the Acb. Compared to WT, the Acb shell of CB1-KO mice showed a lower cytoplasmic density of μ-ORs in dendrites and fewer μ-OR labeled, but not unlabeled, dendritic spines. In this region, the CB1-KO's had a significantly enhanced plasmalemmal density of μ-OR-immunogold in axon terminals, 70% of which formed excitatory-type synapses. However, the number of both μ-OR-labeled terminals and TH-labeled small varicosities was significantly reduced in the Acb shell of CB1-KO's. These adaptations were not seen in the Acb core, where CB1-KO's had a preferentially lower dendritic plasmalemmal and total spine density of μ-OR immunogold. Our results indicate that constitutive deletion of the CB1 receptor gene has a major impact on the pre and postsynaptic availability of μ-ORs at axospinous synapses and on the dopamine innervation of the Acb shell as well as the dendritic surface expression of μ-ORs in Acb core of mature rodents.
Collapse
Affiliation(s)
- Diane A Lane
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
48
|
Chakrabarti B, Baron-Cohen S. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces. Mol Autism 2011; 2:10. [PMID: 21714860 PMCID: PMC3155489 DOI: 10.1186/2040-2392-2-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 06/29/2011] [Indexed: 01/22/2023] Open
Abstract
Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC). However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1) gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI) study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust) faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking). Methods A total of 30 volunteers (13 males and 17 females) from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs) in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380) were associated with differential gaze duration for happy (but not disgust) faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing, such as ASC.
Collapse
Affiliation(s)
- Bhismadev Chakrabarti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Whiteknights, Reading RG6 6AL, UK.
| | | |
Collapse
|
49
|
Li C, Jones PM, Persaud SJ. Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas. Pharmacol Ther 2011; 129:307-20. [DOI: 10.1016/j.pharmthera.2010.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 01/26/2023]
|
50
|
|