1
|
Gu Y, Shan J, Huang T, Yu C, Wu H, Hu X, Tong X, Jia R, Noda Y, Du J, Yuan TF, Luo W, Zhao D. Exploring the interplay between addiction and time perception: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111104. [PMID: 39047859 DOI: 10.1016/j.pnpbp.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Prior studies have investigated the immediate impacts of substances on temporal perception, the impact of temporal outlook, and the consequences of modified temporal perception on addictive behaviors. These inquiries have provided valuable perspectives on the intricate associations between addiction and time perception, enriching the groundwork for forthcoming research and therapeutic strategies. This comprehensive review aims to further explore intricate correlation among diverse addictive substances-namely alcohol, cannabis, nicotine, opioids-and non-substance addictions such as internet gaming, elucidating their influence on temporal perception. Adhering to the PICOS method and adhering to PRISMA guidelines, we systematically reviewed and critically evaluated all existing research concerning temporal perception in individuals with substance and non-substance use disorders. Specifically, our analyses involved 31 pertinent articles encompassing six unique groups-alcohol, nicotine, cannabis, stimulants, opioids, and internet-related addictions-sourced from a pool of 551 papers. The findings revealed differences in time perception between addicts and control groups, as indicated by medium to large effect sizes (Hedge's g = 0.8, p < 0.001). However, the nature of these differences-whether they predominantly involve time overestimation or underestimation-is not yet definitively clear. This variability underscores the complexity of the relationship between addiction and temporal perception, paving the way for further research to unravel these intricate dynamics.
Collapse
Affiliation(s)
- Yunhao Gu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China; Graduate School of Education, University of Pennsylvania, Philadelphia, United States
| | - Jiatong Shan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China; Department of Arts and Sciences, New York University Shanghai, Shanghai, China
| | - Taicheng Huang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengchao Yu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, the University of Hong Kong, Hong Kong S.A.R., China; HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yoshihiro Noda
- Department of Psychiatry, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Jiang Du
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Hoddinott JD, Grahn JA. Neural representations of beat and rhythm in motor and association regions. Cereb Cortex 2024; 34:bhae406. [PMID: 39390710 PMCID: PMC11466846 DOI: 10.1093/cercor/bhae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Humans perceive a pulse, or beat, underlying musical rhythm. Beat strength correlates with activity in the basal ganglia and supplementary motor area, suggesting these regions support beat perception. However, the basal ganglia and supplementary motor area are part of a general rhythm and timing network (regardless of the beat) and may also represent basic rhythmic features (e.g. tempo, number of onsets). To characterize the encoding of beat-related and other basic rhythmic features, we used representational similarity analysis. During functional magnetic resonance imaging, participants heard 12 rhythms-4 strong-beat, 4 weak-beat, and 4 nonbeat. Multi-voxel activity patterns for each rhythm were tested to determine which brain areas were beat-sensitive: those in which activity patterns showed greater dissimilarities between rhythms of different beat strength than between rhythms of similar beat strength. Indeed, putamen and supplementary motor area activity patterns were significantly dissimilar for strong-beat and nonbeat conditions. Next, we tested whether basic rhythmic features or models of beat strength (counterevidence scores) predicted activity patterns. We found again that activity pattern dissimilarity in supplementary motor area and putamen correlated with beat strength models, not basic features. Beat strength models also correlated with activity pattern dissimilarities in the inferior frontal gyrus and inferior parietal lobe, though these regions encoded beat and rhythm simultaneously and were not driven by beat alone.
Collapse
Affiliation(s)
- Joshua D Hoddinott
- Centre for Brain and Mind, University of Western Ontario, Perth Drive, London, Ontario N6A 5B7, Canada
- Western Institute for Neuroscience, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Jessica A Grahn
- Centre for Brain and Mind, University of Western Ontario, Perth Drive, London, Ontario N6A 5B7, Canada
- Western Institute for Neuroscience, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Psychology Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
3
|
Matthews TE, Lumaca M, Witek MAG, Penhune VB, Vuust P. Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians. Brain Struct Funct 2024:10.1007/s00429-024-02836-x. [PMID: 39052097 DOI: 10.1007/s00429-024-02836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
There are pronounced differences in the degree to which individuals experience music-induced pleasure which are linked to variations in structural connectivity between auditory and reward areas. However, previous studies exploring the link between white matter structure and music reward sensitivity (MRS) have relied on standard diffusion tensor imaging methods, which present challenges in terms of anatomical accuracy and interpretability. Further, the link between MRS and connectivity in regions outside of auditory-reward networks, as well as the role of musical training, have yet to be investigated. Therefore, we investigated the relation between MRS and structural connectivity in a large number of directly segmented and anatomically verified white matter tracts in musicians (n = 24) and non-musicians (n = 23) using state-of-the-art tract reconstruction and fixel-based analysis. Using a manual tract-of-interest approach, we additionally tested MRS-white matter associations in auditory-reward networks seen in previous studies. Within the musician group, there was a significant positive relation between MRS and fiber density and cross section in the right middle longitudinal fascicle connecting auditory and inferior parietal cortices. There were also positive relations between MRS and fiber-bundle cross-section in tracts connecting the left thalamus to the ventral precentral gyrus and connecting the right thalamus to the right supplementary motor area, however, these did not survive FDR correction. These results suggest that, within musicians, dorsal auditory and motor networks are crucial to MRS, possibly via their roles in top-down predictive processing and auditory-motor transformations.
Collapse
Affiliation(s)
- Tomas E Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark.
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
| | - Maria A G Witek
- Department of Music School of Languages, Art History and Music, University of Birmingham, Cultures, Birmingham, B15 2TT, UK
| | - Virginia B Penhune
- Department of Psychology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
- Royal Academy of Music, Skovgaardsgade 2C, Aarhus C, DK-8000, Denmark
| |
Collapse
|
4
|
Kim T, Rahimpour Jounghani A, Gozdas E, Hosseini SH. Cortical neurite microstructural correlates of time perception in healthy older adults. Heliyon 2024; 10:e32534. [PMID: 38975207 PMCID: PMC11225759 DOI: 10.1016/j.heliyon.2024.e32534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The human experience is significantly impacted by timing as it structures how information is processed. Nevertheless, the neurological foundation of time perception remains largely unresolved. Understanding cortical microstructure related to timing is crucial for gaining insight into healthy aging and recognizing structural alterations that are typical of neurodegenerative diseases associated with age. Given the importance, this study aimed to determine the brain regions that are accountable for predicting time perception in older adults using microstructural measures of the brain. In this study, elderly healthy adults performed the Time-Wall Estimation task to measure time perception through average error time. We used support vector regression (SVR) analyses to predict the average error time using cortical neurite microstructures derived from orientation dispersion and density imaging based on multi-shell diffusion magnetic resonance imaging (dMRI). We found significant correlations between observed and predicted average error times for neurite arborization (ODI) and free water (FISO). Neurite arborization and free water properties in specific regions in the medial and lateral prefrontal, superior parietal, and medial and lateral temporal lobes were among the most significant predictors of timing ability in older adults. Further, our results revealed that greater branching along with lower free water in cortical structures result in shorter average error times. Future studies should assess whether these same networks are contributing to time perception in older adults with mild cognitive impairment (MCI) and whether degeneration of these networks contribute to early diagnosis or detection of dementia.
Collapse
Affiliation(s)
| | | | - Elveda Gozdas
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| | - S.M. Hadi Hosseini
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| |
Collapse
|
5
|
Etani T, Miura A, Kawase S, Fujii S, Keller PE, Vuust P, Kudo K. A review of psychological and neuroscientific research on musical groove. Neurosci Biobehav Rev 2024; 158:105522. [PMID: 38141692 DOI: 10.1016/j.neubiorev.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
When listening to music, we naturally move our bodies rhythmically to the beat, which can be pleasurable and difficult to resist. This pleasurable sensation of wanting to move the body to music has been called "groove." Following pioneering humanities research, psychological and neuroscientific studies have provided insights on associated musical features, behavioral responses, phenomenological aspects, and brain structural and functional correlates of the groove experience. Groove research has advanced the field of music science and more generally informed our understanding of bidirectional links between perception and action, and the role of the motor system in prediction. Activity in motor and reward-related brain networks during music listening is associated with the groove experience, and this neural activity is linked to temporal prediction and learning. This article reviews research on groove as a psychological phenomenon with neurophysiological correlates that link musical rhythm perception, sensorimotor prediction, and reward processing. Promising future research directions range from elucidating specific neural mechanisms to exploring clinical applications and socio-cultural implications of groove.
Collapse
Affiliation(s)
- Takahide Etani
- School of Medicine, College of Medical, Pharmaceutical, and Health, Kanazawa University, Kanazawa, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan; Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Japan.
| | - Akito Miura
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Kawase
- The Faculty of Psychology, Kobe Gakuin University, Kobe, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Kazutoshi Kudo
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Fiorin G, Delfitto D. Syncopation as structure bootstrapping: the role of asymmetry in rhythm and language. Front Psychol 2024; 15:1304485. [PMID: 38440243 PMCID: PMC10911290 DOI: 10.3389/fpsyg.2024.1304485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Syncopation - the occurrence of a musical event on a metrically weak position preceding a rest on a metrically strong position - represents an important challenge in the study of the mapping between rhythm and meter. In this contribution, we present the hypothesis that syncopation is an effective strategy to elicit the bootstrapping of a multi-layered, hierarchically organized metric structure from a linear rhythmic surface. The hypothesis is inspired by a parallel with the problem of linearization in natural language syntax, which is the problem of how hierarchically organized phrase-structure markers are mapped onto linear sequences of words. The hypothesis has important consequences for the role of meter in music perception and cognition and, more particularly, for its role in the relationship between rhythm and bodily entrainment.
Collapse
Affiliation(s)
- Gaetano Fiorin
- Department of Humanities, University of Trieste, Trieste, Italy
| | - Denis Delfitto
- Department of Cultures and Civilizations, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Merchant H, de Lafuente V. A Second Introduction to the Neurobiology of Interval Timing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:3-23. [PMID: 38918343 DOI: 10.1007/978-3-031-60183-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Time is a critical variable that organisms must be able to measure in order to survive in a constantly changing environment. Initially, this paper describes the myriad of contexts where time is estimated or predicted and suggests that timing is not a single process and probably depends on a set of different neural mechanisms. Consistent with this hypothesis, the explosion of neurophysiological and imaging studies in the last 10 years suggests that different brain circuits and neural mechanisms are involved in the ability to tell and use time to control behavior across contexts. Then, we develop a conceptual framework that defines time as a family of different phenomena and propose a taxonomy with sensory, perceptual, motor, and sensorimotor timing as the pillars of temporal processing in the range of hundreds of milliseconds.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Victor de Lafuente
- Institute of Neurobiology National Autonomous University of Mexico, Querétaro, Mexico
| |
Collapse
|
8
|
Ordás CM, Alonso-Frech F. The neural basis of somatosensory temporal discrimination threshold as a paradigm for time processing in the sub-second range: An updated review. Neurosci Biobehav Rev 2024; 156:105486. [PMID: 38040074 DOI: 10.1016/j.neubiorev.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The temporal aspect of somesthesia is a feature of any somatosensory process and a pre-requisite for the elaboration of proper behavior. Time processing in the milliseconds range is crucial for most of behaviors in everyday life. The somatosensory temporal discrimination threshold (STDT) is the ability to perceive two successive stimuli as separate in time, and deals with time processing in this temporal range. Herein, we focus on the physiology of STDT, on a background of the anatomophysiology of somesthesia and the neurobiological substrates of timing. METHODS A review of the literature through PubMed & Cochrane databases until March 2023 was performed with inclusion and exclusion criteria following PRISMA recommendations. RESULTS 1151 abstracts were identified. 4 duplicate records were discarded before screening. 957 abstracts were excluded because of redundancy, less relevant content or not English-written. 4 were added after revision. Eventually, 194 articles were included. CONCLUSIONS STDT encoding relies on intracortical inhibitory S1 function and is modulated by the basal ganglia-thalamic-cortical interplay through circuits involving the nigrostriatal dopaminergic pathway and probably the superior colliculus.
Collapse
Affiliation(s)
- Carlos M Ordás
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Neurology, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain.
| | - Fernando Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| |
Collapse
|
9
|
Pando-Naude V, Matthews TE, Højlund A, Jakobsen S, Østergaard K, Johnsen E, Garza-Villarreal EA, Witek MAG, Penhune V, Vuust P. Dopamine dysregulation in Parkinson's disease flattens the pleasurable urge to move to musical rhythms. Eur J Neurosci 2024; 59:101-118. [PMID: 37724707 DOI: 10.1111/ejn.16128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
The pleasurable urge to move to music (PLUMM) activates motor and reward areas of the brain and is thought to be driven by predictive processes. Dopamine in motor and limbic networks is implicated in beat-based timing and music-induced pleasure, suggesting a central role of basal ganglia (BG) dopaminergic systems in PLUMM. This study tested this hypothesis by comparing PLUMM in participants with Parkinson's disease (PD), age-matched controls, and young controls. Participants listened to musical sequences with varying rhythmic and harmonic complexity (low, medium and high), and rated their experienced pleasure and urge to move to the rhythm. In line with previous results, healthy younger participants showed an inverted U-shaped relationship between rhythmic complexity and ratings, with preference for medium complexity rhythms, while age-matched controls showed a similar, but weaker, inverted U-shaped response. Conversely, PD showed a significantly flattened response for both the urge to move and pleasure. Crucially, this flattened response could not be attributed to differences in rhythm discrimination and did not reflect an overall decrease in ratings. For harmonic complexity, PD showed a negative linear pattern for both the urge to move and pleasure while healthy age-matched controls showed the same pattern for pleasure and an inverted U for the urge to move. This contrasts with the pattern observed in young healthy controls in previous studies, suggesting that both healthy aging and PD also influence affective responses to harmonic complexity. Together, these results support the role of dopamine within cortico-striatal circuits in the predictive processes that form the link between the perceptual processing of rhythmic patterns and the affective and motor responses to rhythmic music.
Collapse
Affiliation(s)
- Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Tomas Edward Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Sebastian Jakobsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Aarhus, Denmark
| | - Karen Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Sano, Private Hospital, Aarhus, Denmark
| | - Erik Johnsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Maria A G Witek
- Department of Music School of Languages, Cultures, Art History and Music, University of Birmingham, Birmingham, UK
| | - Virginia Penhune
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
10
|
Izadifar M, Formuli A, Isham EA, Paolini M. Subjective time perception in musical imagery: An fMRI study on musicians. Psych J 2023; 12:763-773. [PMID: 37586874 DOI: 10.1002/pchj.677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/09/2023] [Indexed: 08/18/2023]
Abstract
The cognitive preparation of an operation without overt motor execution is referred to as imagery (of any kind). Over the last two decades of progress in brain timing studies, the timing of imagery has received little focus. This study compared the time perception of ten professional violinists' actual and imagery performances to see if such an analysis could offer a different model of timing in musicians' imagery skills. When comparing the timing profiles of the musicians between the two situations (actual and imagery), we found a significant correlation in overestimation of time in the imagery. In our fMRI analysis, we found high activation in the left cerebellum. This finding seems consistent with dedicated models of timing such as the cerebellar timing hypothesis, which assigns a "specialized clock" for tasks. In addition, the present findings might provide empirical data concerning imagery, creativity, and time. Maintaining imagery over time is one of the foundations of creativity, and understanding the underlying temporal neuronal mechanism might help us to apprehend the machinery of creativity per se.
Collapse
Affiliation(s)
- Morteza Izadifar
- Institute of Human Aesthetics, Faculty of Design, Coburg University of Applied Sciences and Art & Bamberg University, Coburg, Germany
- Institute of Medical Psychology, Ludwig-Maximilian University, Munich, Germany
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Arusu Formuli
- Institute of Human Aesthetics, Faculty of Design, Coburg University of Applied Sciences and Art & Bamberg University, Coburg, Germany
| | - Eve A Isham
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Marco Paolini
- Department of Radiology, Ludwig-Maximilian University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Matthews TE, Stupacher J, Vuust P. The Pleasurable Urge to Move to Music Through the Lens of Learning Progress. J Cogn 2023; 6:55. [PMID: 37720891 PMCID: PMC10503533 DOI: 10.5334/joc.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Interacting with music is a uniquely pleasurable activity that is ubiquitous across human cultures. Current theories suggest that a prominent driver of musical pleasure responses is the violation and confirmation of temporal predictions. For example, the pleasurable urge to move to music (PLUMM), which is associated with the broader concept of groove, is higher for moderately complex rhythms compared to simple and complex rhythms. This inverted U-shaped relation between PLUMM and rhythmic complexity is thought to result from a balance between predictability and uncertainty. That is, moderately complex rhythms lead to strongly weighted prediction errors which elicit an urge to move to reinforce the predictive model (i.e., the meter). However, the details of these processes and how they bring about positive affective responses are currently underspecified. We propose that the intrinsic motivation for learning progress drives PLUMM and informs the music humans choose to listen to, dance to, and create. Here, learning progress reflects the rate of prediction error minimization over time. Accordingly, reducible prediction errors signal the potential for learning progress, producing a pleasurable, curious state characterized by the mobilization of attentional and memory resources. We discuss this hypothesis in the context of current psychological and neuroscientific research on musical pleasure and PLUMM. We propose a theoretical neuroscientific model focusing on the roles of dopamine and norepinephrine within a feedback loop linking prediction-based learning, curiosity, and memory. This perspective provides testable predictions that will motivate future research to further illuminate the fundamental relation between predictions, movement, and reward.
Collapse
Affiliation(s)
- Tomas E. Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, 8000 Aarhus C, Denmark
- Royal Academy of Music, Skovgaardsgade 2C, DK-8000 Aarhus C, Denmark
| | - Jan Stupacher
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, 8000 Aarhus C, Denmark
- Royal Academy of Music, Skovgaardsgade 2C, DK-8000 Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, 8000 Aarhus C, Denmark
- Royal Academy of Music, Skovgaardsgade 2C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Andronoglou C, Konstantakopoulos G, Simoudi C, Kasselimis D, Evdokimidis I, Tsoukas E, Tsolakopoulos D, Angelopoulou G, Potagas C. Is There a Role of Inferior Frontal Cortex in Motor Timing? A Study of Paced Finger Tapping in Patients with Non-Fluent Aphasia. NEUROSCI 2023; 4:235-246. [PMID: 39483196 PMCID: PMC11523711 DOI: 10.3390/neurosci4030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 11/03/2024] Open
Abstract
The aim of the present study was to investigate the deficits in timing reproduction in individuals with non-fluent aphasia after a left hemisphere lesion including the inferior frontal gyrus, in which Broca's region is traditionally localised. Eighteen stroke patients with non-fluent aphasia and twenty-two healthy controls were recruited. We used a finger-tapping Test, which consisted of the synchronisation and the continuation phase with three fixed intervals (450 ms, 650 ms and 850 ms). Participants firstly had to tap simultaneously with the device's auditory stimuli (clips) (synchronisation phase) and then continue their tapping in the same pace when the stimuli were absent (continuation phase). Patients with aphasia demonstrated less accuracy and greater variability during reproduction in both phases, compared to healthy participants. More specifically, in the continuation phase, individuals with aphasia reproduced longer intervals than the targets, whereas healthy participants displayed accelerated responses. Moreover, patients' timing variability was greater in the absence of the auditory stimuli. This could possibly be attributed to deficient mental representation of intervals and not experiencing motor difficulties (due to left hemisphere stroke), as the two groups did not differ in tapping reproduction with either hand. Given that previous findings suggest a potential link between the IFG, timing and working memory, we argue that patients' extra-linguistic cognitive impairments should be accounted for, as possible contributing factors to timing disturbances.
Collapse
Affiliation(s)
- Chrysanthi Andronoglou
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - George Konstantakopoulos
- First Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece
- Research Department of Clinical, Education and Health Psychology, University College London, London WC1E 6JB, UK
| | - Christina Simoudi
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, 136 Syngrou Ave., 176 71 Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
- Department of Psychology, Panteion University of Social and Political Sciences, 176 71 Athens, Greece
| | - Ioannis Evdokimidis
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Evangelos Tsoukas
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Dimitrios Tsolakopoulos
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Georgia Angelopoulou
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 115 28 Athens, (C.P.)
| |
Collapse
|
13
|
Foster Vander Elst O, Foster NHD, Vuust P, Keller PE, Kringelbach ML. The Neuroscience of Dance: A Conceptual Framework and Systematic Review. Neurosci Biobehav Rev 2023; 150:105197. [PMID: 37100162 DOI: 10.1016/j.neubiorev.2023.105197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ancient and culturally universal, dance pervades many areas of life and has multiple benefits. In this article, we provide a conceptual framework and systematic review, as a guide for researching the neuroscience of dance. We identified relevant articles following PRISMA guidelines, and summarised and evaluated all original results. We identified avenues for future research in: the interactive and collective aspects of dance; groove; dance performance; dance observation; and dance therapy. Furthermore, the interactive and collective aspects of dance constitute a vital part of the field but have received almost no attention from a neuroscientific perspective so far. Dance and music engage overlapping brain networks, including common regions involved in perception, action, and emotion. In music and dance, rhythm, melody, and harmony are processed in an active, sustained pleasure cycle giving rise to action, emotion, and learning, led by activity in specific hedonic brain networks. The neuroscience of dance is an exciting field, which may yield information concerning links between psychological processes and behaviour, human flourishing, and the concept of eudaimonia.
Collapse
Affiliation(s)
- Olivia Foster Vander Elst
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK.
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Psychiatry, University of Oxford, UK
| |
Collapse
|
14
|
Kameda M, Niikawa K, Uematsu A, Tanaka M. Sensory and motor representations of internalized rhythms in the cerebellum and basal ganglia. Proc Natl Acad Sci U S A 2023; 120:e2221641120. [PMID: 37276394 PMCID: PMC10268275 DOI: 10.1073/pnas.2221641120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Both the cerebellum and basal ganglia are involved in rhythm processing, but their specific roles remain unclear. During rhythm perception, these areas may be processing purely sensory information, or they may be involved in motor preparation, as periodic stimuli often induce synchronized movements. Previous studies have shown that neurons in the cerebellar dentate nucleus and the caudate nucleus exhibit periodic activity when the animals prepare to respond to the random omission of regularly repeated visual stimuli. To detect stimulus omission, the animals need to learn the stimulus tempo and predict the timing of the next stimulus. The present study demonstrates that neuronal activity in the cerebellum is modulated by the location of the repeated stimulus and that in the striatum (STR) by the direction of planned movement. However, in both brain regions, neuronal activity during movement and the effect of electrical stimulation immediately before stimulus omission were largely dependent on the direction of movement. These results suggest that, during rhythm processing, the cerebellum is involved in multiple stages from sensory prediction to motor control, while the STR consistently plays a role in motor preparation. Thus, internalized rhythms without movement are maintained as periodic neuronal activity, with the cerebellum and STR preferring sensory and motor representations, respectively.
Collapse
Affiliation(s)
- Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| | - Koichiro Niikawa
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| | - Akiko Uematsu
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| |
Collapse
|
15
|
Murphy TJ, Voyer D. Accident proneness, laterality, and time estimation. ACCIDENT; ANALYSIS AND PREVENTION 2023; 188:107098. [PMID: 37172453 DOI: 10.1016/j.aap.2023.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Cerebral laterality has been linked to accident proneness and time perception, but the possible role of time estimation abilities has received little attention. Accordingly, the present study focused on this under-explored question while also aiming to replicate past work examining the relationship between measures of laterality and injury proneness. Participants reported on the number of accidents they have had in their lifetime requiring medical care and the number of minor accidents they had in the past month as outcome variables. They also completed the Waterloo Handedness Questionnaire, a left bias visual task (Greyscales task), a right bias auditory verbal task (Fused Dichotic Words Task), and an objective measure of time perception. Extensive examination of statistical model fit showed that a model assuming a Poisson distribution provided the best fit for minor injuries and an additional negative binomial provided the best fit to the lifetime accidents. Results showed a negative relation between the degree of verbal laterality (absolute right bias) and injuries requiring medical care. Furthermore, the number of accidents requiring medical care was positively related to the precision of time estimation and the direction of verbal laterality on response time (raw right bias). Interpretations of these findings emphasize their implications for interhemispheric communication and motor control in the context of time estimation and auditory verbal laterality. These aspects seem to provide promising avenues for future research.
Collapse
Affiliation(s)
- Thomas J Murphy
- University of New Brunswick, Dept of Psychology, 38 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| | - Daniel Voyer
- University of New Brunswick, Dept of Psychology, 38 Dineen Drive, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
16
|
Kawai Y, Park J, Tsuda I, Asada M. Learning long-term motor timing/patterns on an orthogonal basis in random neural networks. Neural Netw 2023; 163:298-311. [PMID: 37087852 DOI: 10.1016/j.neunet.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/15/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ability of the brain to generate complex spatiotemporal patterns with specific timings is essential for motor learning and temporal processing. An approach that can model this function, using the spontaneous activity of a random neural network (RNN), is associated with orbital instability. We propose a simple system that learns an arbitrary time series as the linear sum of stable trajectories produced by several small network modules. New finding in computer experiments is that the trajectories of the module outputs are orthogonal to each other. They created a dynamic orthogonal basis acquiring a high representational capacity, which enabled the system to learn the timing of extremely long intervals, such as tens of seconds for a millisecond computation unit, and also the complex time series of Lorenz attractors. This self-sustained system satisfies the stability and orthogonality requirements and thus provides a new neurocomputing framework and perspective for the neural mechanisms of motor learning.
Collapse
Affiliation(s)
- Yuji Kawai
- Symbiotic Intelligent Systems Research Center, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Jihoon Park
- Symbiotic Intelligent Systems Research Center, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ichiro Tsuda
- Chubu University Academy of Emerging Sciences/Center for Mathematical Science and Artificial Intelligence, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Minoru Asada
- Symbiotic Intelligent Systems Research Center, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan; Chubu University Academy of Emerging Sciences/Center for Mathematical Science and Artificial Intelligence, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; International Professional University of Technology in Osaka, 3-3-1 Umeda, Kita-ku, Osaka 530-0001, Japan
| |
Collapse
|
17
|
The Functional Brain Network of Subcortical and Cortical Regions Underlying Time Estimation: An Functional MRI Study. Neuroscience 2023; 519:23-30. [PMID: 36871882 DOI: 10.1016/j.neuroscience.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Time estimation is fundamental for human survival. There have been increasing studies suggesting that distributed brain regions, such as the basal ganglia, cerebellum and the parietal cortex, may contribute to a dedicated neural mechanism of time estimation. However, evidence on the specific function of the subcortical and cortical brain regions and the interplay of them is scare. In this work, we explored how the subcortical and cortical networks function in time estimation during a time reproduction task using functional MRI (fMRI). Thirty healthy participants performed the time reproduction task in both auditory and visual modalities. Results showed that time estimation in visual and auditory modality recruited a subcortical-cortical brain network including the left caudate, left cerebellum, and right precuneus. Besides, the superior temporal gyrus (STG) was found essential in the difference between time estimation in visual and auditory modality. Using psychophysiological interaction (PPI) analysis, we observed an increase in the connection between left caudate and left precuneus using the left caudate as the seed region in temporal reproduction task than control task. This suggested that the left caudate is the key region connecting and transmitting information to other brain regions in the dedicated brain network of time estimation.
Collapse
|
18
|
Jiang L, Zhang R, Tao L, Zhang Y, Zhou Y, Cai Q. Neural mechanisms of musical structure and tonality, and the effect of musicianship. Front Psychol 2023; 14:1092051. [PMID: 36844277 PMCID: PMC9948014 DOI: 10.3389/fpsyg.2023.1092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The neural basis for the processing of musical syntax has previously been examined almost exclusively in classical tonal music, which is characterized by a strictly organized hierarchical structure. Musical syntax may differ in different music genres caused by tonality varieties. Methods The present study investigated the neural mechanisms for processing musical syntax across genres varying in tonality - classical, impressionist, and atonal music - and, in addition, examined how musicianship modulates such processing. Results Results showed that, first, the dorsal stream, including the bilateral inferior frontal gyrus and superior temporal gyrus, plays a key role in the perception of tonality. Second, right frontotemporal regions were crucial in allowing musicians to outperform non-musicians in musical syntactic processing; musicians also benefit from a cortical-subcortical network including pallidum and cerebellum, suggesting more auditory-motor interaction in musicians than in non-musicians. Third, left pars triangularis carries out online computations independently of tonality and musicianship, whereas right pars triangularis is sensitive to tonality and partly dependent on musicianship. Finally, unlike tonal music, the processing of atonal music could not be differentiated from that of scrambled notes, both behaviorally and neurally, even among musicians. Discussion The present study highlights the importance of studying varying music genres and experience levels and provides a better understanding of musical syntax and tonality processing and how such processing is modulated by music experience.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,School of Music, East China Normal University, Shanghai, China
| | - Ruiqing Zhang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Lily Tao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yuxin Zhang
- Shanghai High School International Division, Shanghai, China
| | - Yongdi Zhou
- School of Psychology, Shenzhen University, Shenzhen, China,Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States,Yongdi Zhou, ✉
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,Shanghai Changning Mental Health Center, Shanghai, China,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China,*Correspondence: Qing Cai, ✉
| |
Collapse
|
19
|
Alhassen W, Alhassen S, Chen J, Monfared RV, Alachkar A. Cilia in the Striatum Mediate Timing-Dependent Functions. Mol Neurobiol 2023; 60:545-565. [PMID: 36322337 PMCID: PMC9849326 DOI: 10.1007/s12035-022-03095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Almost all brain cells contain cilia, antennae-like microtubule-based organelles. Yet, the significance of cilia, once considered vestigial organelles, in the higher-order brain functions is unknown. Cilia act as a hub that senses and transduces environmental sensory stimuli to generate an appropriate cellular response. Similarly, the striatum, a brain structure enriched in cilia, functions as a hub that receives and integrates various types of environmental information to drive appropriate motor response. To understand cilia's role in the striatum functions, we used loxP/Cre technology to ablate cilia from the dorsal striatum of male mice and monitored the behavioral consequences. Our results revealed an essential role for striatal cilia in the acquisition and brief storage of information, including learning new motor skills, but not in long-term consolidation of information or maintaining habitual/learned motor skills. A fundamental aspect of all disrupted functions was the "time perception/judgment deficit." Furthermore, the observed behavioral deficits form a cluster pertaining to clinical manifestations overlapping across psychiatric disorders that involve the striatum functions and are known to exhibit timing deficits. Thus, striatal cilia may act as a calibrator of the timing functions of the basal ganglia-cortical circuit by maintaining proper timing perception. Our findings suggest that dysfunctional cilia may contribute to the pathophysiology of neuro-psychiatric disorders, as related to deficits in timing perception.
Collapse
Affiliation(s)
- Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Jiaqi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA ,UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697 USA ,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697 USA
| |
Collapse
|
20
|
Pacella V, Scandola M, Bà M, Smania N, Beccherle M, Rossato E, Volpe D, Moro V. Temporal judgments of actions following unilateral brain damage. Sci Rep 2022; 12:21668. [PMID: 36522442 PMCID: PMC9755153 DOI: 10.1038/s41598-022-26070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Sense of time is a complex construct, and its neural correlates remain to date in most part unknown. To complicate the frame, physical attributes of the stimulus, such as its intensity or movement, influence temporal perception. Although previous studies have shown that time perception can be compromised after a brain lesion, the evidence on the role of the left and right hemispheres are meager. In two experiments, the study explores the ability of temporal estimation of multi-second actions and non-biological movements in 33 patients suffering from unilateral brain lesion. Furthermore, the modulatory role of induced embodiment processes is investigated. The results reveal a joint contribution of the two hemispheres depending not only on different durations but also on the presence of actions. Indeed, the left hemisphere damaged patients find it difficult to estimate 4500 ms or longer durations, while the right hemisphere damaged patients fail in 3000 ms durations. Furthermore, the former fail when a biological action is shown, while the latter fail in non-biological movement. Embodiment processes have a modulatory effect only after right hemisphere lesions. Among neuropsychological variables, only spatial neglect influences estimation of non-biological movement.
Collapse
Affiliation(s)
- Valentina Pacella
- grid.412041.20000 0001 2106 639XGroupe d’Imagerie NeurofonctionnelleInstitut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, 146 Rue Léo Saignat, CS 61292, 33076 Bordeaux Cedex, France ,grid.462844.80000 0001 2308 1657Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - M. Scandola
- grid.5611.30000 0004 1763 1124NPSY-Lab.VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129 Verona, Italy
| | - M. Bà
- grid.5611.30000 0004 1763 1124NPSY-Lab.VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129 Verona, Italy
| | - N. Smania
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, Verona, Italy
| | - M. Beccherle
- grid.7841.aDepartment of Psychology, University La Sapienza, Rome, Italy
| | - E. Rossato
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria, 37024 Negrar, Verona, Italy
| | - D. Volpe
- Department of Neurorehabilitation, Parkinson’s Disease Excellence Center, Fresco Institute Italy - NYU Langone, Casa di Cura Villa Margherita via Costacolonna n 1 Arcugnano, Vicenza, Italy
| | - Valentina Moro
- grid.5611.30000 0004 1763 1124NPSY-Lab.VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129 Verona, Italy
| |
Collapse
|
21
|
Korczyk M, Zimmermann M, Bola Ł, Szwed M. Superior visual rhythm discrimination in expert musicians is most likely not related to cross-modal recruitment of the auditory cortex. Front Psychol 2022; 13:1036669. [PMID: 36337485 PMCID: PMC9632485 DOI: 10.3389/fpsyg.2022.1036669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Training can influence behavioral performance and lead to brain reorganization. In particular, training in one modality, for example, auditory, can improve performance in another modality, for example, visual. Previous research suggests that one of the mechanisms behind this phenomenon could be the cross-modal recruitment of the sensory areas, for example, the auditory cortex. Studying expert musicians offers a chance to explore this process. Rhythm is an aspect of music that can be presented in various modalities. We designed an fMRI experiment in which professional pianists and non-musicians discriminated between two sequences of rhythms presented auditorily (series of sounds) or visually (series of flashes). Behavioral results showed that musicians performed in both visual and auditory rhythmic tasks better than non-musicians. We found no significant between-group differences in fMRI activations within the auditory cortex. However, we observed that musicians had increased activation in the right Inferior Parietal Lobe when compared to non-musicians. We conclude that the musicians’ superior visual rhythm discrimination is not related to cross-modal recruitment of the auditory cortex; instead, it could be related to activation in higher-level, multimodal areas in the cortex.
Collapse
Affiliation(s)
| | | | - Łukasz Bola
- Intitute of Psychology, Jagiellonian University, Kraków, Poland
- Institute of Psychology, Polish Academy of Sciences, Warszawa, Poland
| | - Marcin Szwed
- Intitute of Psychology, Jagiellonian University, Kraków, Poland
- *Correspondence: Marcin Szwed,
| |
Collapse
|
22
|
Stupacher J, Matthews TE, Pando-Naude V, Foster Vander Elst O, Vuust P. The sweet spot between predictability and surprise: musical groove in brain, body, and social interactions. Front Psychol 2022; 13:906190. [PMID: 36017431 PMCID: PMC9396343 DOI: 10.3389/fpsyg.2022.906190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Groove-defined as the pleasurable urge to move to a rhythm-depends on a fine-tuned interplay between predictability arising from repetitive rhythmic patterns, and surprise arising from rhythmic deviations, for example in the form of syncopation. The perfect balance between predictability and surprise is commonly found in rhythmic patterns with a moderate level of rhythmic complexity and represents the sweet spot of the groove experience. In contrast, rhythms with low or high complexity are usually associated with a weaker experience of groove because they are too boring to be engaging or too complex to be interpreted, respectively. Consequently, the relationship between rhythmic complexity and groove experience can be described by an inverted U-shaped function. We interpret this inverted U shape in light of the theory of predictive processing and provide perspectives on how rhythmic complexity and groove can help us to understand the underlying neural mechanisms linking temporal predictions, movement, and reward. A better understanding of these mechanisms can guide future approaches to improve treatments for patients with motor impairments, such as Parkinson's disease, and to investigate prosocial aspects of interpersonal interactions that feature music, such as dancing. Finally, we present some open questions and ideas for future research.
Collapse
Affiliation(s)
- Jan Stupacher
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Institute of Psychology, University of Graz, Graz, Austria
| | - Tomas Edward Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Olivia Foster Vander Elst
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
23
|
Ponzi A, Wickens J. Ramping activity in the striatum. Front Comput Neurosci 2022; 16:902741. [PMID: 35978564 PMCID: PMC9376361 DOI: 10.3389/fncom.2022.902741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Control of the timing of behavior is thought to require the basal ganglia (BG) and BG pathologies impair performance in timing tasks. Temporal interval discrimination depends on the ramping activity of medium spiny neurons (MSN) in the main BG input structure, the striatum, but the underlying mechanisms driving this activity are unclear. Here, we combine an MSN dynamical network model with an action selection system applied to an interval discrimination task. We find that when network parameters are appropriate for the striatum so that slowly fluctuating marginally stable dynamics are intrinsically generated, up and down ramping populations naturally emerge which enable significantly above chance task performance. We show that emergent population activity is in very good agreement with empirical studies and discuss how MSN network dysfunction in disease may alter temporal perception.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, Italian National Research Council, Palermo, Italy
- *Correspondence: Adam Ponzi
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| |
Collapse
|
24
|
Face specific neural anticipatory activity in infants 4 and 9 months old. Sci Rep 2022; 12:12938. [PMID: 35902656 PMCID: PMC9334392 DOI: 10.1038/s41598-022-17273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
The possibility of predicting the specific features of forthcoming environmental events is fundamental for our survival since it allows us to proactively regulate our behaviour, enhancing our chance of survival. This is particularly crucial for stimuli providing socially relevant information for communication and interaction, such as faces. While it has been consistently demonstrated that the human brain shows preferential and ontogenetically early face-evoked activity, it is unknown whether specialized neural routes are engaged by face-predictive activity early in life. In this study, we recorded high-density electrophysiological (ERP) activity in adults and 9- and 4-month-old infants undergoing an audio-visual paradigm purposely designed to predict the appearance of faces or objects starting from congruent auditory cues (i.e., human voice vs nonhuman sounds). Contingent negative variation or CNV was measured to investigate anticipatory activity as a reliable marker of stimulus expectancy even in the absence of explicit motor demand. The results suggest that CNV can also be reliably elicited in the youngest group of 4-month-old infants, providing further evidence that expectation-related anticipatory activity is an intrinsic, early property of the human cortex. Crucially, the findings also indicate that the predictive information provided by the cue (i.e., human voice vs nonhuman sounds) turns into the recruitment of different anticipatory neural dynamics for faces and objects.
Collapse
|
25
|
Ross JM, Balasubramaniam R. Time Perception for Musical Rhythms: Sensorimotor Perspectives on Entrainment, Simulation, and Prediction. Front Integr Neurosci 2022; 16:916220. [PMID: 35865808 PMCID: PMC9294366 DOI: 10.3389/fnint.2022.916220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neural mechanisms supporting time perception in continuously changing sensory environments may be relevant to a broader understanding of how the human brain utilizes time in cognition and action. In this review, we describe current theories of sensorimotor engagement in the support of subsecond timing. We focus on musical timing due to the extensive literature surrounding movement with and perception of musical rhythms. First, we define commonly used but ambiguous concepts including neural entrainment, simulation, and prediction in the context of musical timing. Next, we summarize the literature on sensorimotor timing during perception and performance and describe current theories of sensorimotor engagement in the support of subsecond timing. We review the evidence supporting that sensorimotor engagement is critical in accurate time perception. Finally, potential clinical implications for a sensorimotor perspective of timing are highlighted.
Collapse
Affiliation(s)
- Jessica M. Ross
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, United States
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jessica M. Ross,
| | - Ramesh Balasubramaniam
- Cognitive and Information Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
26
|
Utegaliyev N, von Castell C, Hecht H. Vestibular Stimulation Causes Contraction of Subjective Time. Front Integr Neurosci 2022; 16:831059. [PMID: 35651831 PMCID: PMC9150509 DOI: 10.3389/fnint.2022.831059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
As the cerebellum is involved in vestibular and time-keeping processes, we asked if the latter are related. We conducted three experiments to investigate the effects of vestibular stimulation on temporal processing of supra-second durations. In Experiment 1, subjects had to perform temporal productions of 10- and 15-s intervals either standing on both feet or while being engaged in the difficult balancing task of standing on one foot with their eyes closed (or open for control purposes). In Experiment 2, participants were required to produce intervals of 5, 10, 15, and 20 s while standing on both feet with their eyes open or closed, which constituted an easier balancing task. In Experiment 3, we removed the active balancing; temporal productions of the same four durations had to be performed with the eyes open or closed during the passive vestibular stimulation induced by the oscillatory movements of a swing. Participants produced longer intervals when their eyes were closed, but active balancing was not the culprit. On the contrary, temporal over-production was particularly pronounced during the passive vestibular stimulation brought about by the swing movements. Taken together, the experiments demonstrate that the contraction of the subjective time during balancing tasks with closed eyes is most likely of vestibular origin.
Collapse
|
27
|
Neural signals regulating motor synchronization in the primate deep cerebellar nuclei. Nat Commun 2022; 13:2504. [PMID: 35523898 PMCID: PMC9076601 DOI: 10.1038/s41467-022-30246-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Movements synchronized with external rhythms are ubiquitous in our daily lives. Despite the involvement of the cerebellum, the underlying mechanism remains unclear. In monkeys performing synchronized saccades to periodically alternating visual stimuli, we found that neuronal activity in the cerebellar dentate nucleus correlated with the timing of the next saccade and the current temporal error. One-third of the neurons were active regardless of saccade direction and showed greater activity for synchronized than for reactive saccades. During the transition from reactive to predictive saccades in each trial, the activity of these neurons coincided with target onset, representing an internal model of rhythmic structure rather than a specific motor command. The behavioural changes induced by electrical stimulation were explained by activating different groups of neurons at various strengths, suggesting that the lateral cerebellum contains multiple functional modules for the acquisition of internal rhythms, predictive motor control, and error detection during synchronized movements.
Collapse
|
28
|
You got rhythm, or more: The multidimensionality of rhythmic abilities. Atten Percept Psychophys 2022; 84:1370-1392. [PMID: 35437703 PMCID: PMC9614186 DOI: 10.3758/s13414-022-02487-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Humans have a remarkable capacity for perceiving and producing rhythm. Rhythmic competence is often viewed as a single concept, with participants who perform more or less accurately on a single rhythm task. However, research is revealing numerous sub-processes and competencies involved in rhythm perception and production, which can be selectively impaired or enhanced. To investigate whether different patterns of performance emerge across tasks and individuals, we measured performance across a range of rhythm tasks from different test batteries. Distinct performance patterns could potentially reveal separable rhythmic competencies that may draw on distinct neural mechanisms. Participants completed nine rhythm perception and production tasks selected from the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA), the Beat Alignment Test (BAT), the Beat-Based Advantage task (BBA), and two tasks from the Burgundy best Musical Aptitude Test (BbMAT). Principal component analyses revealed clear separation of task performance along three main dimensions: production, beat-based rhythm perception, and sequence memory-based rhythm perception. Hierarchical cluster analyses supported these results, revealing clusters of participants who performed selectively more or less accurately along different dimensions. The current results support the hypothesis of divergence of rhythmic skills. Based on these results, we provide guidelines towards a comprehensive testing of rhythm abilities, including at least three short tasks measuring: (1) rhythm production (e.g., tapping to metronome/music), (2) beat-based rhythm perception (e.g., BAT), and (3) sequence memory-based rhythm processing (e.g., BBA). Implications for underlying neural mechanisms, future research, and potential directions for rehabilitation and training programs are discussed.
Collapse
|
29
|
The effects of Parkinson's disease, music training, and dance training on beat perception and production abilities. PLoS One 2022; 17:e0264587. [PMID: 35259161 PMCID: PMC8903281 DOI: 10.1371/journal.pone.0264587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/13/2022] [Indexed: 11/25/2022] Open
Abstract
Humans naturally perceive and move to a musical beat, entraining body movements to auditory rhythms through clapping, tapping, and dancing. Yet the accuracy of this seemingly effortless behavior varies widely across individuals. Beat perception and production abilities can be improved by experience, such as music and dance training, and impaired by progressive neurological changes, such as in Parkinson’s disease. In this study, we assessed the effects of music and dance experience on beat processing in young and older adults, as well as individuals with early-stage Parkinson’s disease. We used the Beat Alignment Test (BAT) to assess beat perception and production in a convenience sample of 458 participants (278 healthy young adults, 139 healthy older adults, and 41 people with early-stage Parkinson’s disease), with varying levels of music and dance training. In general, we found that participants with over three years of music training had more accurate beat perception than those with less training (p < .001). Interestingly, Parkinson’s disease patients with music training had beat production abilities comparable to healthy adults while Parkinson’s disease patients with minimal to no music training performed significantly worse. No effects were found in healthy adults for dance training, and too few Parkinson’s disease patients had dance training to reliably assess its effects. The finding that musically trained Parkinson’s disease patients performed similarly to healthy adults during a beat production task, while untrained patients did not, suggests music training may preserve certain rhythmic motor timing abilities in early-stage Parkinson’s disease.
Collapse
|
30
|
Time to imagine moving: Simulated motor activity affects time perception. Psychon Bull Rev 2021; 29:819-827. [PMID: 34918275 PMCID: PMC9166842 DOI: 10.3758/s13423-021-02028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 12/03/2022]
Abstract
Sensing the passage of time is important for countless daily tasks, yet time perception is easily influenced by perception, cognition, and emotion. Mechanistic accounts of time perception have traditionally regarded time perception as part of central cognition. Since proprioception, action execution, and sensorimotor contingencies also affect time perception, perception-action integration theories suggest motor processes are central to the experience of the passage of time. We investigated whether sensory information and motor activity may interactively affect the perception of the passage of time. Two prospective timing tasks involved timing a visual stimulus display conveying optical flow at increasing or decreasing velocity. While doing the timing tasks, participants were instructed to imagine themselves moving at increasing or decreasing speed, independently of the optical flow. In the direct-estimation task, the duration of the visual display was explicitly judged in seconds while in the motor-timing task, participants were asked to keep a constant pace of tapping. The direct-estimation task showed imagining accelerating movement resulted in relative overestimation of time, or time dilation, while decelerating movement elicited relative underestimation, or time compression. In the motor-timing task, imagined accelerating movement also accelerated tapping speed, replicating the time-dilation effect. The experiments show imagined movement affects time perception, suggesting a causal role of simulated motor activity. We argue that imagined movements and optical flow are integrated by temporal unfolding of sensorimotor contingencies. Consequently, as physical time is relative to spatial motion, so too is perception of time relative to imaginary motion.
Collapse
|
31
|
Lagarrigue Y, Cappe C, Tallet J. Regular rhythmic and audio-visual stimulations enhance procedural learning of a perceptual-motor sequence in healthy adults: A pilot study. PLoS One 2021; 16:e0259081. [PMID: 34780497 PMCID: PMC8592429 DOI: 10.1371/journal.pone.0259081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Procedural learning is essential for the effortless execution of many everyday life activities. However, little is known about the conditions influencing the acquisition of procedural skills. The literature suggests that sensory environment may influence the acquisition of perceptual-motor sequences, as tested by a Serial Reaction Time Task. In the current study, we investigated the effects of auditory stimulations on procedural learning of a visuo-motor sequence. Given that the literature shows that regular rhythmic auditory rhythm and multisensory stimulations improve motor speed, we expected to improve procedural learning (reaction times and errors) with repeated practice with auditory stimulations presented either simultaneously with visual stimulations or with a regular tempo, compared to control conditions (e.g., with irregular tempo). Our results suggest that both congruent audio-visual stimulations and regular rhythmic auditory stimulations promote procedural perceptual-motor learning. On the contrary, auditory stimulations with irregular or very quick tempo alter learning. We discuss how regular rhythmic multisensory stimulations may improve procedural learning with respect of a multisensory rhythmic integration process.
Collapse
Affiliation(s)
- Yannick Lagarrigue
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- * E-mail:
| | - Céline Cappe
- Cerco, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UMR 5549, Toulouse, France
| | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
32
|
Fisher VJ. Embodied Songs: Insights Into the Nature of Cross-Modal Meaning-Making Within Sign Language Informed, Embodied Interpretations of Vocal Music. Front Psychol 2021; 12:624689. [PMID: 34744850 PMCID: PMC8569319 DOI: 10.3389/fpsyg.2021.624689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Embodied song practices involve the transformation of songs from the acoustic modality into an embodied-visual form, to increase meaningful access for d/Deaf audiences. This goes beyond the translation of lyrics, by combining poetic sign language with other bodily movements to embody the para-linguistic expressive and musical features that enhance the message of a song. To date, the limited research into this phenomenon has focussed on linguistic features and interactions with rhythm. The relationship between bodily actions and music has not been probed beyond an assumed implication of conformance. However, as the primary objective is to communicate equivalent meanings, the ways that the acoustic and embodied-visual signals relate to each other should reveal something about underlying conceptual agreement. This paper draws together a range of pertinent theories from within a grounded cognition framework including semiotics, analogy mapping and cross-modal correspondences. These theories are applied to embodiment strategies used by prominent d/Deaf and hearing Dutch practitioners, to unpack the relationship between acoustic songs, their embodied representations, and their broader conceptual and affective meanings. This leads to the proposition that meaning primarily arises through shared patterns of internal relations across a range of amodal and cross-modal features with an emphasis on dynamic qualities. These analogous patterns can inform metaphorical interpretations and trigger shared emotional responses. This exploratory survey offers insights into the nature of cross-modal and embodied meaning-making, as a jumping-off point for further research.
Collapse
Affiliation(s)
- Vicky J. Fisher
- Multimodal Language and Cognition, Max Planck Institute for Pyscholinguistics and Centre for Language Studies, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
33
|
Pando-Naude V, Patyczek A, Bonetti L, Vuust P. An ALE meta-analytic review of top-down and bottom-up processing of music in the brain. Sci Rep 2021; 11:20813. [PMID: 34675231 PMCID: PMC8531391 DOI: 10.1038/s41598-021-00139-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022] Open
Abstract
A remarkable feature of the human brain is its ability to integrate information from the environment with internally generated content. The integration of top-down and bottom-up processes during complex multi-modal human activities, however, is yet to be fully understood. Music provides an excellent model for understanding this since music listening leads to the urge to move, and music making entails both playing and listening at the same time (i.e., audio-motor coupling). Here, we conducted activation likelihood estimation (ALE) meta-analyses of 130 neuroimaging studies of music perception, production and imagery, with 2660 foci, 139 experiments, and 2516 participants. We found that music perception and production rely on auditory cortices and sensorimotor cortices, while music imagery recruits distinct parietal regions. This indicates that the brain requires different structures to process similar information which is made available either by an interaction with the environment (i.e., bottom-up) or by internally generated content (i.e., top-down).
Collapse
Affiliation(s)
- Victor Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark.
| | - Agata Patyczek
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen, 3-0-17, 8000, Aarhus C, Denmark
| |
Collapse
|
34
|
Pouw W, Proksch S, Drijvers L, Gamba M, Holler J, Kello C, Schaefer RS, Wiggins GA. Multilevel rhythms in multimodal communication. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200334. [PMID: 34420378 PMCID: PMC8380971 DOI: 10.1098/rstb.2020.0334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
It is now widely accepted that the brunt of animal communication is conducted via several modalities, e.g. acoustic and visual, either simultaneously or sequentially. This is a laudable multimodal turn relative to traditional accounts of temporal aspects of animal communication which have focused on a single modality at a time. However, the fields that are currently contributing to the study of multimodal communication are highly varied, and still largely disconnected given their sole focus on a particular level of description or their particular concern with human or non-human animals. Here, we provide an integrative overview of converging findings that show how multimodal processes occurring at neural, bodily, as well as social interactional levels each contribute uniquely to the complex rhythms that characterize communication in human and non-human animals. Though we address findings for each of these levels independently, we conclude that the most important challenge in this field is to identify how processes at these different levels connect. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Wim Pouw
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Shannon Proksch
- Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Linda Drijvers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Judith Holler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Christopher Kello
- Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Rebecca S. Schaefer
- Health, Medical and Neuropsychology unit, Institute for Psychology, Leiden University, Leiden, The Netherlands
- Academy for Creative and Performing Arts, Leiden University, Leiden, The Netherlands
| | - Geraint A. Wiggins
- Vrije Universiteit Brussel, Brussels, Belgium and Queen Mary University of London, UK
- Queen Mary University, London, UK
| |
Collapse
|
35
|
Individual differences in mental imagery in different modalities and levels of intentionality. Mem Cognit 2021; 50:29-44. [PMID: 34462893 PMCID: PMC8763825 DOI: 10.3758/s13421-021-01209-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 11/08/2022]
Abstract
Mental imagery is a highly common component of everyday cognitive functioning. While substantial progress is being made in clarifying this fundamental human function, much is still unclear or unknown. A more comprehensive account of mental imagery aspects would be gained by examining individual differences in age, sex, and background experience in an activity and their association with imagery in different modalities and intentionality levels. The current online study combined multiple imagery self-report measures in a sample (n = 279) with a substantial age range (18-65 years), aiming to identify whether age, sex, or background experience in sports, music, or video games were associated with aspects of imagery in the visual, auditory, or motor stimulus modality and voluntary or involuntary intentionality level. The findings show weak positive associations between age and increased vividness of voluntary auditory imagery and decreased involuntary musical imagery frequency, weak associations between being female and more vivid visual imagery, and relations of greater music and video game experience with higher involuntary musical imagery frequency. Moreover, all imagery stimulus modalities were associated with each other, for both intentionality levels, except involuntary musical imagery frequency, which was only related to higher voluntary auditory imagery vividness. These results replicate previous research but also contribute new insights, showing that individual differences in age, sex, and background experience are associated with various aspects of imagery such as modality, intentionality, vividness, and frequency. The study's findings can inform the growing domain of applications of mental imagery to clinical and pedagogical settings.
Collapse
|
36
|
Johari K, Behroozmand R. Neural correlates of speech and limb motor timing deficits revealed by aberrant beta band desynchronization in Parkinson's disease. Clin Neurophysiol 2021; 132:2711-2721. [PMID: 34373199 DOI: 10.1016/j.clinph.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We used a classical motor reaction time paradigm to examine the effects of Parkinson's disease (PD) on the mechanisms of speech production and upper limb movement. METHODS Electro-encephalography (EEG) signals were recorded in PD and control groups during speech vowel production and button press tasks in response to temporally predictable and unpredictable visual stimuli. RESULTS Motor reaction times were slower in PD vs. control group independent of stimulus timing and movement modality. This effect was accompanied by stronger desynchronizations of low beta (13-18 Hz) and high beta (18-25 Hz) band neural oscillations in PD vs. control prior to the onset of speech and hand movement. In addition, pre-movement desynchronization of beta band oscillations were correlated with motor reaction time in control subjects with faster responses associated with weaker beta band desynchronizations during the planning phase of movement. However, no such effect was found in the PD group. CONCLUSIONS We suggest that the aberrant pattern of beta band desynchronization is a neural correlate of speech and upper limb motor timing deficits as a result of cortico-striatal pathology in PD. SIGNIFICANCE These findings motivate interventions targeted toward normalizing beta band activities for improving speech and upper limb movement timing in PD.
Collapse
Affiliation(s)
- Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States; Human Brain Research Lab, Department of Neurosurgery, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States.
| |
Collapse
|
37
|
Comstock DC, Ross JM, Balasubramaniam R. Modality-specific frequency band activity during neural entrainment to auditory and visual rhythms. Eur J Neurosci 2021; 54:4649-4669. [PMID: 34008232 DOI: 10.1111/ejn.15314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 01/22/2023]
Abstract
Rhythm perception depends on the ability to predict the onset of rhythmic events. Previous studies indicate beta band modulation is involved in predicting the onset of auditory rhythmic events (Fujioka et al., 2009, 2012; Snyder & Large, 2005). We sought to determine if similar processes are recruited for prediction of visual rhythms by investigating whether beta band activity plays a role in a modality-dependent manner for rhythm perception. We looked at electroencephalography time-frequency neural correlates of prediction using an omission paradigm with auditory and visual rhythms. By using omissions, we can separate out predictive timing activity from stimulus-driven activity. We hypothesized that there would be modality-independent markers of rhythm prediction in induced beta band oscillatory activity, and our results support this hypothesis. We find induced and evoked predictive timing in both auditory and visual modalities. Additionally, we performed an exploratory-independent components-based spatial clustering analysis, and describe all resulting clusters. This analysis reveals that there may be overlapping networks of predictive beta activity based on common activation in the parietal and right frontal regions, auditory-specific predictive beta in bilateral sensorimotor regions, and visually specific predictive beta in midline central, and bilateral temporal/parietal regions. This analysis also shows evoked predictive beta activity in the left sensorimotor region specific to auditory rhythms and implicates modality-dependent networks for auditory and visual rhythm perception.
Collapse
Affiliation(s)
- Daniel C Comstock
- Cognitive and Information Sciences, University of California, Merced, CA, USA
| | - Jessica M Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
38
|
Neural underpinnings of valence-action interactions triggered by cues and targets in a rewarded approach/avoidance task. Cortex 2021; 141:240-261. [PMID: 34098425 DOI: 10.1016/j.cortex.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/31/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Incentive-valence signals have a large impact on our actions in everyday life. While it is intuitive (and most often beneficial) to approach positive and avoid negative stimuli, these prepotent response tendencies can also be maladaptive, as exemplified by clinical conditions such as overeating or pathological gambling. We have recently shown that targets associated with monetary incentives can trigger such valence-action biases (target condition), and that these are absent when valence and action information are provided by advance cues (cue condition). Here, we explored the neural correlates underlying the absence of the behavioral bias in this condition using fMRI. Specifically, we tested in how far valence and action information are integrated at all in the cue condition (where no behavioral biases are observed), assessing activity at the moment of the cue (mainly preparation) and the target (mainly implementation). The cue-locked data was dominated by main effects of valence with increased activity for incentive versus no-incentive cues in a network including anterior insula, premotor cortex, (mostly ventral) striatum (voxel-wise analysis), and across five predefined regions of interest (ROI analysis). Only one region, the anterior cingulate cortex, featured a valence-action interaction, with increased activity for win-approach compared to no-incentive-approach cues. The target-locked data revealed a different interaction pattern with increased activity in loss-approach as compared to win-approach targets in the cerebellum (voxel-wise) and across all ROIs. For comparison, the uncued target condition (target-locked data only) featured valence and action main effects (incentive > no-incentive targets; approach > avoid targets), but no interactions. The results resonate with the common observations that performance benefits after incentive-valence cues are promoted by increased preparatory control. Moreover, the data provide support for the idea that valence and action information are integrated according to an evolutionary benefit (cue-locked), requiring additional neural resources to implement non-intuitive valence-action mappings (target-locked).
Collapse
|
39
|
Benedetto A, Baud-Bovy G. Tapping Force Encodes Metrical Aspects of Rhythm. Front Hum Neurosci 2021; 15:633956. [PMID: 33986651 PMCID: PMC8111927 DOI: 10.3389/fnhum.2021.633956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Humans possess the ability to extract highly organized perceptual structures from sequences of temporal stimuli. For instance, we can organize specific rhythmical patterns into hierarchical, or metrical, systems. Despite the evidence of a fundamental influence of the motor system in achieving this skill, few studies have attempted to investigate the organization of our motor representation of rhythm. To this aim, we studied-in musicians and non-musicians-the ability to perceive and reproduce different rhythms. In a first experiment participants performed a temporal order-judgment task, for rhythmical sequences presented via auditory or tactile modality. In a second experiment, they were asked to reproduce the same rhythmic sequences, while their tapping force and timing were recorded. We demonstrate that tapping force encodes the metrical aspect of the rhythm, and the strength of the coding correlates with the individual's perceptual accuracy. We suggest that the similarity between perception and tapping-force organization indicates a common representation of rhythm, shared between the perceptual and motor systems.
Collapse
Affiliation(s)
| | - Gabriel Baud-Bovy
- Robotics, Brain and Cognitive Science Unit, Italian Institute of Technology, Genoa, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
40
|
Araneda R, Silva Moura S, Dricot L, De Volder AG. Beat Detection Recruits the Visual Cortex in Early Blind Subjects. Life (Basel) 2021; 11:life11040296. [PMID: 33807372 PMCID: PMC8066101 DOI: 10.3390/life11040296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
Using functional magnetic resonance imaging, here we monitored the brain activity in 12 early blind subjects and 12 blindfolded control subjects, matched for age, gender and musical experience, during a beat detection task. Subjects were required to discriminate regular ("beat") from irregular ("no beat") rhythmic sequences composed of sounds or vibrotactile stimulations. In both sensory modalities, the brain activity differences between the two groups involved heteromodal brain regions including parietal and frontal cortical areas and occipital brain areas, that were recruited in the early blind group only. Accordingly, early blindness induced brain plasticity changes in the cerebral pathways involved in rhythm perception, with a participation of the visually deprived occipital brain areas whatever the sensory modality for input. We conclude that the visually deprived cortex switches its input modality from vision to audition and vibrotactile sense to perform this temporal processing task, supporting the concept of a metamodal, multisensory organization of this cortex.
Collapse
Affiliation(s)
- Rodrigo Araneda
- Motor Skill Learning and Intensive Neurorehabilitation Laboratory (MSL-IN), Institute of Neuroscience (IoNS; COSY Section), Université Catholique de Louvain, 1200 Brussels, Belgium; (R.A.); (S.S.M.)
| | - Sandra Silva Moura
- Motor Skill Learning and Intensive Neurorehabilitation Laboratory (MSL-IN), Institute of Neuroscience (IoNS; COSY Section), Université Catholique de Louvain, 1200 Brussels, Belgium; (R.A.); (S.S.M.)
| | - Laurence Dricot
- Institute of Neuroscience (IoNS; NEUR Section), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Anne G. De Volder
- Motor Skill Learning and Intensive Neurorehabilitation Laboratory (MSL-IN), Institute of Neuroscience (IoNS; COSY Section), Université Catholique de Louvain, 1200 Brussels, Belgium; (R.A.); (S.S.M.)
- Correspondence: ; Tel.: +32-2-764-54-82
| |
Collapse
|
41
|
Effects of Motor Tempo on Frontal Brain Activity: An fNIRS Study. Neuroimage 2021; 230:117597. [PMID: 33418074 DOI: 10.1016/j.neuroimage.2020.117597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
People are able to modify the spontaneous pace of their actions to interact with their environment and others. This ability is underpinned by high-level cognitive functions but little is known in regard to the brain areas that underlie such temporal control. A salient practical issue is that current neuroimaging techniques (e.g., EEG, fMRI) are extremely sensitive to movement, which renders challenging any investigation of brain activity in the realm of whole-body motor paradigms. Within the last decade, the noninvasive imaging method of functional near-infrared spectroscopy (fNIRS) has become the reference tool for experimental motor paradigms due to its tolerance to motion artefacts. In the present study, we used a continuous-wave fNIRS system to record the prefrontal and motor hemodynamic responses of 16 participants, while they performed a spatial-tapping task varying in motor complexity and externally-paced tempi (i.e., 300 ms, 500 ms, 1200 ms). To discriminate between physiological noise and cerebral meaningful signals, the physiological data (i.e., heart and respiratory rates) were recorded so that frequency bands of such signals could be regressed from the fNIRS data. Particular attention was taken to control the precise position of the optodes in reference to the cranio-cerebral correlates of the NIR channels throughout the experimental session. Results indicated that fast pacing relied on greater activity of the motor areas whereas moving at close-to-spontaneous pace placed a heavier load on posterior prefrontal processes. These results provide new insight concerning the role of frontal cognitive control in modulating the pacing of voluntary motor behaviors.
Collapse
|
42
|
Vencato V, Madelain L. Perception of saccadic reaction time. Sci Rep 2020; 10:17192. [PMID: 33057041 PMCID: PMC7560701 DOI: 10.1038/s41598-020-72659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/07/2020] [Indexed: 12/02/2022] Open
Abstract
That saccadic reaction times (SRTs) may depend on reinforcement contingencies has been repeatedly demonstrated. It follows that one must be able to discriminate one's latencies to adequately assign credit to one's actions, which is to connect behaviour to its consequence. To quantify the ability to perceive one's SRT, we used an adaptive procedure to train sixteen participants in a stepping visual target saccade paradigm. Subsequently, we measured their RTs perceptual threshold at 75% in a conventional constant stimuli procedure. For each trial, observers had to saccade to a stepping target. Then, in a 2-AFC task, they had to choose one value representing the actual SRT, while the other value proportionally differed from the actual SRT. The relative difference between the two alternatives was computed by either adding or subtracting from the actual SRT a percent-difference value randomly chosen among a fixed set. Feedback signalling the correct choice was provided after each response. Overall, our results showed that the 75% SRT perceptual threshold averaged 23% (about 40 ms). The ability to discriminate small SRT differences provides support for the possibility that the credit assignment problem may be solved even for short reaction times.
Collapse
Affiliation(s)
- Valentina Vencato
- UMR 9193-SCALab, CNRS, Univ. Lille, 59000, Lille, France.
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Faculté de Médecine de la Timone, Aix Marseille Université, 27 Bd Jean Moulin, Marseille, 13005, France.
| | - Laurent Madelain
- UMR 9193-SCALab, CNRS, Univ. Lille, 59000, Lille, France
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Faculté de Médecine de la Timone, Aix Marseille Université, 27 Bd Jean Moulin, Marseille, 13005, France
| |
Collapse
|
43
|
Verna V, De Bartolo D, Iosa M, Fadda L, Pinto G, Caltagirone C, De Angelis S, Tramontano M. Te.M.P.O., an app for using temporal musical mismatch in post-stroke neurorehabilitation: A preliminary randomized controlled study. NeuroRehabilitation 2020; 47:201-208. [DOI: 10.3233/nre-203126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND: Recently, the potential rehabilitation value of music has been examined and music-based interventions and techniques such as the Negative Mismatch (MMN) have been increasingly investigated in the neurological rehabilitation context. OBJECTIVE: The aim of this study was to investigate the effectiveness of a negative mismatch-based therapy on the disability and quality of life in patients with stroke in sub-acute phase. METHODS: Thirty patients with a stroke diagnosis in sub-acute phase were randomly assigned to one of two groups: Mismatch (Mg) or Control (CTRLg) group. Both groups used an innovative Android application: Temporal Musical Patterns Organisation (Te.M.P.O). The Disability Rating Scale (DRS), the Modified Barthel Index (MBI) and the Stroke Specific Quality of Life scale (SSQoL) were used at the baseline (T0) and after four weeks of training (T1), in order to assess changes over time. RESULTS: Statistical analysis was performed using the data of 24 (Mg = 12, CTRLg = 12) subjects. The results show a major improvement of the Mg with respect to the CTRLg in all clinical scales score. CONCLUSION: The temporal negative mismatch-based therapy performed with the Te.M.P.O. application could be useful in improving the disability and the quality of life in stroke survivors in a sub-acute phase.
Collapse
Affiliation(s)
| | - Daniela De Bartolo
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Marco Iosa
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Cerebral Substrates for Controlling Rhythmic Movements. Brain Sci 2020; 10:brainsci10080514. [PMID: 32756401 PMCID: PMC7465184 DOI: 10.3390/brainsci10080514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
Our daily lives are filled with rhythmic movements, such as walking, sports, and dancing, but the mechanisms by which the brain controls rhythmic movements are poorly understood. In this review, we examine the literature on neuropsychological studies of patients with focal brain lesions, and functional brain imaging studies primarily using finger-tapping tasks. These studies suggest a close connection between sensory and motor processing of rhythm, with no apparent distinction between the two functions. Thus, we conducted two functional brain imaging studies to survey the rhythm representations relatively independent of sensory and motor functions. First, we determined brain activations related to rhythm processing in a sensory modality-independent manner. Second, we examined body part-independent brain activation related to rhythm reproduction. Based on previous literature, we discuss how brain areas contribute rhythmic motor control. Furthermore, we also discuss the mechanisms by which the brain controls rhythmic movements.
Collapse
|
45
|
Matthews TE, Witek MA, Lund T, Vuust P, Penhune VB. The sensation of groove engages motor and reward networks. Neuroimage 2020; 214:116768. [DOI: 10.1016/j.neuroimage.2020.116768] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023] Open
|
46
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
47
|
Notter MP, Hanke M, Murray MM, Geiser E. Encoding of Auditory Temporal Gestalt in the Human Brain. Cereb Cortex 2020; 29:475-484. [PMID: 29365070 DOI: 10.1093/cercor/bhx328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 12/16/2022] Open
Abstract
The perception of an acoustic rhythm is invariant to the absolute temporal intervals constituting a sound sequence. It is unknown where in the brain temporal Gestalt, the percept emerging from the relative temporal proximity between acoustic events, is encoded. Two different relative temporal patterns, each induced by three experimental conditions with different absolute temporal patterns as sensory basis, were presented to participants. A linear support vector machine classifier was trained to differentiate activation patterns in functional magnetic resonance imaging data to the two different percepts. Across the sensory constituents the classifier decoded which percept was perceived. A searchlight analysis localized activation patterns specific to the temporal Gestalt bilaterally to the temporoparietal junction, including the planum temporale and supramarginal gyrus, and unilaterally to the right inferior frontal gyrus (pars opercularis). We show that auditory areas not only process absolute temporal intervals, but also integrate them into percepts of Gestalt and that encoding of these percepts persists in high-level associative areas. The findings complement existing knowledge regarding the processing of absolute temporal patterns to the processing of relative temporal patterns relevant to the sequential binding of perceptual elements into Gestalt.
Collapse
Affiliation(s)
- Michael P Notter
- Department of Radiology.,Neuropsychology and Neurorehabilitation Service.,EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Hanke
- Institute of Psychology, Otto-von-Guericke-University.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Micah M Murray
- Department of Radiology.,Neuropsychology and Neurorehabilitation Service.,EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Ophthalmology Department, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Eveline Geiser
- Department of Radiology.,Neuropsychology and Neurorehabilitation Service.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
48
|
Graber E, Fujioka T. Induced Beta Power Modulations during Isochronous Auditory Beats Reflect Intentional Anticipation before Gradual Tempo Changes. Sci Rep 2020; 10:4207. [PMID: 32144306 PMCID: PMC7060226 DOI: 10.1038/s41598-020-61044-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/20/2020] [Indexed: 11/20/2022] Open
Abstract
Induced beta-band power modulations in auditory and motor-related brain areas have been associated with automatic temporal processing of isochronous beats and explicit, temporally-oriented attention. Here, we investigated how explicit top-down anticipation before upcoming tempo changes, a sustained process commonly required during music performance, changed beta power modulations during listening to isochronous beats. Musicians’ electroencephalograms were recorded during the task of anticipating accelerating, decelerating, or steady beats after direction-specific visual cues. In separate behavioural testing for tempo-change onset detection, such cues were found to facilitate faster responses, thus effectively inducing high-level anticipation. In the electroencephalograms, periodic beta power reductions in a frontocentral topographic component with seed-based source contributions from auditory and sensorimotor cortices were apparent after isochronous beats with anticipation in all conditions, generally replicating patterns found previously during passive listening to isochronous beats. With anticipation before accelerations, the magnitude of the power reduction was significantly weaker than in the steady condition. Between the accelerating and decelerating conditions, no differences were found, suggesting that the observed beta patterns may represent an aspect of high-level anticipation common before both tempo changes, like increased attention. Overall, these results indicate that top-down anticipation influences ongoing auditory beat processing in beta-band networks.
Collapse
Affiliation(s)
- Emily Graber
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, 94305, USA.
| | - Takako Fujioka
- Center for Computer Research in Music and Acoustics, Stanford University, Stanford, CA, 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F. The Neural Correlates of Time: A Meta-analysis of Neuroimaging Studies. J Cogn Neurosci 2019; 31:1796-1826. [DOI: 10.1162/jocn_a_01459] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During the last two decades, our inner sense of time has been repeatedly studied with the help of neuroimaging techniques. These investigations have suggested the specific involvement of different brain areas in temporal processing. At least two distinct neural systems are likely to play a role in measuring time: One is mainly constituted of subcortical structures and is supposed to be more related to the estimation of time intervals below the 1-sec range (subsecond timing tasks), and the other is mainly constituted of cortical areas and is supposed to be more related to the estimation of time intervals above the 1-sec range (suprasecond timing tasks). Tasks can then be performed in motor or nonmotor (perceptual) conditions, thus providing four different categories of time processing. Our meta-analytical investigation partly confirms the findings of previous meta-analytical works. Both sub- and suprasecond tasks recruit cortical and subcortical areas, but subcortical areas are more intensely activated in subsecond tasks than in suprasecond tasks, which instead receive more contributions from cortical activations. All the conditions, however, show strong activations in the SMA, whose rostral and caudal parts have an important role not only in the discrimination of different time intervals but also in relation to the nature of the task conditions. This area, along with the striatum (especially the putamen) and the claustrum, is supposed to be an essential node in the different networks engaged when the brain creates our sense of time.
Collapse
Affiliation(s)
- Andrea Nani
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| |
Collapse
|
50
|
Celma-Miralles A, Toro JM. Ternary meter from spatial sounds: Differences in neural entrainment between musicians and non-musicians. Brain Cogn 2019; 136:103594. [DOI: 10.1016/j.bandc.2019.103594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/26/2022]
|