1
|
Rossi C, Leech KA, Roemmich RT, Bastian AJ. Automatic learning mechanisms for flexible human locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559267. [PMID: 37808648 PMCID: PMC10557598 DOI: 10.1101/2023.09.25.559267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Movement flexibility and automaticity are necessary to successfully navigate different environments. When encountering difficult terrains such as a muddy trail, we can change how we step almost immediately so that we can continue walking. This flexibility comes at a cost since we initially must pay deliberate attention to how we are moving. Gradually, after a few minutes on the trail, stepping becomes automatic so that we do not need to think about our movements. Canonical theory indicates that different adaptive motor learning mechanisms confer these essential properties to movement: explicit control confers rapid flexibility, while forward model recalibration confers automaticity. Here we uncover a distinct mechanism of treadmill walking adaptation - an automatic stimulus-response mapping - that confers both properties to movement. The mechanism is flexible as it learns stepping patterns that can be rapidly changed to suit a range of treadmill configurations. It is also automatic as it can operate without deliberate control or explicit awareness by the participants. Our findings reveal a tandem architecture of forward model recalibration and automatic stimulus-response mapping mechanisms for walking, reconciling different findings of motor adaptation and perceptual realignment.
Collapse
|
2
|
Wang K, Fang Y, Guo Q, Shen L, Chen Q. Superior Attentional Efficiency of Auditory Cue via the Ventral Auditory-thalamic Pathway. J Cogn Neurosci 2024; 36:303-326. [PMID: 38010315 DOI: 10.1162/jocn_a_02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Auditory commands are often executed more efficiently than visual commands. However, empirical evidence on the underlying behavioral and neural mechanisms remains scarce. In two experiments, we manipulated the delivery modality of informative cues and the prediction violation effect and found consistently enhanced RT benefits for the matched auditory cues compared with the matched visual cues. At the neural level, when the bottom-up perceptual input matched the prior prediction induced by the auditory cue, the auditory-thalamic pathway was significantly activated. Moreover, the stronger the auditory-thalamic connectivity, the higher the behavioral benefits of the matched auditory cue. When the bottom-up input violated the prior prediction induced by the auditory cue, the ventral auditory pathway was specifically involved. Moreover, the stronger the ventral auditory-prefrontal connectivity, the larger the behavioral costs caused by the violation of the auditory cue. In addition, the dorsal frontoparietal network showed a supramodal function in reacting to the violation of informative cues irrespective of the delivery modality of the cue. Taken together, the results reveal novel behavioral and neural evidence that the superior efficiency of the auditory cue is twofold: The auditory-thalamic pathway is associated with improvements in task performance when the bottom-up input matches the auditory cue, whereas the ventral auditory-prefrontal pathway is involved when the auditory cue is violated.
Collapse
Affiliation(s)
- Ke Wang
- South China Normal University, Guangzhou, China
| | - Ying Fang
- South China Normal University, Guangzhou, China
| | - Qiang Guo
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lu Shen
- South China Normal University, Guangzhou, China
| | - Qi Chen
- South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Song Y, Pi Y, Tan X, Xia X, Liu Y, Zhang J. Approach-avoidance behavior and motor-specific modulation towards smoking-related cues in smokers. Addiction 2023; 118:1895-1907. [PMID: 37400937 DOI: 10.1111/add.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
AIMS By performing three transcranial magnetic stimulation (TMS) experiments, we measured the motor-specific modulatory mechanisms in the primary motor cortex (M1) at both the intercortical and intracortical levels when smokers actively approach or avoid smoking-related cues. DESIGN, SETTING AND PARTICIPANTS For all experiments, the design was group (smokers versus non-smokers) × action (approach versus avoidance) × image type (neutral versus smoking-related). The study was conducted at the Shanghai University of Sport, CHN, TMS Laboratory. For experiment 1, 30 non-smokers and 30 smokers; for experiment 2, 16 non-smokers and 16 smokers; for experiment 3, 16 non-smokers and 16 smokers. MEASUREMENTS For all experiments, the reaction times were measured using the smoking stimulus-response compatibility task. While performing the task, single-pulse TMS was applied to the M1 in experiment 1 to measure the excitability of the corticospinal pathways, and paired-pulse TMS was applied to the M1 in experiments 2 and 3 to measure the activity of intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) circuits, respectively. FINDINGS Smokers had faster responses when approaching smoking-related cues (F1,58 = 36.660, P < 0.001, η p 2 = 0.387), accompanied by higher excitability of the corticospinal pathways (F1,58 = 10.980, P = 0.002, η p 2 = 0.159) and ICF circuits (F1,30 = 22.187, P < 0.001, η p 2 = 0.425), while stronger SICI effects were observed when they avoided these cues (F1,30 = 10.672, P = 0.003, η p 2 = 0.262). CONCLUSIONS Smokers appear to have shorter reaction times, higher motor-evoked potentials and stronger intracortical facilitation effects when performing approach responses to smoking-related cues and longer reaction times, a lower primary motor cortex descending pathway excitability and a stronger short-interval intracortical inhibition effect when avoiding them.
Collapse
Affiliation(s)
- Yuyu Song
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yanling Pi
- Shanghai Punan Hospital, Shanghai, China
| | - Xiaoying Tan
- School of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Xue Xia
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Sheets JR, Briggs RG, Dadario NB, Young IM, Bai MY, Poologaindran A, Baker CM, Conner AK, Sughrue ME. A Cortical Parcellation Based Analysis of Ventral Premotor Area Connectivity. Neurol Res 2021; 43:595-607. [PMID: 33749536 DOI: 10.1080/01616412.2021.1902702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction. The ventral premotor area (VPM) plays a crucial role in executing various aspects of motor control. These include hand reaching, joint coordination, and direction of movement in space. While many studies discuss the VPM and its relationship to the rest of the motor network, there is minimal literature examining the connectivity of the VPM outside of the motor network. Using region-based fMRI studies, we built a neuroanatomical model to account for these extra-motor connections.Methods. Thirty region-based fMRI studies were used to generate an activation likelihood estimation (ALE) using BrainMap software. Cortical parcellations overlapping the ALE were used to construct a preliminary model of the VPM connections outside the motor network. Diffusion spectrum imaging (DSI)-based fiber tractography was performed to determine the connectivity between cortical parcellations in both hemispheres, and a laterality index (LI) was calculated with resultant tract volumes. The resulting connections were described using the cortical parcellation scheme developed by the Human Connectome Project (HCP).Results. Four cortical regions were found to comprise the VPM. These four regions included 6v, 4, 3b, and 3a. Across mapped brains, these areas showed consistent interconnections between each other. Additionally, ipsilateral connections to the primary motor cortex, supplementary motor area, and dorsal premotor cortex were demonstrated. Inter-hemispheric asymmetries were identified, especially with areas 1, 55b, and MI connecting to the ipsilateral VPM regions.Conclusion. We describe a preliminary cortical model for the underlying connectivity of the ventral premotor area. Future studies should further characterize the neuroanatomic underpinnings of this network for neurosurgical applications.
Collapse
Affiliation(s)
- John R Sheets
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Michael Y Bai
- Department of Neurosurgery, Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| | | | - Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Department of Neurosurgery, Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
5
|
Xia X, Wang D, Song Y, Zhu M, Li Y, Chen R, Zhang J. Involvement of the primary motor cortex in the early processing stage of the affective stimulus-response compatibility effect in a manikin task. Neuroimage 2020; 225:117485. [PMID: 33132186 DOI: 10.1016/j.neuroimage.2020.117485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022] Open
Abstract
Compatible (positive approaching and negative avoiding) and incompatible (positive avoiding and negative approaching) behavior are of great significance for biological adaptation and survival. Previous research has found that reaction times of compatible behavior are shorter than the incompatible behavior, which is termed the stimulus-response compatibility (SRC) effect. However, the underlying neurophysiological mechanisms of the SRC effect applied to affective stimuli is still unclear. Here, we investigated preparatory activities in both the left and right primary motor cortex (M1) before the execution of an approaching-avoiding behavior using the right index finger in a manikin task based on self-identity. The results showed significantly shorter reaction times for compatible than incompatible behavior. Most importantly, motor-evoked potential (MEP) amplitudes from left M1 stimulation were significantly higher during compatible behavior than incompatible behavior at 150 and 200 ms after stimulus presentation, whereas the reversed was observed for right M1 stimulation with lower MEP amplitude in compatible compared to incompatible behavior at 150 ms. The current findings revealed the compatibility effect at both behavioral and neurophysiological levels, indicating that the affective SRC effect occurs early in the motor cortices during stimulus processing, and MEP modulation at this early processing stage could be a physiological marker of the affective SRC effect.
Collapse
Affiliation(s)
- Xue Xia
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Dandan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuyu Song
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Mengyan Zhu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yansong Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
6
|
Wang Y, Huang X, Yang X, Yang Q, Wang X, Northoff G, Pang Y, Wang C, Cui Q, Chen H. Low Frequency Phase-locking of Brain Signals Contribute to Efficient Face Recognition. Neuroscience 2019; 422:172-183. [PMID: 31704494 DOI: 10.1016/j.neuroscience.2019.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Low frequency phase synchronization is an essential mechanism of information communication among brain regions. In the infra-slow frequency range (<0.1 Hz), inter-regional phase lag is of importance for brain function (e.g., anti-phase between the default mode network and task positive network). However, the role of phase lag in cognitive processing remains unclear. Based on the frequency tagging experimental paradigm and functional magnetic resonance imaging (fMRI) technique, we investigated inter-regional phase lag and phase coherence using a face recognition task (n = 30, 15 males/15 females). Phase coherence within the face processing system was significantly increased during task state, highlighting the importance of regular inter-regional phase relationship for face recognition. Moreover, results showed decreased phase lag within the core and extended face areas (face processing system) and increased phase lag between the face processing system and frontoparietal network, indicating a reorganization of inter-regional relationships of the two systems. Inter-regional phase lag was modulated by the task at ascending and descending phases of the fMRI signal, suggesting a phase-dependent inter-regional relationship. Furthermore, phase lags between visual cortex and amygdala and between visual cortex and motor area were positively related to reaction time, indicating better task performance depends on both rapid emotional detection pathway and visual-motor pathway. Overall, inter-regional phase synchronization in the infra-slow frequency range is of important for effective information communication and cognitive performance.
Collapse
Affiliation(s)
- Yifeng Wang
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China.
| | - Xinju Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xuezhi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xinqi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
7
|
Li H, Liu N, Li Y, Weidner R, Fink GR, Chen Q. The Simon Effect Based on Allocentric and Egocentric Reference Frame: Common and Specific Neural Correlates. Sci Rep 2019; 9:13727. [PMID: 31551429 PMCID: PMC6760495 DOI: 10.1038/s41598-019-49990-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 09/04/2019] [Indexed: 11/09/2022] Open
Abstract
An object's location can be represented either relative to an observer's body effectors (egocentric reference frame) or relative to another external object (allocentric reference frame). In non-spatial tasks, an object's task-irrelevant egocentric position conflicts with the side of a task-relevant manual response, which defines the classical Simon effect. Growing evidence suggests that the Simon effect occurs not only based on conflicting positions within the egocentric but also within the allocentric reference frame. Although neural mechanisms underlying the egocentric Simon effect have been extensively researched, neural mechanisms underlying the allocentric Simon effect and their potential interaction with those underlying its egocentric variant remain to be explored. In this fMRI study, spatial congruency between the task-irrelevant egocentric and allocentric target positions and the task-relevant response hand was orthogonally manipulated. Behaviorally, a significant Simon effect was observed for both reference frames. Neurally, three sub-regions in the frontoparietal network were involved in different aspects of the Simon effect, depending on the source of the task-irrelevant object locations. The right precentral gyrus, extending to the right SMA, was generally activated by Simon conflicts, irrespective of the spatial reference frame involved, and showed no additive activity to Simon conflicts. In contrast, the right postcentral gyrus was specifically involved in Simon conflicts induced by task-irrelevant allocentric, rather than egocentric, representations. Furthermore, a right lateral frontoparietal network showed increased neural activity whenever the egocentric and allocentric target locations were incongruent, indicating its functional role as a mismatch detector that monitors the discrepancy concerning allocentric and egocentric object locations.
Collapse
Affiliation(s)
- Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Nan Liu
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - You Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
- Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, P.R. China.
| |
Collapse
|
8
|
Huang J, Wang F, Sui J, Wan X. Functional and structural basis of the color-flavor incongruency effect in visual search. Neuropsychologia 2019; 127:66-74. [PMID: 30797830 DOI: 10.1016/j.neuropsychologia.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/29/2022]
Abstract
We conducted a functional magnetic resonance imaging (fMRI) study and a voxel-based morphometry (VBM) study to investigate the functional and structural basis of how visual search for flavor labels in packaging is influenced by the color of the packaging. The participants were cued by a flavor word before searching for a package with this flavor label. The behavioral results of both studies revealed that the participants were slower to find the target when its color was incongruent with the flavor label in terms of color-flavor associations than when it was congruent with the flavor label, which is indicative of a color-flavor incongruency effect in the reaction times. The fMRI results revealed that this behavioral effect was associated with enhanced activation in the right putamen. The VBM results further revealed a significant positive correlation between the magnitude of the behavioral effect and volume of gray matter in the right putamen. Taken together, these findings suggest that the color-flavor incongruency effect may be attributed to the violation of color expectation in the incongruent condition and that the putamen may be one of the important areas for processing events in violation of expectation.
Collapse
Affiliation(s)
- Jianping Huang
- Department of Psychology, Tsinghua University, Beijing, China
| | - Fei Wang
- Department of Psychology, Tsinghua University, Beijing, China
| | - Jie Sui
- Department of Psychology, University of Bath, Bath, UK
| | - Xiaoang Wan
- Department of Psychology, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Steeb B, García-Cordero I, Huizing MC, Collazo L, Borovinsky G, Ferrari J, Cuitiño MM, Ibáñez A, Sedeño L, García AM. Progressive Compromise of Nouns and Action Verbs in Posterior Cortical Atrophy. Front Psychol 2018; 9:1345. [PMID: 30123155 PMCID: PMC6085559 DOI: 10.3389/fpsyg.2018.01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Processing of nouns and action verbs can be differentially compromised following lesions to posterior and anterior/motor brain regions, respectively. However, little is known about how these deficits progress in the course of neurodegeneration. To address this issue, we assessed productive lexical skills in a patient with posterior cortical atrophy (PCA) at two different stages of his pathology. On both occasions, he underwent a structural brain imaging protocol and completed semantic fluency tasks requiring retrieval of animals (nouns) and actions (verbs). Imaging results were compared with those of controls via voxel-based morphometry (VBM), whereas fluency performance was compared to age-matched norms through Crawford's t-tests. In the first assessment, the patient exhibited atrophy of more posterior regions supporting multimodal semantics (medial temporal and lingual gyri), together with a selective deficit in noun fluency. Then, by the second assessment, the patient's atrophy had progressed mainly toward fronto-motor regions (rolandic operculum, inferior and superior frontal gyri) and subcortical motor hubs (cerebellum, thalamus), and his fluency impairments had extended to action verbs. These results offer unprecedented evidence of the specificity of the pathways related to noun and action-verb impairments in the course of neurodegeneration, highlighting the latter's critical dependence on damage to regions supporting motor functions, as opposed to multimodal semantic processes.
Collapse
Affiliation(s)
- Brenda Steeb
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Indira García-Cordero
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Marjolein C Huizing
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucas Collazo
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Geraldine Borovinsky
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Jesica Ferrari
- Department of Language Speech, Institute of Cognitive Neurology, Buenos Aires, Argentina
| | - Macarena M Cuitiño
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Psychology, Favaloro University, Buenos Aires, Argentina.,Faculty of Psychology, University of Buenos Aires, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
10
|
Wu T, Dufford AJ, Egan LJ, Mackie MA, Chen C, Yuan C, Chen C, Li X, Liu X, Hof PR, Fan J. Hick-Hyman Law is Mediated by the Cognitive Control Network in the Brain. Cereb Cortex 2018; 28:2267-2282. [PMID: 28531252 PMCID: PMC5998988 DOI: 10.1093/cercor/bhx127] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 01/14/2023] Open
Abstract
The Hick-Hyman law describes a linear increase in reaction time (RT) as a function of the information entropy of response selection, which is computed as the binary logarithm of the number of response alternatives. While numerous behavioral studies have provided evidence for the Hick-Hyman law, its neural underpinnings have rarely been examined and are still unclear. In this functional magnetic resonance imaging study, by utilizing a choice reaction time task to manipulate the entropy of response selection, we examined brain activity mediating the input and the output, as well as the connectivity between corresponding regions in human participants. Beyond confirming the Hick-Hyman law in RT performance, we found that activation of the cognitive control network (CCN) increased and activation of the default mode network (DMN) decreased, both as a function of entropy. However, only the CCN, but not the DMN, was involved in mediating the relationship between entropy and RT. The CCN was involved in both stages of uncertainty representation and response generation, while the DMN was mainly involved at the stage of uncertainty representation. These findings indicate that the CCN serves as a core entity underlying the Hick-Hyman law by coordinating uncertainty representation and response generation in the brain.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Alexander J Dufford
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura J Egan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Melissa-Ann Mackie
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
| | - Cong Chen
- Department of Computer Science, The Graduate Center, The City University of New York, New York, NY, USA
| | - Changhe Yuan
- Department of Computer Science, Queens College, The City University of New York, Queens, NY, USA
| | - Chao Chen
- Department of Computer Science, Queens College, The City University of New York, Queens, NY, USA
| | - Xiaobo Li
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Patrick R Hof
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Liu N, Li H, Su W, Chen Q. Common and specific neural correlates underlying the spatial congruency effect induced by the egocentric and allocentric reference frame. Hum Brain Mapp 2017; 38:2112-2127. [PMID: 28054740 DOI: 10.1002/hbm.23508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 11/10/2022] Open
Abstract
The spatial location of an object can be represented in two frames of reference: egocentric (relative to the observer's body or body parts) and allocentric (relative to another object independent of the observer). The object positions relative to the two frames can be either congruent (e.g., both left or both right) or incongruent (e.g., one left and one right). Most of the previous studies, however, did not discriminate between the two types of spatial conflicts. To investigate the common and specific neural mechanisms underlying the spatial congruency effect induced by the two reference frames, we adopted a 3 (type of task: allocentric, egocentric, and color) × 2 (spatial congruency: congruent vs. incongruent) within-subject design in this fMRI study. The spatial congruency effect in the allocentric task was induced by the task-irrelevant egocentric representations, and vice versa in the egocentric task. The nonspatial color task was introduced to control for the differences in bottom-up stimuli between the congruent and incongruent conditions. Behaviorally, significant spatial congruency effect was revealed in both the egocentric and allocentric task. Neurally, the dorsal-medial visuoparietal stream was commonly involved in the spatial congruency effect induced by the task-irrelevant egocentric and allocentric representations. The right superior parietal cortex and the right precentral gyrus were specifically involved in the spatial congruency effect induced by the irrelevant egocentric and allocentric representations, respectively. Taken together, these results suggested that different subregions in the parieto-frontal network played different functional roles in the spatial interaction between the egocentric and allocentric reference frame. Hum Brain Mapp 38:2112-2127, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nan Liu
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Wen Su
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| |
Collapse
|
12
|
Cassidy JM, Carey JR, Lu C, Krach LE, Feyma T, Durfee WK, Gillick BT. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 47:154-164. [PMID: 26426515 PMCID: PMC4670029 DOI: 10.1016/j.ridd.2015.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 09/01/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN, United States.
| | - James R Carey
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN, United States
| | - Chiahao Lu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Linda E Krach
- Courage Kenny Rehabilitation Institute, Minneapolis, MN, United States
| | - Tim Feyma
- Pediatric Neurology, Gillette Children's Specialty Healthcare, Saint Paul, MN, United States
| | - William K Durfee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernadette T Gillick
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Hartwigsen G, Siebner HR. Joint Contribution of Left Dorsal Premotor Cortex and Supramarginal Gyrus to Rapid Action Reprogramming. Brain Stimul 2015; 8:945-52. [DOI: 10.1016/j.brs.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/15/2022] Open
|
14
|
Cespón J, Galdo-Álvarez S, Díaz F. Inhibition deficit in the spatial tendency of the response in multiple-domain amnestic mild cognitive impairment. An event-related potential study. Front Aging Neurosci 2015; 7:68. [PMID: 25999853 PMCID: PMC4422018 DOI: 10.3389/fnagi.2015.00068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 04/18/2015] [Indexed: 12/17/2022] Open
Abstract
Longitudinal studies have shown that a high percentage of people with amnestic mild cognitive impairment (MCI) develop Alzheimer’s disease (AD). Prodromal AD is known to involve deficits in executive control processes. In the present study, we examined such deficits by recording EEG in 13 single-domain amnestic MCI (sdaMCI), 12 multiple-domain amnestic MCI (mdaMCI) and 18 healthy elderly (control group, CG) participants while they performed a Simon task. The Simon task demands deployment of executive processes because participants have to respond to non-spatial features of a lateralized stimulus and inhibit the more automatic spatial tendency of the response. We specifically focused on the negativity central contralateral (N2cc), an event-related potential (ERP) component related to brain activity that prevents the cross-talk between direction of spatial attention and manual response preparation. The reaction time (RT) was not significantly different among the three groups of participants. The percentage of errors (PE) was higher in mdaMCI than in CG and sdaMCI participants. In addition, N2cc latency was delayed in mdaMCI (i.e., delayed implementation of mechanisms for controlling the spatial tendency of the response). The N2cc latency clearly distinguished among mdaMCI and CG/sdaMCI participants (area under curve: 0.91). Longer N2cc was therefore associated with executive control deficits, which suggests that N2cc latency is a correlate of mdaMCI.
Collapse
Affiliation(s)
- Jesús Cespón
- Cognitive Neuroscience Laboratory, Facultade de Psicoloxía, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Santiago Galdo-Álvarez
- Cognitive Neuroscience Laboratory, Facultade de Psicoloxía, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Fernando Díaz
- Cognitive Neuroscience Laboratory, Facultade de Psicoloxía, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
15
|
Carey JR, Deng H, Gillick BT, Cassidy JM, Anderson DC, Zhang L, Thomas W. Serial treatments of primed low-frequency rTMS in stroke: characteristics of responders vs. nonresponders. Restor Neurol Neurosci 2014; 32:323-35. [PMID: 24401168 DOI: 10.3233/rnn-130358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE This study analyzed the characteristics of responders vs. nonresponders in people with stroke receiving a novel form of repetitive transcranial magnetic stimulation (rTMS) to improve hand function. METHODS Twelve people with stroke received five treatments of 6-Hz primed low-frequency rTMS to the contralesional primary motor area. We compared demographic factors, clinical features, and the ipsilesional/contralesional volume ratio of selected brain regions in those who improved hand performance (N = 7) on the single-hand component of the Test Évaluant la performance des Membres supérieurs des Personnes Âgées (TEMPA) and those who showed no improvement (N = 5). RESULTS Responders showed significantly greater baseline paretic hand function on the TEMPA, greater preservation volume of the ipsilesional posterior limb of the internal capsule (PLIC), and lower scores (i.e., less depression) on the Beck Depression Inventory than nonresponders. There were no differences in age, sex, stroke duration, paretic side, stroke hemisphere, baseline resting motor threshold for ipsilesional primary motor area (M1), NIH Stroke Scale, Upper Extremity Fugl-Meyer, Mini-Mental State Examination, or preservation volume of M1, primary somatosensory area, premotor cortex, or supplementary motor area. CONCLUSION Our results support that preserved PLIC volume is an important influential factor affecting responsiveness to rTMS.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Zhang
- University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
16
|
Cunningham DA, Machado A, Janini D, Varnerin N, Bonnett C, Yue G, Jones S, Lowe M, Beall E, Sakaie K, Plow EB. Assessment of inter-hemispheric imbalance using imaging and noninvasive brain stimulation in patients with chronic stroke. Arch Phys Med Rehabil 2014; 96:S94-103. [PMID: 25194451 DOI: 10.1016/j.apmr.2014.07.419] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/23/2014] [Accepted: 07/18/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To determine how interhemispheric balance in stroke, measured using transcranial magnetic stimulation (TMS), relates to balance defined using neuroimaging (functional magnetic resonance [fMRI], diffusion-tensor imaging [DTI]) and how these metrics of balance are associated with clinical measures of upper-limb function and disability. DESIGN Cross sectional. SETTING Laboratory. PARTICIPANTS Patients with chronic stroke (N = 10; age, 63 ± 9 y) in a population-based sample with unilateral upper-limb paresis. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Interhemispheric balance was measured with TMS, fMRI, and DTI. TMS defined interhemispheric differences in the recruitment of corticospinal output, size of the corticomotor output maps, and degree of mutual transcallosal inhibition that they exerted on one another. fMRI studied whether cortical activation during the movement of the paretic hand was lateralized to the ipsilesional or to the contralesional primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA). DTI was used to define interhemispheric differences in the integrity of the corticospinal tracts projecting from the M1. Clinical outcomes tested function (upper extremity Fugl-Meyer [UEFM]) and perceived disability in the use of the paretic hand (Motor Activity Log [MAL] amount score). RESULTS Interhemispheric balance assessed with TMS relates differently to fMRI and DTI. Patients with high fMRI lateralization to the ipsilesional hemisphere possessed stronger ipsilesional corticomotor output maps (M1: r = .831, P = .006; PMC: r = .797, P = .01) and better balance of mutual transcallosal inhibition (r = .810, P = .015). Conversely, we found that patients with less integrity of the corticospinal tracts in the ipsilesional hemisphere show greater corticospinal output of homologous tracts in the contralesional hemisphere (r = .850, P = .004). However, an imbalance in integrity and output do not relate to transcallosal inhibition. Clinically, although patients with less integrity of corticospinal tracts from the ipsilesional hemisphere showed worse impairments (UEFM) (r = -.768, P = .016), those with low fMRI lateralization to the ipsilesional hemisphere had greater perception of disability (MAL amount score) (M1: r = .883, P = .006; PMC: r = .817, P = .007; SMA: r = .633, P = .062). CONCLUSIONS In patients with chronic motor deficits of the upper limb, fMRI may serve to mark perceived disability and transcallosal influence between hemispheres. DTI-based integrity of the corticospinal tracts, however, may be useful in categorizing the range of functional impairments of the upper limb. Further, in patients with extensive corticospinal damage, DTI may help infer the role of the contralesional hemisphere in recovery.
Collapse
Affiliation(s)
- David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; School of Biomedical Sciences, Kent State University, Kent, OH
| | - Andre Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Janini
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Corin Bonnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Guang Yue
- Human Performance and Engineering Laboratory, Kessler Foundation Research Center, West Orange, NJ
| | | | - Mark Lowe
- Imaging Institute, Cleveland Clinic, Cleveland, OH
| | - Erik Beall
- Imaging Institute, Cleveland Clinic, Cleveland, OH
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, OH
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
17
|
van Ruitenbeek P, Vermeeren A, Mehta MA, Drexler EI, Riedel WJ. Antihistamine induced blood oxygenation level dependent response changes related to visual processes during sensori-motor performance. Hum Brain Mapp 2014; 35:3095-106. [PMID: 24142460 PMCID: PMC6869125 DOI: 10.1002/hbm.22387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 01/20/2023] Open
Abstract
The histaminergic involvement in selective processes underlying its role in human sensori-motor performance is largely unknown. Recently, selective effects of central H₁-inverse agonism on sensory visual processes were observed in electrophysiological--but not behavioral data; a discrepancy suggested to result from speeded response-choice related processes. This study attempts to establish the effects on visual processes and identify putative compensatory mechanisms related to increased visual and response-choice task demands by assessing H₁-inverse agonism induced changes in blood oxygenation level dependent (BOLD) response. Twelve participants received oral doses of dexchlorpheniramine 4 mg, lorazepam 1 mg, and placebo in a three-way crossover designed study. Brain activity was assessed for choice reaction time task performance in a 3 T magnetic resonance scanner 2 h after drug administration. Participants responded with their left or right hand and index or middle finger as indicated by the laterality of stimulus presentation and identity of the stimulus, respectively. Stimuli were intact or visually degraded and responses were compatible or incompatible with the laterality of stimulus presentation. Both dexchlorpheniramine and lorazepam affected the BOLD response in the occipital cortex indicating affected visual information processing. Dexchlorpheniramine decreased BOLD response in the dorsal precuneus and left precentral gyrus as part of a motor network, which however might not be interpreted as a compensatory mechanism, but may be the upstream consequence of impaired visual processing.
Collapse
Affiliation(s)
- Peter van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Plow EB, Cunningham DA, Varnerin N, Machado A. Rethinking stimulation of the brain in stroke rehabilitation: why higher motor areas might be better alternatives for patients with greater impairments. Neuroscientist 2014; 21:225-40. [PMID: 24951091 DOI: 10.1177/1073858414537381] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stimulating the brain to drive its adaptive plastic potential is promising to accelerate rehabilitative outcomes in stroke. The ipsilesional primary motor cortex (M1) is invariably facilitated. However, evidence supporting its efficacy is divided, indicating that we may have overgeneralized its potential. Since the M1 and its corticospinal output are frequently damaged in patients with serious lesions and impairments, ipsilesional premotor areas (PMAs) could be useful alternates instead. We base our premise on their higher probability of survival, greater descending projections, and adaptive potential, which is causal for recovery across the seriously impaired. Using a conceptual model, we describe how chronically stimulating PMAs would strongly affect key mechanisms of stroke motor recovery, such as facilitating the plasticity of alternate descending output, restoring interhemispheric balance, and establishing widespread connectivity. Although at this time it is difficult to predict whether PMAs would be "better," it is important to at least investigate whether they are reasonable substitutes for the M1. Even if the stimulation of the M1 may benefit those with maximum recovery potential, while that of PMAs may only help the more disadvantaged, it may still be reasonable to achieve some recovery across the majority rather than stimulate a single locus fated to be inconsistently effective across all.
Collapse
Affiliation(s)
- Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA Department of Physical Medicine & Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andre Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Sheridan M, Kharitonova M, Martin RE, Chatterjee A, Gabrieli JDE. Neural substrates of the development of cognitive control in children ages 5-10 years. J Cogn Neurosci 2014; 26:1840-50. [PMID: 24650280 DOI: 10.1162/jocn_a_00597] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive conflict detection and resolution develops with age across childhood and likely supports age-related increases in other aspects of cognitive and emotional development. Little is known about the neural correlates of conflict detection and resolution in early childhood. In the current study, we investigated age-related change in neural recruitment during a blocked spatial-incompatibility task (Simon task) in children ages 5-10 years using fMRI. Cortical thickness was measured using structural MRI. Across all children, there was greater activation in right prefrontal and bilateral parietal cortices for incompatible than compatible conditions. In older children, compared with younger children, there was decreased activation and decreased gray matter thickness in the medial PFC. Thickness and activation changes across age were associated within participants, such that thinner cortex was associated with less activation in the rostral ACC. These findings suggest that developmental change in medial PFC activation supports performance on cognitive control tasks in early childhood.
Collapse
|
20
|
Bajaj S, Drake D, Butler AJ, Dhamala M. Oscillatory motor network activity during rest and movement: an fNIRS study. Front Syst Neurosci 2014; 8:13. [PMID: 24550793 PMCID: PMC3912434 DOI: 10.3389/fnsys.2014.00013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/20/2014] [Indexed: 11/29/2022] Open
Abstract
Coherent network oscillations (<0.1 Hz) linking distributed brain regions are commonly observed in the brain during both rest and task conditions. What oscillatory network exists and how network oscillations change in connectivity strength, frequency and direction when going from rest to explicit task are topics of recent inquiry. Here, we study network oscillations within the sensorimotor regions of able-bodied individuals using hemodynamic activity as measured by functional near-infrared spectroscopy (fNIRS). Using spectral interdependency methods, we examined how the supplementary motor area (SMA), the left premotor cortex (LPMC) and the left primary motor cortex (LM1) are bound as a network during extended resting state (RS) and between-tasks resting state (btRS), and how the activity of the network changes as participants execute left, right, and bilateral hand (LH, RH, and BH) finger movements. We found: (i) power, coherence and Granger causality (GC) spectra had significant peaks within the frequency band (0.01-0.04 Hz) during RS whereas the peaks shifted to a bit higher frequency range (0.04-0.08 Hz) during btRS and finger movement tasks, (ii) there was significant bidirectional connectivity between all the nodes during RS and unidirectional connectivity from the LM1 to SMA and LM1 to LPMC during btRS, and (iii) the connections from SMA to LM1 and from LPMC to LM1 were significantly modulated in LH, RH, and BH finger movements relative to btRS. The unidirectional connectivity from SMA to LM1 just before the actual task changed to the bidirectional connectivity during LH and BH finger movement. The uni-directionality could be associated with movement suppression and the bi-directionality with preparation, sensorimotor update and controlled execution. These results underscore that fNIRS is an effective tool for monitoring spectral signatures of brain activity, which may serve as an important precursor before monitoring the recovery progress following brain injury.
Collapse
Affiliation(s)
- Sahil Bajaj
- Department of Physics and Astronomy, Georgia State UniversityAtlanta, GA, USA
| | - Daniel Drake
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State UniversityAtlanta, GA, USA
| | - Andrew J. Butler
- Department of Physical Therapy, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State UniversityAtlanta, GA, USA
- Department of Veteran's Affairs, Atlanta Rehabilitation Research and Development Center of ExcellenceDecatur, GA, USA
- Joint Center for Advanced Brain Imaging, Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State UniversityAtlanta, GA, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State UniversityAtlanta, GA, USA
- Joint Center for Advanced Brain Imaging, Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State UniversityAtlanta, GA, USA
| |
Collapse
|
21
|
Cunningham DA, Machado A, Yue GH, Carey JR, Plow EB. Functional somatotopy revealed across multiple cortical regions using a model of complex motor task. Brain Res 2013; 1531:25-36. [PMID: 23920009 DOI: 10.1016/j.brainres.2013.07.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
The primary motor cortex (M1) possesses a functional somatotopic structure-representations of adjacent within-limb joints overlap to facilitate coordination while maintaining discrete centers for individuated movement. We examined whether similar organization exists across other sensorimotor cortices. Twenty-four right-handed healthy subjects underwent functional magnetic resonance imaging (fMRI) while tracking complex targets with flexion/extension at right finger, elbow and ankle separately. Activation related to each joint at false discovery rate of 0.005 served as its representation across multiple regions. Within each region, we identified the center of mass (COM) for each representation, and the overlap between the representations of within-limb (finger and elbow) and between-limb joints (finger and ankle). Somatosensory (S1) and premotor cortices (PMC) demonstrated greater distinction of COM and minimal overlap for within- and between-limb representations. In contrast, M1 and supplementary motor area (SMA) showed more integrative somatotopy with higher sharing for within-limb representations. Superior and inferior parietal lobule (SPL and IPL) possessed both types of structure. Some clusters exhibited extensive overlap of within- and between-limb representations, while others showed discrete COMs for within-limb representations. Our results help to infer hierarchy in motor control. Areas such as S1 may be associated with individuated movements, while M1 may be more integrative for coordinated motion; parietal associative regions may allow switch between both modes of control. Such hierarchy creates redundant opportunities to exploit in stroke rehabilitation. The use of complex rather than traditionally used simple movements was integral to illustrating comprehensive somatotopic structure; complex tasks can potentially help to understand cortical representation of skill and learning-related plasticity.
Collapse
|
22
|
Abrahamse EL, Ruitenberg MFL, de Kleine E, Verwey WB. Control of automated behavior: insights from the discrete sequence production task. Front Hum Neurosci 2013; 7:82. [PMID: 23515430 PMCID: PMC3601300 DOI: 10.3389/fnhum.2013.00082] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/01/2013] [Indexed: 01/18/2023] Open
Abstract
Work with the discrete sequence production (DSP) task has provided a substantial literature on discrete sequencing skill over the last decades. The purpose of the current article is to provide a comprehensive overview of this literature and of the theoretical progress that it has prompted. We start with a description of the DSP task and the phenomena that are typically observed with it. Then we propose a cognitive model, the dual processor model (DPM), which explains performance of (skilled) discrete key-press sequences. Key features of this model are the distinction between a cognitive processor and a motor system (i.e., motor buffer and motor processor), the interplay between these two processing systems, and the possibility to execute familiar sequences in two different execution modes. We further discuss how this model relates to several related sequence skill research paradigms and models, and we outline outstanding questions for future research throughout the paper. We conclude by sketching a tentative neural implementation of the DPM.
Collapse
Affiliation(s)
- Elger L. Abrahamse
- Department of Experimental Psychology, University of GhentGhent, Belgium
| | - Marit F. L. Ruitenberg
- Department of Cognitive Psychology and Ergonomics, University of TwenteEnschede, Netherlands
| | - Elian de Kleine
- Department of Cognitive Psychology and Ergonomics, University of TwenteEnschede, Netherlands
| | - Willem B. Verwey
- Department of Cognitive Psychology and Ergonomics, University of TwenteEnschede, Netherlands
| |
Collapse
|
23
|
Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences. Brain Imaging Behav 2013; 6:437-53. [PMID: 22454141 DOI: 10.1007/s11682-012-9158-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Complex skill learning at a joint initiates competition between its representation in the primary motor cortex (M1) and that of the neighboring untrained joint. This process of representational plasticity has been mapped by cortically-evoking simple movements. We investigated, following skill learning at a joint, 1) whether comparable processes of representational plasticity are observed when mapping is based on volitionally produced complex movements and 2) the consequence on the skill of the adjacent untrained joint. Twenty-four healthy subjects were assigned to either finger- or elbow-skill training or no-training control group. At pretest and posttest, subjects performed complex skill movements at finger, elbow and ankle concurrent with functional magnetic resonance imaging (fMRI) to define learning and allow mapping of corresponding activation-based representations in M1. Skill following both finger- and elbow- training transferred to the ankle (remote joint) (p = 0.05 and 0.05); however, finger training did not transfer to the elbow and elbow training did not transfer to the finger. Following finger training, location of the trained finger representation showed a trend (p = 0.08) for medial shift towards the representation of adjacent untrained elbow joint; the change in intensity of the latter representation was associated with elbow skill (Spearman's ρ = -0.71, p = 0.07). Following elbow training, the trained elbow representation and the adjacent untrained finger representation increased their overlap (p = 0.02), which was associated with finger skill (Spearman's ρ = -0.83, p = 0.04). Thus, our pilot study reveals comparable processes of representational plasticity with fMRI mapping of complex skill movements as have been demonstrated with cortically-evoked methods. Importantly, these processes may limit the degree of transfer of skill between trained and adjacent untrained joints. These pilot findings that await confirmation in large-scale studies have significant implications for neuro-rehabilitation. For instance, techniques, such as motor cortical stimulation, that can potentially modulate processes of representational plasticity between trained and adjacent untrained representations, may optimize transfer of skill.
Collapse
|
24
|
Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming. J Neurosci 2013; 32:16162-71a. [PMID: 23152600 DOI: 10.1523/jneurosci.1010-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability to discard a prepared action plan in favor of an alternative action is critical when facing sudden environmental changes. We tested whether the functional contribution of left supramarginal gyrus (SMG) during action reprogramming depends on the functional integrity of left dorsal premotor cortex (PMd). Adopting a dual-site repetitive transcranial magnetic stimulation (rTMS) strategy, we first transiently disrupted PMd with "off-line" 1 Hz rTMS and then applied focal "on-line" rTMS to SMG while human subjects performed a spatially precued reaction time (RT) task. Effective on-line rTMS of SMG but not sham rTMS of SMG increased errors when subjects had to reprogram their action in response to an invalid precue regardless of the type of preceding off-line rTMS. This suggests that left SMG primarily contributes to the on-line updating of actions by suppressing invalidly prepared responses. On-line rTMS of SMG additionally increased RTs for correct responses in invalidly precued trials, but only after off-line rTMS of PMd. We infer that off-line rTMS caused an additional dysfunction of PMd, which increased the functional relevance of SMG for rapid activation of the correct response, and sensitized SMG to the disruptive effects of on-line rTMS. These results not only provide causal evidence that left PMd and SMG jointly contribute to action reprogramming, but also that the respective functional weight of these areas can be rapidly redistributed. This mechanism might constitute a generic feature of functional networks that allows for rapid functional compensation in response to focal dysfunctions.
Collapse
|
25
|
Amenedo E, Lorenzo-López L, Pazo-Álvarez P. Response processing during visual search in normal aging: The need for more time to prevent cross talk between spatial attention and manual response selection. Biol Psychol 2012; 91:201-11. [DOI: 10.1016/j.biopsycho.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 05/29/2012] [Accepted: 06/17/2012] [Indexed: 11/30/2022]
|
26
|
Response selection in prosaccades, antisaccades, and other volitional saccades. Exp Brain Res 2012; 222:345-53. [PMID: 22910901 DOI: 10.1007/s00221-012-3218-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Saccades made to the opposite side of a visual stimulus (antisaccades) and to central cues (simple volitional saccades) both require active response selection but whether the mechanisms of response selection differ between these tasks is unclear. Response selection can be assessed by increasing the number of response alternatives: this leads to increased reaction times when response selection is more demanding. We compared the reaction times of prosaccades, antisaccades, saccades cued by a central arrow, and saccades cued by a central number, in blocks of either two or six possible responses. In the two-response blocks, reaction times were fastest for prosaccades and antisaccades, and slowest for arrow-cued and number-cued saccades. Increasing response alternatives from two to six caused a paradoxical reduction in reaction times of prosaccades, had no effect on arrow-cued saccades, and led to a large increase in reaction times of number-cued saccades. For antisaccade reaction times, the effect of increasing response alternatives was intermediate, greater than that for arrow-cued saccades but less than that for number-cued saccades. We suggest that this pattern of results may reflect two components of saccadic processing: (a) response triggering, which is more rapid with a peripheral stimulus as in the prosaccade and antisaccade tasks and (b) response selection, which is more demanding for the antisaccade and number-cued saccade tasks, and more automatic when there is direct stimulus-response mapping as with prosaccades, or over-learned symbols as with arrow-cued saccades.
Collapse
|
27
|
Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial. Phys Ther 2012; 92:197-209. [PMID: 22095209 PMCID: PMC3269771 DOI: 10.2522/ptj.20110018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. OBJECTIVES The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. DESIGN This study was a pilot randomized controlled trial. SETTING Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. PATIENTS Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. INTERVENTION Participants received either computerized complex movement training (track group) or simple movement training (move group). MEASUREMENTS Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. RESULTS Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. LIMITATIONS Limitations of this study were that no follow-up test was conducted and that a small sample size was used. CONCLUSIONS The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke.
Collapse
|
28
|
Imitation components in the human brain: An fMRI study. Neuroimage 2012; 59:1622-30. [DOI: 10.1016/j.neuroimage.2011.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/20/2022] Open
|
29
|
Cross KA, Iacoboni M. Optimized neural coding? Control mechanisms in large cortical networks implemented by connectivity changes. Hum Brain Mapp 2011; 34:213-25. [PMID: 21976418 DOI: 10.1002/hbm.21428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/09/2011] [Accepted: 07/11/2011] [Indexed: 11/12/2022] Open
Abstract
Using functional magnetic resonance imaging, we show that a distributed fronto-parietal visuomotor integration network is recruited to overcome automatic responses to both biological and nonbiological cues. Activity levels in these areas are similar for both cue types. The functional connectivity of this network, however, reveals differential coupling with thalamus and precuneus (biological cues) and extrastriate cortex (nonbiological cues). This suggests that a set of cortical areas equally activated in two tasks may accomplish task goals differently depending on their network interactions. This supports models of brain organization that emphasize efficient coding through changing patterns of integration between regions of specialized function.
Collapse
Affiliation(s)
- Katy A Cross
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
30
|
Imitation of hand and tool actions is effector-independent. Exp Brain Res 2011; 214:539-47. [PMID: 21904930 PMCID: PMC3183242 DOI: 10.1007/s00221-011-2852-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/24/2011] [Indexed: 11/17/2022]
Abstract
Following the theoretical notion that tools often extend one’s body, in the present study, we investigated whether imitation of hand or tool actions is modulated by effector-specific information. Subjects performed grasping actions toward an object with either a handheld tool or their right hand. Actions were initiated in response to pictures representing a grip at an object that could be congruent or incongruent with the required action (grip-type congruency). Importantly, actions could be cued by means of a tool cue, a hand cue, and a symbolic cue (effector-type congruency). For both hand and tool actions, an action congruency effect was observed, reflected in faster reaction times if the observed grip type was congruent with the required movement. However, neither hand actions nor tool actions were differentially affected by the effector represented in the picture (i.e., when performing a tool action, the action congruency effect was similar for tool cues and hand cues). This finding suggests that imitation of hand and tool actions is effector-independent and thereby supports generalist rather than specialist theories of imitation.
Collapse
|
31
|
The interplay of cue modality and response latency in brain areas supporting crossmodal motor preparation: an event-related fMRI study. Exp Brain Res 2011; 214:9-17. [PMID: 21656217 DOI: 10.1007/s00221-011-2745-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Crossmodal (auditory, visual) motor facilitation can be defined as a cue in one sensory modality eliciting speeded responses to targets in a different sensory modality. We used event-related functional magnetic resonance imaging (fMRI) to isolate brain activity underlying crossmodal motor preparation. Our predictions were that interactions between input modality and processes underlying response selection would be indexed by distinct spatiotemporal brain dynamics. A crossmodal response selection task was designed in which a central, nonspatial cue indicated the response rule (compatible or incompatible) to a lateralized target. Cues and targets appeared in auditory and visual modalities and were separated by a lengthy delay period in which cue-related brain activity could be dissociated. We found faster reaction times to auditory compared with visual cues. Next, we correlated brain activity with behavioural performance using multivariate spatiotemporal partial least squares. We identified a distinct, significant brain-behaviour pattern in which faster reaction times to auditory cues were correlated with higher blood oxygenation level-dependent percent signal change in medial visual, frontoparietal (inferior parietal lobule, superior frontal gyrus and premotor cortex) and subcortical (thalamus and cerebellum) areas. For visual cues, quicker responses were linked to greater activity in the same frontoparietal and subcortical but not medial visual areas. Our results show that both modality-dependent and modality-independent brain areas with different brain-behaviour relationships are implicated in crossmodal motor preparation.
Collapse
|
32
|
Zhang S, Ide JS, Li CSR. Resting-state functional connectivity of the medial superior frontal cortex. ACTA ACUST UNITED AC 2011; 22:99-111. [PMID: 21572088 DOI: 10.1093/cercor/bhr088] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The medial superior frontal cortex (SFC), including the supplementary motor area (SMA) and presupplementary motor area (preSMA), is implicated in movement and cognitive control, among other functions central to decision making. Previous studies delineated the anatomical boundaries and functional connectivity of the SMA. However, it is unclear whether the preSMA, which responds to a variety of behavioral tasks, comprises functionally distinct areas. With 24 seed regions systematically demarcated throughout the anterior and posterior medial SFC, we examined here the functional divisions of the medial SFC on the basis of the "correlograms" of resting-state functional magnetic resonance imaging data of 225 adult individuals. In addition to replicating segregation of the SMA and posterior preSMA, the current results elucidated functional connectivities of anterior preSMA-the most anterior part of the medial SFC. In contrast to the caudal medial SFC, the anterior preSMA is connected with most of the prefrontal but not with somatomotor areas. Overall, the SMA is strongly connected to the thalamus and epithalamus, the posterior preSMA to putamen, pallidum, and subthalamic nucleus, and anterior preSMA to the caudate, with the caudate showing significant hemispheric asymmetry. These findings may provide a useful platform for future studies to investigate frontal cortical functions.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA.
| | | | | |
Collapse
|
33
|
Ward NS, Bestmann S, Hartwigsen G, Weiss MM, Christensen LOD, Frackowiak RSJ, Rothwell JC, Siebner HR. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions. J Neurosci 2010; 30:9216-23. [PMID: 20610756 PMCID: PMC3717513 DOI: 10.1523/jneurosci.4499-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/04/2010] [Accepted: 05/10/2010] [Indexed: 11/21/2022] Open
Abstract
Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.
Collapse
Affiliation(s)
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and
- Wellcome Trust Centre for Neuroimaging, University College London, Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Gesa Hartwigsen
- Department of Neurology, Christian-Albrechts University, 24105 Kiel, Germany
| | - Michael M. Weiss
- Department of Neurology, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Richard S. J. Frackowiak
- Wellcome Trust Centre for Neuroimaging, University College London, Institute of Neurology, London WC1N 3BG, United Kingdom
- Service de Neurologie, Centre Hospitalier Universitaire Vaudois BH10, 1011 Lausanne, Switzerland, and
| | | | - Hartwig R. Siebner
- Department of Neurology, Christian-Albrechts University, 24105 Kiel, Germany
- Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, 2650 Hvidovre, Denmark
| |
Collapse
|
34
|
Boyd LA, Vidoni ED, Wessel BD. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change? Neurosci Lett 2010; 482:21-5. [PMID: 20609381 DOI: 10.1016/j.neulet.2010.06.082] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 04/27/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022]
Abstract
Limited data directly characterize the dynamic evolution of brain activity associated with motor learning after stroke. The current study considered whether sequence-specific motor skill learning or increasing non-specific use of the hemiparetic upper extremity drive functional reorganization of the contralesional motor cortex after stroke. Eighteen individuals with chronic middle cerebral artery stroke practiced one of two novel motor tasks; a retention test occurred on a separate fifth day. Using the hemiparetic arm, participants performed a serial targeting task during two functional MRI scans (day one and retention). Participants were randomized into either a task-specific group, who completed three additional sessions of serial targeting practice, or a general arm use group, who underwent three training sessions of increased but non-task specific use of the hemiparetic arm. Both groups performed a repeated sequence of responses that may be learned, and random sequences of movement, which cannot be learned. Change in reaction and movement time for the repeated sequence indexed motor learning; shifts in the laterality index (LI) within primary motor cortex (M1) for repeated and random sequences illustrated training effects on brain activity. Task-specific practice of the repeated sequence facilitated motor learning and shifted the LI for M1 as shown by a reduced volume of contralesional cortical activity. Random sequence performance did not stimulate motor learning or alter the LI within the task-specific training group. Further, between-group comparisons showed that increasing general arm use did not induce motor learning or alter brain activity for either random or repeated sequences. Motor skill learning of a repeated sequence altered cortical activation by inducing a more normal, contralateral pattern of brain activation. Our data suggest that task-specific motor learning may be an important stimulant for neuroplastic change and can remediate maladaptive patterns of brain activity after stroke.
Collapse
Affiliation(s)
- Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
35
|
Cieslik EC, Zilles K, Kurth F, Eickhoff SB. Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task. J Neurophysiol 2010; 104:1472-83. [PMID: 20573974 DOI: 10.1152/jn.00261.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Speed and accuracy of motor responses to lateralized stimuli are influenced by the spatial overlap between stimulus location and required response. Responses showing high spatial overlap with peripheral cues benefit from a bottom-up driven enhancement of attention to the respective location, whereas low overlap requires top-down modulated reorienting of resources. Here we investigated the interaction between these two processes using a spatial stimulus-response compatibility task. Subjects had to react to lateralized visual stimuli with a button press using either the ipsilateral (congruent condition) or the contralateral (incongruent condition) index finger. Stimulus-driven bottom-up processes were associated with significant contralateral activation in V5, the intraparietal sulcus (IPS) and the premotor cortex (PMC). Incongruent versus congruent responses evoked significant activation in bilateral IPS and PMC, highly overlapping with the activations found for stimulus-driven bottom-up processes, as well as additional activation in bilateral anterior insula and right dorsolateral prefrontal cortex (DLPFC) and temporoparietal junction (TPJ). Moreover, a region anterior to the bottom-up driven activation in the IPS was associated with top-down modulated directionality-specific reorienting of motor attention during incongruent motor responses. Based on these results, we propose that stimulus-driven activation of contralateral IPS and PMC represent key neuronal substrates for the behavioral advantage observed when reacting toward a congruently lateralized stimulus. Additional activation in bilateral insula and right DLPFC and TPJ during incongruent responses should reflect top-down control mechanisms mediating contextual (i.e., task) demands. Furthermore, this study provides evidence for both overlapping and disparate substrates of bottom-up and top-down modulated attentional processes in the IPS.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institut für Neurowissenschaften und Medizin, INM-2, Forschungszentrum Jülich GmbH, D- 52425 Jülich, Germany.
| | | | | | | |
Collapse
|
36
|
Newman-Norlund RD, Ondobaka S, van Schie HT, van Elswijk G, Bekkering H. Virtual Lesions of the IFG Abolish Response Facilitation for Biological and Non-Biological Cues. Front Behav Neurosci 2010; 4:5. [PMID: 20339485 PMCID: PMC2845062 DOI: 10.3389/neuro.08.005.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 02/02/2010] [Indexed: 11/30/2022] Open
Abstract
Humans are faster to perform a given action following observation of that same action. Converging evidence suggests that the human mirror neuron system (MNS) plays an important role in this phenomenon. However, the specificity of the neural mechanisms governing this effect remain controversial. Specialist theories of imitation suggest that biological cues are maximally capable of eliciting imitative facilitation. Generalist models, on the other hand, posit a broader role for the MNS in linking visual stimuli with appropriate responses. In the present study, we investigated the validity of these two theoretical approaches by disrupting the left and right inferior frontal gyrus (IFG) during the preparation of congruent (imitative) and incongruent (complementary) actions cued by either biological (hand) or non-biological (static dot) stimuli. Delivery of TMS over IFG abolished imitative response facilitation. Critically, this effect was identical whether actions were cued by biological or non-biological stimuli. This finding argues against theories of imitation in which biological stimuli are treated preferentially and stresses the notion of the IFG as a vital center of general perception–action coupling in the human brain.
Collapse
|
37
|
Plow EB, Arora P, Pline MA, Binenstock MT, Carey JR. Within-limb somatotopy in primary motor cortex – revealed using fMRI. Cortex 2010; 46:310-21. [DOI: 10.1016/j.cortex.2009.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 12/01/2008] [Accepted: 02/27/2009] [Indexed: 10/20/2022]
|
38
|
Ivanoff J, Branning P, Marois R. Mapping the pathways of information processing from sensation to action in four distinct sensorimotor tasks. Hum Brain Mapp 2010; 30:4167-86. [PMID: 19569071 DOI: 10.1002/hbm.20837] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two sensorimotor tasks that share neither sensory nor motor modality can interfere with one another when they are performed simultaneously. A possible cause for this interference is the recruitment of common brain regions by these two tasks, thereby creating a bottleneck of information processing. This hypothesis predicts that such "bottleneck" regions would be activated by each task even when they are performed separately. To test this prediction, we sought to identify, with fMRI, brain regions commonly activated by sensorimotor tasks that share neither sensory input nor motor output. One group of subjects was scanned while they performed in separate runs an auditory-vocal (AVo) task and a visuo-manual (ViM) task, while a second group of subjects performed the reversed sensorimotor mapping tasks (AM and ViVo). The results revealed strong activation preferences in specific sensory and motor cortical areas for each sensory and motor modality. By contrast, the posterior portion of the lateral prefrontal cortex (pLPFC), anterior insula, and, less consistently, the anterior cingulate, presupplementary and supplementary motor areas, and subcortical areas were commonly activated across all four sensorimotor tasks. These results were observed in both blocked and event-related fMRI designs, in both 3D-group averaged and 2D-individual subject analyses, and were replicated within individuals across scanning sessions. These findings not only suggest that these brain regions serve a common amodal function in sensorimotor tasks, they also point to these regions--particularly, the pLPFC and anterior insula--as candidate neural substrates underlying a central hub of information processing in the human brain.
Collapse
Affiliation(s)
- Jason Ivanoff
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee 37240, USA.
| | | | | |
Collapse
|
39
|
Response-dependent contributions of human primary motor cortex and angular gyrus to manual and perceptual sequence learning. J Neurosci 2009; 29:15115-25. [PMID: 19955363 DOI: 10.1523/jneurosci.2603-09.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Motor sequence learning on the serial reaction time task involves the integration of response-, stimulus-, and effector-based information. Human primary motor cortex (M1) and the inferior parietal lobule (IPL) have been identified with supporting the learning of effector-dependent and -independent information, respectively. Current neurocognitive data are, however, exclusively based on learning complex sequence information via perceptual-motor responses. Here, we investigated the effects of continuous theta-burst transcranial magnetic stimulation (cTBS)-induced disruption of M1 and the angular gyrus (AG) of the IPL on learning a probabilistic sequence via sequential perceptual-motor responses (experiment 1) or covert orienting of visuospatial attention (experiment 2). Functional effects on manual sequence learning were evident during 75% of training trials in the cTBS M1 condition, whereas cTBS over the AG resulted in interference confined to a midpoint during the training phase. Posttraining direct (declarative) tests of sequence knowledge revealed that cTBS over M1 modulated the availability of newly acquired sequence knowledge, whereby sequence knowledge was implicit in the cTBS M1 condition but was available to conscious awareness in the cTBS AG and control conditions. In contrast, perceptual sequence learning was abolished in the perceptual cTBS AG condition, whereas learning was intact and available to conscious awareness in the cTBS M1 and control conditions. These results show that the right AG had a critical role in perceptual sequence learning, whereas M1 had a causal role in developing experience-dependent functional attributes relevant to conscious knowledge on manual but not perceptual sequence learning.
Collapse
|
40
|
Kokotilo KJ, Eng JJ, McKeown MJ, Boyd LA. Greater activation of secondary motor areas is related to less arm use after stroke. Neurorehabil Neural Repair 2009; 24:78-87. [PMID: 19737873 DOI: 10.1177/1545968309345269] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Past studies have identified reorganization of brain activity in relation to motor outcome through standardized laboratory measures, which are quantifiable surrogates for arm use in real life. In contrast, accelerometers can provide a real-life estimate of arm and hand usage. METHODS Ten persons with chronic, subcortical stroke and 10 healthy controls of similar age performed a squeeze motor task at 40% maximum voluntary contraction during functional magnetic resonance imaging (fMRI). Use of the upper extremity was quantified over 3 consecutive days using wrist accelerometers. Correlations were performed between arm use and peak percent signal change (PSC) during grasp force production in 6 regions of interest (ROIs): bilateral primary motor cortex (M1), supplementary motor area (SMA), and premotor cortex (PM). RESULTS Results demonstrate that in healthy controls, PSC across all ROIs did not show a relationship between arm use and brain activation during force production. In contrast, after stroke, contralesional PM and M1 showed a significant (P <or= .05) correlation between increasing activation and decreasing paretic arm use, whereas ipsilesional PM showed a significant correlation ( P <or= .05) between increasing activation and decreasing nonparetic arm use. CONCLUSIONS The results of this pilot study demonstrate a negative relationship between brain activation and actual arm use after stroke. Larger studies using accelerometers that can detect amount and types of movement may offer further insight into brain reorganization and rehabilitation interventions.
Collapse
|
41
|
Boyd LA, Linsdell MA. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills. BMC Neurosci 2009; 10:72. [PMID: 19583831 PMCID: PMC2713248 DOI: 10.1186/1471-2202-10-72] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 07/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following practice of skilled movements, changes continue to take place in the brain that both strengthen and modify memory for motor learning. These changes represent motor memory consolidation a process whereby new memories are transformed from a fragile to a more permanent, robust and stable state. In the present study, the neural correlates of motor memory consolidation were probed using repetitive transcranial magnetic stimulation (rTMS) to the dorsal premotor cortex (PMd). Participants engaged in four days of continuous tracking practice that immediately followed either excitatory 5 HZ, inhibitory 1 HZ or control, sham rTMS. A delayed retention test assessed motor learning of repeated and random sequences of continuous movement; no rTMS was applied at retention. RESULTS We discovered that 5 HZ excitatory rTMS to PMd stimulated motor memory consolidation as evidenced by off-line learning, whereas only memory stabilization was noted following 1 Hz inhibitory or sham stimulation. CONCLUSION Our data support the hypothesis that PMd is important for continuous motor learning, specifically via off-line consolidation of learned motor behaviors.
Collapse
Affiliation(s)
- Lara A Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
42
|
Wittfoth M, Schardt DM, Fahle M, Herrmann M. How the brain resolves high conflict situations: Double conflict involvement of dorsolateral prefrontal cortex. Neuroimage 2009; 44:1201-9. [PMID: 18951983 DOI: 10.1016/j.neuroimage.2008.09.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 11/19/2022] Open
|
43
|
Schwarb H, Schumacher EH. Neural evidence of a role for spatial response selection in the learning of spatial sequences. Brain Res 2008; 1247:114-25. [PMID: 18976640 DOI: 10.1016/j.brainres.2008.09.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 09/18/2008] [Accepted: 09/25/2008] [Indexed: 11/28/2022]
Abstract
Despite over 20 years of behavioral research, considerable disagreement remains regarding the locus of the cognitive mechanisms (e.g., stimulus encoding, response selection or response production) responsible for the acquisition and expression of learned sequences. Functional neuroimaging may prove invaluable for resolving this controversy. The cortical mechanisms underlying spatial response selection (i.e., right dorsal prefrontal, dorsal premotor and superior parietal cortices) are well known. These regions as well as supplementary motor area, striatum and the hippocampus have also been implicated in sequence learning. This neural overlap lends support for the hypothesis that spatial response selection is involved in learning spatial sequences; however, these experimental factors have not been investigated in the same experiment so the extent of neural overlap is debatable. The present study investigates the role of spatial response selection in sequence learning during the performance of the serial reaction time task. We orthogonally manipulated spatial sequence learning and spatial response-selection difficulty to precisely identify the neural overlap of these cognitive systems. Results demonstrate near complete overlap in regions affected by the spatial response selection and spatial sequence learning manipulations. Only right dorsal prefrontal cortex was selectively influenced by the response selection difficulty manipulation. These findings emphasize the importance of spatial response selection for successful spatial sequence learning.
Collapse
Affiliation(s)
- Hillary Schwarb
- School of Psychology, Georgia Institute of Technology, 654 Cherry Street, Atlanta, GA 30332-0170, USA
| | | |
Collapse
|
44
|
Rusconi E, Turatto M, Umiltà C. Two orienting mechanisms in posterior parietal lobule: an rTMS study of the Simon and SNARC effects. Cogn Neuropsychol 2008; 24:373-92. [PMID: 18416497 DOI: 10.1080/02643290701309425] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate, with repetitive transcranial magnetic stimulation (rTMS), the involvement of posterior parietal lobule (PPL) circuits in producing the Simon effect and the spatial-numerical association of response codes (SNARC) effect. The Simon effect is indexed by faster responses to left-side stimuli with left- than with right-side key-presses and faster responses to right-side stimuli with right- than with left-side key-presses. The SNARC effect is indexed by faster responses to smaller numbers with left- than with right-side key-presses and faster responses to larger numbers with right- than with left-side key-presses. Participants were required to perform a parity judgement on numbers ranging from 1 to 9 (without 5), by pressing a left or a right response key. The numbers were presented to either the left or the right side of fixation. Two bilateral PPL areas lying along the intraparietal sulcus (IPS) were stimulated with rTMS. Results suggested a causal role of the anterior portion of PPL of both hemispheres in the Simon effect and of the posterior portion of PPL of both hemispheres in the Simon effect and the SNARC effect.
Collapse
Affiliation(s)
- Elena Rusconi
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | | | | |
Collapse
|
45
|
Kimberley TJ, Birkholz DD, Hancock RA, VonBank SM, Werth TN. Reliability of fMRI during a continuous motor task: assessment of analysis techniques. J Neuroimaging 2008; 18:18-27. [PMID: 18190491 DOI: 10.1111/j.1552-6569.2007.00163.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to determine which method of functional magnetic resonance image analysis had the highest reliability in cortical and cerebellar areas during a continuous motor task. Fourteen subjects underwent 4 testing trials during 2 testing sessions separated by 3 weeks. Subjects performed a joystick task. Methods of analysis evaluated included: percent signal intensity change, active voxel count, and percent contribution. Two types of activation thresholds were evaluated: P< or = .05 and false discovery rate = .05. Reliability was determined with intraclass correlation coefficients and a repeated measure ANOVA was used to determine whether there was a significant difference between trials. A group analysis was assessed with coefficient of variation. Results indicate within session reliability was higher than between session and that signal intensity is more reliable than voxel count analysis. The intraclass correlation coefficients across different regions of interest varied depending on analysis technique. The data did not support a clear difference between thresholds. The group analysis also found less variability with intensity measures than voxel count. A stabilization effect was seen after the first trial of the experiment, suggesting that in pretest/posttest designs, a more stable result may be obtained by performing a test trial prior to actual data collection.
Collapse
|
46
|
Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2007; 7:1-17. [PMID: 17598730 DOI: 10.3758/cabn.7.1.1] [Citation(s) in RCA: 587] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A quantitative meta-analysis was performed on 47 neuroimaging studies involving tasks purported to require the resolution of interference. The tasks included the Stroop, flanker, go/no-go, stimulus-response compatibility, Simon, and stop signal tasks. Peak density-based analyses of these combined tasks reveal that the anterior cingulate cortex, dorsolateral prefrontal cortex, inferior frontal gyrus, posterior parietal cortex, and anterior insula may be important sites for the detection and/or resolution of interference. Individual task analyses reveal differential patterns of activation among the tasks. We propose that the drawing of distinctions among the processing stages at which interference may be resolved may explain regional activation differences. Our analyses suggest that resolution processes acting upon stimulus encoding, response selection, and response execution may recruit different neural regions.
Collapse
Affiliation(s)
- Derek Evan Nee
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, USA.
| | | | | |
Collapse
|
47
|
Bhatt E, Nagpal A, Greer KH, Grunewald TK, Steele JL, Wiemiller JW, Lewis SM, Carey JR. Effect of finger tracking combined with electrical stimulation on brain reorganization and hand function in subjects with stroke. Exp Brain Res 2007; 182:435-47. [PMID: 17562035 DOI: 10.1007/s00221-007-1001-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 05/15/2007] [Indexed: 11/25/2022]
Abstract
Synergism of rehabilitative interventions could maximize recovery following stroke. We examined whether the combination of peripherally initiated electrical stimulation of finger extensors and centrally operating finger tracking training could accentuate brain reorganization and its relationship to recovery, beyond the effects of either treatment alone. Twenty subjects with stroke were randomly assigned to an electrical stimulation (ES), tracking training (TR) or combination (CM) group. Each group was trained for ten 1-h sessions over 2-3 weeks. Pretest and posttest measurements consisted of the Box and Block and Jebsen Taylor tests of manual dexterity and a finger tracking test that was performed during functional magnetic resonance imaging (fMRI). fMRI variables included laterality index and BOLD signal intensity of primary motor (M1), primary sensory (S1), sensorimotor (SMC) and premotor (PMC) cortices as well as, supplementary motor area (SMA). ES and CM groups improved on dexterity, whereas the TR group did not. Improvement in the CM group was not greater than the other two groups. Subjects who had an intact M1 showed greater functional improvement than those who had direct involvement of M1. fMRI analysis did not yield significant changes from pretest to posttest. In the CM group only, functional improvement was positively correlated with laterality index change in M1, S1, SMC and PMC, indicating greater ipsilesional control and was negatively correlated with BOLD Signal Intensity change in ipsilesional S1 and SMA, indicating neurophysiological trimming of irrelevant neurons. The correlational results suggest that the combined intervention may be more influential on brain reorganization than either treatment alone but a larger sample size, longer duration of training, or a restricted inclusion of stroke location and volume may be needed to demonstrate a difference in efficacy for producing behavioral changes.
Collapse
Affiliation(s)
- Ela Bhatt
- Program in Physical Therapy and Program in Rehabilitation Science, MMC 388, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Carey JR, Durfee WK, Bhatt E, Nagpal A, Weinstein SA, Anderson KM, Lewis SM. Comparison of Finger Tracking Versus Simple Movement Training via Telerehabilitation to Alter Hand Function and Cortical Reorganization After Stroke. Neurorehabil Neural Repair 2007; 21:216-32. [PMID: 17351083 DOI: 10.1177/1545968306292381] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective. To compare 2 telerehabilitation training strategies, repetitive tracking movements versus repetitive simple movements, to promote brain reorganization and recovery of hand function. Methods. Twenty subjects with chronic stroke and 10 degrees of voluntary finger extension were randomly assigned to receive 1800 telerehabilitation trials over 2 weeks of either computerized tracking training (track group) with the affected finger and wrist involving temporospatial processing to achieve accuracy or movement training (move group) with no attention to accuracy. Following movement training, the move group crossed over to receive an additional 2 weeks of tracking training. Behavioral changes were measured with the Box and Block test, Jebsen Taylor test, and finger range of motion, along with a finger-tracking activation paradigm during fMRI. Results. The track group showed significant improvement in all 4 behavioral tests; the move group improved in the Box and Block and Jebsen Taylor tests. The improvement for the track group in the Box and Block and Jebsen Taylor tests did not surpass that for the move group. A consistent group pattern of brain reorganization was not evident. The move group, after crossing over, did not show further significant improvements. Conclusion . Telerehabilitation may be effective in improving performance in subjects with chronic stroke. Tracking training with reinforcement to enhance learning, however, did not produce a clear advantage over the same amount of practice of random movements. Two weeks of training may be insufficient to demonstrate a behavioral advantage and associated brain reorganization.
Collapse
Affiliation(s)
- James R Carey
- Program in Physical Therapy, University of Minnesota, Minneapolis 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pellizzer G, Stephane M. Response selection in schizophrenia. Exp Brain Res 2007; 180:705-14. [PMID: 17310375 DOI: 10.1007/s00221-007-0892-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 01/24/2007] [Indexed: 11/25/2022]
Abstract
Schizophrenia patients tend to have longer and more variable latencies of response than healthy control subjects. However, the distributions of data from the two groups overlap to a large extent. Therefore, we investigated (1) whether the process of response selection in schizophrenia patients is like that of slow control subjects or has different properties, and (2) whether the intra-individual variability of schizophrenia patients is intrinsically greater than that of control subjects or reflects their longer mean latency. To answer these questions we tested schizophrenia patients and healthy control subjects in a choice reaction time (RT) task with 2-choice and 4-choice conditions. We analyzed how mean RT in the 2-choice condition predicted mean RT in the 4-choice condition and found that the relation was significantly different between the two groups. In contrast, the intra-individual variability of RT was related to mean RT in the same way for schizophrenia patients and control subjects. These results indicate that the response selection process of schizophrenia patients was not simply a slower version of the same process engaged by control subjects, but it was a selection process with different dynamic properties. In contrast, schizophrenia patients did not have a greater intrinsic variability than control subjects. Furthermore, we found that the difference Deltat between RT measured in the 4-choice condition and RT predicted for the control group in the same condition could be used to discriminate effectively patients and control subjects. However, there was no significant association between Deltat and clinical variables. These results suggest that Deltat could reflect a trait impairment of schizophrenia independent from symptom profile. Finally, we suggest that the impairment of the process of selection of the motor response in schizophrenia reflects the alteration of the time-dependent patterns of neural activity that result from anomalies in the connectivity of the brain areas engaged for the selection of the motor response.
Collapse
Affiliation(s)
- Giuseppe Pellizzer
- Brain Sciences Center (11B), Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| | | |
Collapse
|
50
|
Schumacher EH, Cole MW, D'Esposito M. Selection and maintenance of stimulus-response rules during preparation and performance of a spatial choice-reaction task. Brain Res 2007; 1136:77-87. [PMID: 17223091 PMCID: PMC1892617 DOI: 10.1016/j.brainres.2006.11.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/26/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022]
Abstract
The ability to select an appropriate response among competing alternatives is a fundamental requirement for successful performance of a variety of everyday tasks. Recent research suggests that a frontal-parietal network of brain regions (including dorsal prefrontal, dorsal premotor and superior parietal cortices) mediate response selection for spatial material. Most of this research has used blocked experimental designs. Thus, the frontal-parietal activity reported may be due either to tonic activity across a block or to processing occurring at the trial level. Our current event-related fMRI study investigated response selection at the level of the trial in order to identify possible response selection sub-processes. In the study, participants responded to a visually presented stimulus with either a spatially compatible or incompatible manual response. On some trials, several seconds prior to stimulus onset, a cue indicated which task was to be performed. In this way we could identify separate brain regions for task preparation and task performance, if they exist. Our results showed that the frontal-parietal network for spatial response selection activated both during task preparation as well as during task performance. We found no evidence for preparation specific brain mechanisms in this task. These data suggest that spatial response selection and response preparation processes rely on the same neurocognitive mechanisms.
Collapse
Affiliation(s)
- Eric H Schumacher
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|