1
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Moreira-Júnior RE, Guimarães MADF, Etcheverria da Silva M, Maioli TU, Faria AMC, Brunialti-Godard AL. Animal model for high consumption and preference of ethanol and its interplay with high sugar and butter diet, behavior, and neuroimmune system. Front Nutr 2023; 10:1141655. [PMID: 37063320 PMCID: PMC10097969 DOI: 10.3389/fnut.2023.1141655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Mechanisms that dictate the preference for ethanol and its addiction are not only restricted to the central nervous system (CNS). An increasing body of evidence has suggested that abusive ethanol consumption directly affects the immune system, which in turn interacts with the CNS, triggering neuronal responses and changes, resulting in dependence on the drug. It is known that neuroinflammation and greater immune system reactivity are observed in behavioral disorders and that these can regulate gene transcription. However, there is little information about these findings of the transcriptional profile of reward system genes in high consumption and alcohol preference. In this regard, there is a belief that, in the striatum, an integrating region of the brain reward system, the interaction of the immune response and the transcriptional profile of the Lrrk2 gene that is associated with loss of control and addiction to ethanol may influence the alcohol consumption and preference. Given this information, this study aimed to assess whether problematic alcohol consumption affects the transcriptional profile of the Lrrk2 gene, neuroinflammation, and behavior and whether these changes are interconnected. Methods An animal model developed by our research group has been used in which male C57BL/6 mice and knockouts for the Il6 and Nfat genes were subjected to a protocol of high fat and sugar diet intake and free choice of ethanol in the following stages: Stage 1 (T1)-Dietary treatment, for 8 weeks, in which the animals receive high-calorie diet, High Sugar and Butter (HSB group), or standard diet, American Institute of Nutrition 93-Growth (AIN93G group); and Stage 2 (T2)-Ethanol consumption, in which the animals are submitted, for 4 weeks, to alcohol within the free choice paradigm, being each of them divided into 10 groups, four groups continued with the same diet and in the other six the HSB diet is substituted by the AIN93G diet. Five groups had access to only water, while the five others had a free choice between water and a 10% ethanol solution. The weight of the animals was evaluated weekly and the consumption of water and ethanol daily. At the end of the 12-week experiment, anxiety-like behavior was evaluated by the light/dark box test; compulsive-like behavior by Marble burying, transcriptional regulation of genes Lrrk2, Tlr4, Nfat, Drd1, Drd2, Il6, Il1β, Il10, and iNOS by RT-qPCR; and inflammatory markers by flow cytometry. Animals that the diet was replaced had an ethanol high preference and consumption. Results and discussion We observed that high consumption and preference for ethanol resulted in (1) elevation of inflammatory cells in the brain, (2) upregulation of genes associated with cytokines (Il6 and Il1β) and pro-inflammatory signals (iNOS and Nfat), downregulation of anti-inflammatory cytokine (Il10), dopamine receptor (Drd2), and the Lrrk2 gene in the striatum, and (3) behavioral changes such as decreased anxiety-like behavior, and increased compulsive-like behavior. Our findings suggest that interactions between the immune system, behavior, and transcriptional profile of the Lrrk2 gene influence the ethanol preferential and abusive consumption.
Collapse
Affiliation(s)
- Renato Elias Moreira-Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Etcheverria da Silva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
4
|
Dowling JK, Afzal R, Gearing LJ, Cervantes-Silva MP, Annett S, Davis GM, De Santi C, Assmann N, Dettmer K, Gough DJ, Bantug GR, Hamid FI, Nally FK, Duffy CP, Gorman AL, Liddicoat AM, Lavelle EC, Hess C, Oefner PJ, Finlay DK, Davey GP, Robson T, Curtis AM, Hertzog PJ, Williams BRG, McCoy CE. Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nat Commun 2021; 12:1460. [PMID: 33674584 PMCID: PMC7936006 DOI: 10.1038/s41467-021-21617-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.
Collapse
Affiliation(s)
- Jennifer K Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- FutureNeuro, SFI Research Centre, Dublin 2, Ireland
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Remsha Afzal
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mariana P Cervantes-Silva
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Gavin M Davis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nadine Assmann
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Daniel J Gough
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Fidinny I Hamid
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Frances K Nally
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor P Duffy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Aoife L Gorman
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Alex M Liddicoat
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Claire E McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- FutureNeuro, SFI Research Centre, Dublin 2, Ireland.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Rodrigues RRL, Nunes TAL, de Araújo AR, Marinho Filho JDB, da Silva MV, Carvalho FADA, Pessoa ODL, Freitas HPS, Rodrigues KADF, Araújo AJ. Antileishmanial activity of cordiaquinone E towards Leishmania (Leishmania) amazonensis. Int Immunopharmacol 2020; 90:107124. [PMID: 33168414 DOI: 10.1016/j.intimp.2020.107124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is caused by several protozoan species of Leishmania, and being endemically present in 98 countries around the world, it is also a severe public-health problem. The available antileishmanial drugs are toxic and yet present risks of recurrent infection. Efforts to find new, effective, and safe oral agents for the treatment of leishmaniasis are continuing throughout the world. This work aimed to evaluate the antileishmania activity of cordiaquinone E (CORe), isolated from the roots of Cordia polycephala (Lam.) I. M. Johnston. Cytotoxicity, and possible mechanisms of action against promastigote and amastigote forms of Leishmania amazonensis were examined. CORe was effective in inhibiting promastigote (IC50 4.5 ± 0.3 µM) and axenic amastigote (IC50 2.89 ± 0.11 µM) growth in concentrations found non-toxic for the host cell (CC50 246.81 ± 14.5 µM). Our results revealed that CORe presents direct activity against the parasite, inducing cell death by apoptosis. CORe present greater activity against intracellular amastigotes (EC50 1.92 ± 0.2 µM), yet with much higher selectivity indexes than the reference drugs, being respectively more benign towards RAW 264.7 macrophages than meglumine antimoniate and amphotericin B, (respectively by 4.68 and 42.84 fold). The antiamastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels, as well as decreased IL-10 levels. These results encourage the progression of studies on this compound for the development of new leishmanicidal agents.
Collapse
Affiliation(s)
- Raiza Raianne Luz Rodrigues
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Thaís Amanda Lima Nunes
- Laboratório de Doenças Infecciosas, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Alyne Rodrigues de Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - José Delano Barreto Marinho Filho
- Laboratório de Cultura de Células do Delta, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil
| | - Marcos Vinícius da Silva
- Laboratório de Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, MG, Brazil
| | - Fernando Aécio de Amorim Carvalho
- Núcleo de Pesquisas em Plantas Medicinais, Campus Ministro Petrônio Portella, Universidade Federal do Piauí, Teresina 64049-550, Piauí, Brazil
| | | | | | | | - Ana Jérsia Araújo
- Laboratório de Cultura de Células do Delta, Campus Ministro Reis Velloso, Universidade Federal do Delta do Parnaíba, 64202-020 Parnaíba, PI, Brazil.
| |
Collapse
|
6
|
Wu GC, Peng CK, Liao WI, Pao HP, Huang KL, Chu SJ. Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Respir Res 2020; 21:65. [PMID: 32143642 PMCID: PMC7059294 DOI: 10.1186/s12931-020-1325-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background It is well known that ventilation with high volume or pressure may damage healthy lungs or worsen injured lungs. Melatonin has been reported to be effective in animal models of acute lung injury. Melatonin exerts its beneficial effects by acting as a direct antioxidant and via melatonin receptor activation. However, it is not clear whether melatonin receptor agonist has a protective effect in ventilator-induced lung injury (VILI). Therefore, in this study, we determined whether ramelteon (a melatonin receptor agonist) can attenuate VILI and explore the possible mechanism for protection. Methods VILI was induced by high tidal volume ventilation in a rat model. The rats were randomly allotted into the following groups: control, control+melatonin, control+ramelteon, control+luzindole, VILI, VILI+luzindole, VILI + melatonin, VILI + melatonin + luzindole (melatonin receptor antagonist), VILI + ramelteon, and VILI + ramelteon + luzindole (n = 6 per group). The role of interleukin-10 (IL-10) in the melatonin- or ramelteon-mediated protection against VILI was also investigated. Results Ramelteon treatment markedly reduced lung edema, serum malondialdehyde levels, the concentration of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), NF-κB activation, iNOS levels, and apoptosis in the lung tissue. Additionally, ramelteon treatment significantly increased heat shock protein 70 expression in the lung tissue and IL-10 levels in BALF. The protective effect of ramelteon was mitigated by the administration of luzindole or an anti-IL-10 antibody. Conclusions Our results suggest that a melatonin receptor agonist has a protective effect against VILI, and its protective mechanism is based on the upregulation of IL-10 production.
Collapse
Affiliation(s)
- Geng-Chin Wu
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu, Taipei, 114, Taiwan.
| |
Collapse
|
7
|
Silva CB, Gómez JP, do Vale GT, Simplicio JA, Gonzaga NA, Tirapelli CR. Interleukin-10 limits the initial steps of the cardiorenal damage induced by ethanol consumption. Life Sci 2020; 242:117239. [DOI: 10.1016/j.lfs.2019.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
8
|
Expression Analysis of the Mediators of Epithelial to Mesenchymal Transition and Early Risk Assessment of Therapeutic Failure in Laryngeal Carcinoma. JOURNAL OF ONCOLOGY 2019; 2019:5649846. [PMID: 31885577 PMCID: PMC6926423 DOI: 10.1155/2019/5649846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/26/2019] [Accepted: 08/10/2019] [Indexed: 02/08/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is an aggressive malignancy which lacks early predictors of prognosis. Here, we hypothesized that expression and prognostic characterization of the critical mediators of epithelial to mesenchymal transition (EMT) may provide key information in this regard. Linear regression and multiple correspondence analyses were performed on immunohistochemical data obtained from 20 invasive tumors. Principal component and unsupervised hierarchical clustering were used to analyze the dataset patterns associating with LSCC metastatic profile. Survival and death risk assessments were performed using Kaplan–Meier and hazard ratio tests. Data mining analysis using CHAID decision tree and logistic regression analysis was applied to define the predictive value of the risk factors of tumor aggressiveness. Our analyses showed, that in invasive LSCC tumors, cells associating with a mesenchymal profile were likely to exhibit enhanced NOS2, TGF-β, and IL-17A expression levels, concomitantly to NF-κB nuclear translocation. IHC data deciphering determined that EMT induction was also linked to the enrichment of the tumors with CD68+ populations and IL-10 signal. Strikingly, dataset cluster analysis showed that these signatures could define distinct patterns of invasive tumors, where NOS2 associated with IL-10 expression, and TGF-β and IL-17A signals associated with MMP-9 activation. Decision tree analysis identified IL-17A as a possible predictor of LSCC aggressiveness. Altogether, our results show that distinct immunological patterns would support the acquisition of EMT features in invasive LSCC and suggest that IL-17A may be useful in the early identification of patients “at-risk” of therapeutic failure.
Collapse
|
9
|
Clomiphene citrate increases nitric oxide, interleukin-10 and reduces matrix metalloproteinase-9 in women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2018; 228:27-31. [PMID: 29908374 DOI: 10.1016/j.ejogrb.2018.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Matrix metalloproteinase-9, Nitric oxide and inflammation plays a role in the pathogenesis of poly cystic ovary syndrome (PCOS). Even though these parameters are altered in PCOS, the effect of clomiphene citrate on them has not been studied till date. The present study was done to assess the effect of clomiphene citrate on matrix metalloproteinase-9, nitric oxide and interleukin-10 levels in women with PCOS. STUDY DESIGN 72 women diagnosed with PCOS were enrolled in the study. Matrix metalloproteinase-9, nitric oxide and interleukin-10 levels were compared at baseline and after three weeks following Clomiphene citrate treatment. RESULTS Clomiphene citrate increases both nitric oxide (p = 0.03) and interleukin-10 (p < 0.001) levels and reduces matrix metalloproteinase-9 levels (p < 0.001) in women with PCOS. It also improves the ovulation rate (52.8%) and clinical pregnancy rate (19.4%) in PCOS. Also there was a significant reduction in matrix metalloproteinase-9 levels in both the ovulatory (p < 0.001) and conceived groups (p = 0.024) compared to non ovulatory and non conceived group. There was no difference in nitric oxide and interleukin-10 levels in ovulatory and conceived groups compared to non ovulatory and non conceived group. CONCLUSION We conclude that clomiphene citrate increases the levels of nitric oxide and interleukin-10 and decreases the matrix metalloproteinase - 9 levels and improves the ovulation rate and clinical pregnancy rate in PCOS.
Collapse
|
10
|
Rol del receptor de adenosina A 2A , óxido nítrico y factor de crecimiento de endotelio vascular en la sepsis: una revisión no sistemática. ANGIOLOGIA 2018. [DOI: 10.1016/j.angio.2017.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 2018; 8:383. [PMID: 29321620 PMCID: PMC5762685 DOI: 10.1038/s41598-017-18786-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of Parkinson’s disease (PD) and other neurodegenerative disorders. We show that lack of PINK1- a mitochondrial kinase linked to recessive familial PD – leads to glia type-specific abnormalities of innate immunity. PINK1 loss enhances LPS/IFN-γ stimulated pro-inflammatory phenotypes of mixed astrocytes/microglia (increased iNOS, nitric oxide and COX-2, reduced IL-10) and pure astrocytes (increased iNOS, nitric oxide, TNF-α and IL-1β), while attenuating expression of both pro-inflammatory (TNF-α, IL-1β) and anti-inflammatory (IL-10) cytokines in microglia. These abnormalities are associated with increased inflammation-induced NF-κB signaling in astrocytes, and cause enhanced death of neurons co-cultured with inflamed PINK1−/− mixed glia and neuroblastoma cells exposed to conditioned medium from LPS/IFN-γ treated PINK1−/− mixed glia. Neuroblastoma cell death is prevented with an iNOS inhibitor, implicating increased nitric oxide production as the cause for enhanced death. Finally, we show for the first time that lack of a recessive PD gene (PINK1) increases α-Synuclein-induced nitric oxide production in all glia types (mixed glia, astrocytes and microglia). Our results describe a novel pathogenic mechanism in recessive PD, where PINK1 deficiency may increase neuron death via exacerbation of inflammatory stimuli-induced nitric oxide production and abnormal innate immune responses in glia cells.
Collapse
|
12
|
Khosrowpour Z, Hashemi SM, Mohammadi-Yeganeh S, Soudi S. Pretreatment of Mesenchymal Stem Cells WithLeishmania majorSoluble Antigens Induce Anti-Inflammatory Properties in Mouse Peritoneal Macrophages. J Cell Biochem 2017; 118:2764-2779. [DOI: 10.1002/jcb.25926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Zahra Khosrowpour
- Department of Immunology; School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology; School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Applied Cell Sciences; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Sara Soudi
- Department of Immunology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
13
|
Kirov H, Schwarzer M, Neugebauer S, Faerber G, Diab M, Doenst T. Metabolomic profiling in patients undergoing Off-Pump or On-Pump coronary artery bypass surgery. BMC Cardiovasc Disord 2017; 17:93. [PMID: 28381258 PMCID: PMC5381030 DOI: 10.1186/s12872-017-0518-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022] Open
Abstract
Background Coronary artery bypass surgery can be performed without (Off-Pump) or with cardiopulmonary bypass (On-Pump). Extracorporeal circulation and cardioplegic arrest may cause alterations in the plasma metabolome. We assessed metabolomic changes in patients undergoing On-Pump or Off-Pump coronary artery bypass surgery. Methods We assessed five analyte classes (41 acylcarnitines, 14 amino acids, 92 glycerophospholipids, 15 sphingolipids, sugars, lactate) using a mass-spectrometry-based kit (Biocrates AbsoluteIDQ® p150) in paired arterial and coronary sinus blood obtained from 10 consecutive On-Pump and 10 Off-Pump patients. Cardioplegia for On-Pump was warm blood Calafiore. On-Pump outcomes were corrected for hemodilution through crystalloid priming. Results Demographic data were equal in both groups with normal ejection fraction, renal and liver function. Patients received 2.25 ± 0.64 bypass grafts. All postoperative courses were uneventful. Of 164 measured metabolites, only 13 (7.9%) were altered by cardiopulmonary bypass. We found more long-chain acylcarnitines Off-Pump and more short-chain acylcarnitines On-Pump. Glycerophospholipids showed lower concentrations On-Pump and arginine (as the only different amino acid) Off-Pump. Interestingly, plasma arginine (nitric oxide precursor) concentration at the end of surgery correlated inversely with postoperative vasopressor need (r = −0.7; p < 0.001). Assessing arterial/venous differences revealed phosphatidylcholine-production and acylcarnitine-consumption. These findings were unaffected by cardiopulmonary bypass, cardioplegia or temporary vessel occlusion during Off-Pump surgery. Conclusions Cardiopulmonary bypass and warm blood cardioplegia cause only minor changes to the metabolomic profile of patients undergoing coronary artery bypass surgery. The observed changes affected mainly acylcarnitines. In addition, there appears to be a relationship between arginine and vasopressor need after bypass surgery. Electronic supplementary material The online version of this article (doi:10.1186/s12872-017-0518-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Kirov
- Department of Cardiothoracic Surgery, Friedrich Schiller University Jena, University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - M Schwarzer
- Department of Cardiothoracic Surgery, Friedrich Schiller University Jena, University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - S Neugebauer
- Department of Clinical Chemistry and Laboratory Medicine, Friedrich-Schiller-University Jena, University Hospital, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - G Faerber
- Department of Cardiothoracic Surgery, Friedrich Schiller University Jena, University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - M Diab
- Department of Cardiothoracic Surgery, Friedrich Schiller University Jena, University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Department of Cardiothoracic Surgery, Cairo University, Cairo, Egypt
| | - T Doenst
- Department of Cardiothoracic Surgery, Friedrich Schiller University Jena, University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
14
|
Baseler WA, Davies LC, Quigley L, Ridnour LA, Weiss JM, Hussain SP, Wink DA, McVicar DW. Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production. Redox Biol 2016; 10:12-23. [PMID: 27676159 PMCID: PMC5037266 DOI: 10.1016/j.redox.2016.09.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023] Open
Abstract
Inflammatory maturation of M1 macrophages by proinflammatory stimuli such as toll like receptor ligands results in profound metabolic reprogramming resulting in commitment to aerobic glycolysis as evidenced by repression of mitochondrial oxidative phosphorylation (OXPHOS) and enhanced glucose utilization. In contrast, "alternatively activated" macrophages adopt a metabolic program dominated by fatty acid-fueled OXPHOS. Despite the known importance of these developmental stages on the qualitative aspects of an inflammatory response, relatively little is know regarding the regulation of these metabolic adjustments. Here we provide evidence that the immunosuppressive cytokine IL-10 defines a metabolic regulatory loop. Our data show for the first time that lipopolysaccharide (LPS)-induced glycolytic flux controls IL-10-production via regulation of mammalian target of rapamycin (mTOR) and that autocrine IL-10 in turn regulates macrophage nitric oxide (NO) production. Genetic and pharmacological manipulation of IL-10 and nitric oxide (NO) establish that metabolically regulated autocrine IL-10 controls glycolytic commitment by limiting NO-mediated suppression of OXPHOS. Together these data support a model where autocine IL-10 production is controlled by glycolytic flux in turn regulating glycolytic commitment by preserving OXPHOS via suppression of NO. We propose that this IL-10-driven metabolic rheostat maintains metabolic equilibrium during M1 macrophage differentiation and that perturbation of this regulatory loop, either directly by exogenous cellular sources of IL-10 or indirectly via limitations in glucose availability, skews the cellular metabolic program altering the balance between inflammatory and immunosuppressive phenotypes.
Collapse
Affiliation(s)
- Walter A Baseler
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Luke C Davies
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Laura Quigley
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Jonathan M Weiss
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - S Perwez Hussain
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States.
| |
Collapse
|
15
|
Giglio D, Wasén C, Mölne J, Suchy D, Swanpalmer J, Jabonero Valbuena J, Tobin G, Ny L. Downregulation of toll-like receptor 4 and IL-6 following irradiation of the rat urinary bladder. Clin Exp Pharmacol Physiol 2016; 43:698-705. [DOI: 10.1111/1440-1681.12583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/15/2016] [Accepted: 04/24/2016] [Indexed: 11/26/2022]
Affiliation(s)
- D Giglio
- Department of Pharmacology; University of Gothenburg; Gothenburg Sweden
- Department of Oncology; University of Gothenburg; Gothenburg Sweden
| | - C Wasén
- Department of Rheumatology and Inflammation Research; University of Gothenburg; Gothenburg Sweden
| | - J Mölne
- Department of Pathology; University of Gothenburg; Gothenburg Sweden
| | - D Suchy
- Department of Pharmacology; University of Gothenburg; Gothenburg Sweden
| | - J Swanpalmer
- Department of Radiation Physics; The Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | | | - G Tobin
- Department of Pharmacology; University of Gothenburg; Gothenburg Sweden
| | - L Ny
- Department of Oncology; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
16
|
Ebner F, Brandt C, Thiele P, Richter D, Schliesser U, Siffrin V, Schueler J, Stubbe T, Ellinghaus A, Meisel C, Sawitzki B, Nitsch R. Microglial activation milieu controls regulatory T cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:5594-602. [PMID: 24146044 DOI: 10.4049/jimmunol.1203331] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although mechanisms leading to brain-specific inflammation and T cell activation have been widely investigated, regulatory mechanisms of local innate immune cells in the brain are only poorly understood. In this study, to our knowledge we show for the first time that MHC class II(+)CD40(dim)CD86(dim)IL-10(+) microglia are potent inducers of Ag-specific CD4(+)Foxp3(+) regulatory T cells (Tregs) in vitro. Microglia differentially regulated MHC class II expression, costimulatory molecules, and IL-10 depending on the amount of IFN-γ challenge and Ag dose, promoting either effector T cell or Treg induction. Microglia-induced Tregs were functionally active in vitro by inhibiting Ag-specific proliferation of effector T cells, and in vivo by attenuating experimental autoimmune encephalomyelitis disease course after adoptive transfer. These results indicate that MHC class II(+)CD40(dim)CD86(dim)IL-10(+) microglia have regulatory properties potentially influencing local immune responses in the CNS.
Collapse
Affiliation(s)
- Friederike Ebner
- Institute for Cell Biology and Neurobiology, Charité-University Medicine Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Silva SL, Vaz AR, Diógenes MJ, van Rooijen N, Sebastião AM, Fernandes A, Silva RFM, Brites D. Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 2012; 62:2398-408. [PMID: 22361233 DOI: 10.1016/j.neuropharm.2012.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 12/28/2022]
Abstract
Neuronal oxidative damage and cell death by unconjugated bilirubin (UCB) showed to be mediated by overstimulation of glutamate receptors and nitric oxide (NO) production, which was abrogated by the bile acid glycoursodeoxycholic acid (GUDCA). Microglia, a crucial mediator of CNS inflammation, evidenced to react to UCB by releasing glutamate and NO before becoming senescent. Our studies demonstrated that neurite outgrowth deficits are produced in neurons exposed to UCB and that conditioned media from these UCB-treated neurons further stimulate NO production by microglia. Nevertheless, microglia protective and/or harmful effects in neonatal jaundice are poorly understood, or unrecognized. Here, we investigated the role of microglia, glutamate and NO in the impairment of neurite sprouting by UCB. Therapeutic potential of the anti-inflammatory cytokine interleukin (IL)-10 and GUDCA was also evaluated. By using MK-801 (a NMDA glutamate-subtype receptor antagonist) and L-NAME (a non-specific NO synthase inhibitor) we found that glutamate and NO are determinants in the early and enduring deficits in neurite extension and ramification induced by UCB. Both GUDCA and IL-10 prevented these effects and decreased the production of glutamate and NO. Only GUDCA was able to counteract neuronal death and synaptic changes. Data from organotypic-cultured hippocampal slices, depleted or non-depleted in microglia, supported that microglia participate in glutamate homeostasis and contribute to NO production and cell demise, which were again abrogated by GUDCA. Collectively our data suggest that microglia is a key player in UCB-induced neurotoxicity and that GUDCA might be a valuable preventive therapy in neonates at risk of UCB encephalopathy.
Collapse
Affiliation(s)
- Sandra L Silva
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Leung PO, Wang SH, Lu SH, Chou WH, Shiau CY, Chou TC. Simvastatin inhibits pro-inflammatory mediators through induction of heme oxygenase-1 expression in lipopolysaccharide-stimulated RAW264.7 macrophages. Toxicol Lett 2011; 207:159-66. [PMID: 21925249 DOI: 10.1016/j.toxlet.2011.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 12/16/2022]
Abstract
It has been reported that the anti-inflammatory activity of 3-hydroxy-3-methyl-glutary coenzyme A (HMG-CoA) reductase inhibitors (statins) is independent of their hypocholesterolemic effect. Previous studies indicated that induction of heme oxygenase-1 (HO-1) exerts a cytoprotective activity in several inflammatory diseases. Here, the possibility that HO-1 is involved in the anti-inflammatory action of simvastatin, using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages as a model system has been specifically addressed. Our results demonstrated that in the presence of LPS, simvastatin significantly increased HO-1 expression and activity in a dose-dependent manner compared to that of LPS-stimulated alone macrophages. Moreover, simvastatin significantly inhibited LPS-induced inducible nitric oxide synthase (NOS) expression, and formation of pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), nitrite and free radicals, but enhanced interleukin-10 (IL-10) production. Similarly, the IκB-α degradation and nuclear transcription factor-κB translocation and activation caused by LPS were significantly suppressed by simvastatin. However, these anti-inflammatory activities of simvastatin were markedly reversed by addition of a HO-1 inhibitor zinc protoporphyrin (ZnPP). Accordingly, the present results indicate that the anti-inflammatory activity of simvastatin could, at least in part, be regulated by induction of HO-1-mediated processes.
Collapse
Affiliation(s)
- Pak-On Leung
- Department of Intensive Care, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Chang LP, Lai YS, Wu CJ, Chou TC. Liquid perfluorochemical inhibits inducible nitric oxide synthase expression and nitric oxide formation in lipopolysaccharide-treated RAW 264.7 macrophages. J Pharmacol Sci 2010; 111:147-54. [PMID: 19834286 DOI: 10.1254/jphs.09043fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Partial liquid ventilation with various types of perfluorocarbon (PFC) has been shown to be beneficial in treating acute lung injury, a clinical outcome that may involve the anti-inflammatory activity of PFC. FC-77 is a type of PFC with relatively higher vapor pressure and evaporative loss than other PFCs during partial liquid ventilation. Overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been proposed to play a crucial role in the pathogenesis of inflammatory diseases. However, whether the iNOS/NO pathway is affected by FC-77 is unknown. Thus, the aim of this study was to investigate whether FC-77 inhibits iNOS expression and NO production in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. We found that treatment with FC-77 significantly attenuated LPS-induced iNOS expression/activity and production of NO and reactive oxygen species (ROS). FC-77 also attenuated LPS-induced pro-inflammatory cytokine formation, but enhanced interleukin-10 production. Furthermore, the LPS-induced degradation of cytosolic IkappaB-alpha and activation of nuclear transcription factor-kappaB (NF-kappaB) were also inhibited by FC-77. In conclusion, the present study is the first to demonstrate that FC-77 decreases LPS-induced NO production in macrophages, which may be associated with the suppression of pro-inflammatory cytokines, and ROS production, as well as NF-kappaB activation. These results also provide a novel explanation for its anti-inflammatory activity.
Collapse
Affiliation(s)
- Li-Ping Chang
- Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
20
|
Fukutomi Y, Maeda Y, Matsuoka M, Makino M. Temperature dependency for survival of Mycobacterium leprae in macrophages. ACTA ACUST UNITED AC 2009; 78:7-16. [PMID: 19227144 DOI: 10.5025/hansen.78.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hansen's disease is caused by an infection with an intracellular pathogen, Mycobacterium leprae, which mainly inhabits macrophages and Schwann cells. However, little is known about the survival or growth mechanisms of the bacilli in mouse and human macrophages. In the present study, by using radiorespirometry analysis for the evaluation of the viability of M. leprae, we observed that in vitro incubation of M. leprae-infected macrophages at 35 degrees C was more growth permissive than at 37 degrees C, and supplementation with the immunosuppressive cytokine IL-10 supported the survival of the bacilli in the macrophages for 3 weeks, whereas viability of the bacilli was gradually lost if cultured without IL-10. In human macrophages, M. leprae retained its viability when cultured at 35 degrees C for at least 4 weeks without IL-10. However, the viability of M. leprae was almost lost within 2 weeks if cultured at 37 degrees C. These data suggest that temperature is a crucial factor for the survival of M. leprae in host cells.
Collapse
Affiliation(s)
- Yasuo Fukutomi
- Department of Microbiology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1, Aoba-cho, Higashimurayama-shi, Tokyo 189-0002, Japan.
| | | | | | | |
Collapse
|
21
|
Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci U S A 2008; 105:13532-7. [PMID: 18765807 DOI: 10.1073/pnas.0803852105] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a mechanism of microbial evasion of Toll-like receptor (TLR)-mediated immunity that depends on CXCR4 exploitation. Specifically, the oral/systemic pathogen Porphyromonas gingivalis induces cross-talk between CXCR4 and TLR2 in human monocytes or mouse macrophages and undermines host defense. This is accomplished through its surface fimbriae, which induce CXCR4/TLR2 co-association in lipid rafts and interact with both receptors: Binding to CXCR4 induces cAMP-dependent protein kinase A (PKA) signaling, which in turn inhibits TLR2-mediated proinflammatory and antimicrobial responses to the pathogen. This outcome enables P. gingivalis to resist clearance in vitro and in vivo and thus to promote its adaptive fitness. However, a specific CXCR4 antagonist abrogates this immune evasion mechanism and offers a promising counterstrategy for the control of P. gingivalis periodontal or systemic infections.
Collapse
|
22
|
Huang YH, Tsai PS, Kai YF, Yang CH, Huang CJ. Lidocaine inhibition of inducible nitric oxide synthase and cationic amino acid transporter-2 transcription in activated murine macrophages may involve voltage-sensitive Na+ channel. Anesth Analg 2006; 102:1739-44. [PMID: 16717319 DOI: 10.1213/01.ane.0000219593.15109.db] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lidocaine has been reported to inhibit nitric oxide (NO) production in activated murine macrophages, but the role of inducible NO synthase (iNOS) in lidocaine-induced inhibition of NO has not been explored. In addition, type-2 cationic amino acid transporter (CAT-2) and guanosine triphosphate cyclohydrolase I (GTPCH) also regulate iNOS activity. The effects of lidocaine on CAT-2 and GTPCH are unknown. To explore further these effects, confluent immortalized murine macrophages (RAW264.7 cells) were incubated with lipopolysaccharide (LPS) or in combination with lidocaine (5, 50, or 500 microM) for 18 h before harvesting. We also used tetrodotoxin (TTX) and veratridine to elucidate the possible role of voltage-sensitive Na+ channel. Our data demonstrated that LPS significantly upregulated transcription of iNOS and CAT-2 but not GTPCH in stimulated macrophages. In a dose-dependent manner, lidocaine significantly attenuated the LPS-induced upregulation of iNOS and CAT-2. Conversely, lidocaine significantly increased GTPCH transcription in LPS-stimulated macrophages. The effects of TTX on iNOS, CAT-2, and GTPCH expression were comparable to those of lidocaine. In addition, veratridine significantly attenuated the effects of lidocaine and TTX. We therefore concluded that lidocaine significantly inhibits iNOS and CAT-2 and, in turn, enhances GTPCH transcription in LPS-stimulated macrophages via a mechanism that possibly involves the voltage-sensitive Na+ channel.
Collapse
Affiliation(s)
- Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
23
|
Chen CC, Lee JJ, Tsai PS, Lu YT, Huang CL, Huang CJ. Platonin attenuates LPS-induced CAT-2 and CAT-2B induction in stimulated murine macrophages. Acta Anaesthesiol Scand 2006; 50:604-12. [PMID: 16643232 DOI: 10.1111/j.1399-6576.2006.00750.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platonin, a cyanine photosensitizing dye, is a potent immunomodulator that suppresses acute inflammation. Platonin not only inhibits interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha production but also improves circulatory failure in septic rats. In addition, platonin reduces plasma nitric oxide (NO) formation during sepsis. However, the effects of platonin on inducible NO synthase (iNOS) and cationic amino-acid transporter (including CAT-2, CAT-2 A, and CAT-2B) expressions during sepsis remain uninvestigated. METHODS Five groups of confluent murine macrophages (RAW264.7 cells) were randomly allocated to receive a 1-h pretreatment of one of five doses of platonin (0.1 microM, 1 microM, 10 microM, 100 microM, or 1000 microM) followed by lipopolysaccharide (LPS; 100 ng ml(-1)). For negative, positive, and platonin control, three other groups of cell cultures were randomly allocated to receive phosphate-buffered saline, LPS, or platonin (1000 microM). The cultures were harvested after exposing them to LPS for 18 h or a comparable duration in those groups without LPS. NO production, L-arginine transport, and expression of the relevant enzymes were then evaluated. RESULTS Platonin significantly attenuated LPS-induced up-regulation of iNOS expression and NO production in stimulated murine macrophages in a dose-dependent manner. Platonin also significantly inhibited up-regulation of CAT-2 and CAT-2B expression as well as L-arginine transport in LPS-stimulated murine macrophages in a dose-dependent manner. In contrast, CAT-2 A expression in murine macrophages was not affected by LPS and/or platonin. CONCLUSIONS Platonin attenuates NO production and L-arginine transport in LPS-stimulated murine macrophages possibly through inhibiting iNOS, CAT-2, and CAT-2B expression.
Collapse
Affiliation(s)
- C-C Chen
- Nursing and Management College [corrected] Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, Zhang MQ, Spector DL. Regulating gene expression through RNA nuclear retention. Cell 2005; 123:249-63. [PMID: 16239143 DOI: 10.1016/j.cell.2005.08.033] [Citation(s) in RCA: 558] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 06/08/2005] [Accepted: 08/09/2005] [Indexed: 01/18/2023]
Abstract
Multiple mechanisms have evolved to regulate the eukaryotic genome. We have identified CTN-RNA, a mouse tissue-specific approximately 8 kb nuclear-retained poly(A)+ RNA that regulates the level of its protein-coding partner. CTN-RNA is transcribed from the protein-coding mouse cationic amino acid transporter 2 (mCAT2) gene through alternative promoter and poly(A) site usage. CTN-RNA is diffusely distributed in nuclei and is also localized to paraspeckles. The 3'UTR of CTN-RNA contains elements for adenosine-to-inosine editing, involved in its nuclear retention. Interestingly, knockdown of CTN-RNA also downregulates mCAT2 mRNA. Under stress, CTN-RNA is posttranscriptionally cleaved to produce protein-coding mCAT2 mRNA. Our findings reveal a role of the cell nucleus in harboring RNA molecules that are not immediately needed to produce proteins but whose cytoplasmic presence is rapidly required upon physiologic stress. This mechanism of action highlights an important paradigm for the role of a nuclear-retained stable RNA transcript in regulating gene expression.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Base Sequence
- Cationic Amino Acid Transporter 2/genetics
- Cationic Amino Acid Transporter 2/metabolism
- Cell Fractionation
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromosomes
- Gene Expression Regulation
- Genes, Reporter
- Genome
- Green Fluorescent Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Interferon-gamma/pharmacology
- Lipopolysaccharides/pharmacology
- Mice
- Models, Biological
- Molecular Sequence Data
- NIH 3T3 Cells
- Oligonucleotides, Antisense/pharmacology
- Poly A/genetics
- Precipitin Tests
- Promoter Regions, Genetic
- RNA/genetics
- RNA/metabolism
- RNA Editing
- RNA Processing, Post-Transcriptional
- RNA, Messenger/analysis
- RNA, Small Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA
- Transcription, Genetic
Collapse
|
25
|
Jessup JM, Samara R, Battle P, Laguinge LM. Carcinoembryonic antigen promotes tumor cell survival in liver through an IL-10-dependent pathway. Clin Exp Metastasis 2005; 21:709-17. [PMID: 16035616 DOI: 10.1007/s10585-004-7705-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most circulating tumor cells die within 24 h of entering the hepatic microvasculature because their arrest initiates an ischemia-reperfusion (I/R) injury that is cytotoxic. Human colorectal carcinomas (CRC) produce the glycoprotein Carcinoembryonic Antigen (CEA) that increases experimental liver metastasis in nude mice. Since CEA induces release of IL-6 and IL-10, we hypothesized that CEA inhibits the I/R injury through a Kupffer cell-mediated cytokine-dependent pathway. We assessed cytokine effects in CRC co-cultured with liver and in vivo. Human CRC prelabeled with fluorescent dyes were incubated with a reoxygenated suspension of ischemic nude mouse liver fragments in a bioreactor. CEA, rhIL-6 or rhIL-10 were either administered to the donor mice prior to hepatic ischemia or during co-culture. Liver donors were athymic nude or iNOS, IL-6 or IL-10 knock out mice. Ischemic-reoxygenated liver kills Clone A CRC through production of nitric oxide (NO) and superoxide anion. Treatment of liver donors with CEA prior to hepatic ischemia inhibited this in vitro cytotoxicity through an IL-10 and Kupffer cell dependent pathway that inhibited NF-kappaB activation, NO production and iNOS upregulation. IL-10 but not IL-6 enhanced CRC survival in nude mouse liver in vivo. Thus, CEA enhanced metastasis by inducing IL-10 to inhibit iNOS upregulation in host liver.
Collapse
Affiliation(s)
- J Milburn Jessup
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA.
| | | | | | | |
Collapse
|
26
|
Holán V, Pindjáková J, Zajícová A, Krulová M, Zelezná B, Matousek P, Svoboda P. The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells. Xenotransplantation 2005; 12:227-34. [PMID: 15807773 DOI: 10.1111/j.1399-3089.2005.00214.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Production of nitric oxide (NO) by graft infiltrating macrophages has been suggested as an important effector mechanism of allograft rejection. Expression of the gene for the inducible NO synthase (iNOS) and the production of NO in rejected graft has been demonstrated in various models of allotransplantation. However, whether NO plays a role in rejection of skin xenografts has not been documented. METHODS Explants of rejected skin allografts or xenografts (rat to mouse) were cultivated in vitro and the production of NO, interleukin (IL)-2, IL-4, IL-10 and interferon-gamma (IFN-gamma) by graft infiltrating cells was determined by the Griess reaction or ELISA. Effects of supernatants from cultures of xenograft explants on the expression of gene for iNOS, accumulation of iNOS protein and NO production were determined by RT-PCR or Western blots. Molecular mass of the factor with the suppressive activity was characterized by filtration on chromatography Sephacryl S-200 Superfine column. In addition, the effects of 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT), a selective iNOS inhibitor, on survival of skin xenografts were tested. RESULTS While explants of rejected mouse skin allografts produced substantial amounts of NO, undetectable or only very low levels of NO were found in supernatants from cultured rat skin xenografts. Cocultivation of bacterial lipopolysaccharide (LPS)-stimulated mouse macrophages which produce high quantities of NO, with pieces of rejected xenografts, but not of syngeneic grafts, allografts or normal rat skin, completely inhibited production of NO. Production of IL-6 and IL-10 by LPS-stimulated macrophages was not inhibited under the same conditions. The inhibition of NO production was mediated by a factor which was produced by rejected rat xenograft and which was eluted from chromatography Sephacryl S-200 Superfine column in a fraction representing a molecular mass of 67 kDa. The factor did not inhibit the expression of the gene for iNOS, reduce the level of iNOS protein in stimulated macrophages, or function as a scavenger of NO. Rather, the factor inhibited the function of iNOS. The finding that NO does not play an important role during rejection of skin xenografts is supported by the observation that treatment of graft recipients with AMT, a specific iNOS inhibitor, did not enhance xenograft survival, while the same treatment resulted in prolongation of survival of skin allografts. CONCLUSION The results thus demonstrate that a 67-kDa molecule produced by rejected rat skin xenografts selectively inhibits iNOS activity in graft infiltrating macrophages. We suggest that NO does not play a significant role in rejection of skin xenografts as it does in the case of allograft rejection.
Collapse
Affiliation(s)
- Vladimír Holán
- Institute of Molecular Genetics, Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lin WC, Tsai PS, Huang CJ. Catecholamines' enhancement of inducible nitric oxide synthase-induced nitric oxide biosynthesis involves CAT-1 and CAT-2A. Anesth Analg 2005; 101:226-32, table of contents. [PMID: 15976236 DOI: 10.1213/01.ane.0000153860.71992.29] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Catecholamines enhance inducible nitric oxide synthase (iNOS) expression that results in nitric oxide (NO) overproduction in lipopolysaccharide (LPS)-stimulated macrophages. L-arginine transport mediated by cationic amino acid transporters (including CAT-1, CAT-2, CAT-2A, and CAT-2B) is crucial in regulating iNOS activity. We sought to assess the effects of catecholamines on L-arginine transport and CAT isozyme expression in stimulated macrophages. Confluent RAW264.7 cells were cultured with LPS with or without catecholamines (epinephrine or norepinephrine, 5 x 10(-6) M) for 18 h. NO production, L-arginine transport, and enzyme expression were determined. Our data revealed that LPS co-induced iNOS, CAT-2, and CAT-2B expression, whereas CAT-1 and CAT-2A expression remained unaffected. Significant increases in NO production and L-arginine transport (approximately eight-fold and three-fold increases, respectively) were found in activated macrophages. Catecholamines significantly enhanced NO production and L-arginine transport (approximately 30% and 20% increases, respectively) in activated macrophages. Catecholamines also enhanced the expression of iNOS, CAT-1, and CAT-2A but not CAT-2 or CAT-2B in LPS-stimulated macrophages. Furthermore, the enhancement effects of catecholamines were inhibited by either dexamethasone or propranolol. We provide the first evidence to indicate that L-arginine transport in activated macrophages could be enhanced by catecholamines. Furthermore, this catecholamine-enhanced L-arginine transport might involve CAT-1 and CAT-2A but not CAT-2 or CAT-2B.
Collapse
Affiliation(s)
- Wen-Chou Lin
- Department of Urology, Mackay Memorial Hospital, 92 s. 2 Chung San N. Rd., Taipei 104, Taiwan, Republic of China
| | | | | |
Collapse
|
28
|
Bae SY, Xu Q, Hutchinson D, Colton CA. Y+ and y+ L arginine transporters in neuronal cells expressing tyrosine hydroxylase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:65-73. [PMID: 16085056 DOI: 10.1016/j.bbamcr.2004.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 12/28/2004] [Accepted: 12/28/2004] [Indexed: 11/18/2022]
Abstract
Arginine is a semi-essential amino acid that serves as sole substrate for enzymes involved in diverse cell processes including redox balance via nitric oxide synthase (NOS) and cell proliferation via arginase. Neurons that express nNOS require intracellular arginine to generate nitric oxide (NO). Using a TH+ neuronal cell line (CAD cells), we show that neuronal NO production is largely dependent on extracellular arginine. Although a small intracellular pool exists in CAD cells, the lack of mRNA for argininosuccinate synthase (AS), a rate limiting enzyme for arginine recycling, suggests that intracellular pools are not re-supplied by this mechanism in this sub-class of neurons. Rather, arginine is taken up from the extracellular media by two primary transport systems, the y+ and the y+ L systems. The expression of CAT1, CAT3, y+ LAT1 and y+ LAT2 mRNAs supports the presence of each system. CAD cell arginine transport is depressed by increased extracellular K+ levels and demonstrates that variations in membrane potential control neuronal arginine uptake. Short term exposure to the oxidizing agents, rotenone and Angeli's salt, but not FeSO4, increases arginine transport. The regulation of arginine uptake by physiological factors suggests that arginine supply adapts in a moment-to-moment fashion to the changing needs of the neuron.
Collapse
Affiliation(s)
- S Y Bae
- Division of Neurology, Box 2900, Bryan Research Bldg, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
29
|
Huang CJ, Tsai PS, Yang CH, Su TH, Stevens BR, Skimming JW, Pan WHT. Pulmonary transcription of CAT-2 and CAT-2B but not CAT-1 and CAT-2A were upregulated in hemorrhagic shock rats. Resuscitation 2004; 63:203-12. [PMID: 15531073 DOI: 10.1016/j.resuscitation.2004.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 05/24/2004] [Accepted: 05/24/2004] [Indexed: 11/29/2022]
Abstract
Hemorrhagic shock stimulates nitric oxide (NO) biosynthesis through upregulation of inducible NO synthase (iNOS) expression. Trans-membrane l-arginine transportation mediated by the isozymes of cationic amino acid transporters (e.g. CAT-1, CAT-2, CAT-2A, and CAT-2B) is one crucial regulatory mechanism that regulates iNOS activity. We sought to assess the effects of hemorrhage and resuscitation on the expression of these regulatory enzymes in hemorrhage-stimulated rat lungs. Twenty-four rats were randomized to a sham-instrumented group, a sustained shock group, a shock with blood resuscitation group, or a shock with normal saline resuscitation group. Hemorrhagic shock was induced by withdrawing blood to maintain MAP between 40 and 45mmHg for 60min. Resuscitation by infusing blood/saline mixtures (blood resuscitation group) or saline alone (saline resuscitation group) was then performed. At the end of the experiment (300min after hemorrhage began), rats were sacrificed and enzymes expression as well as pulmonary NO biosynthesis and lung injuries were assayed. Our data revealed that hemorrhage-induced pulmonary iNOS, CAT-2, and CAT-2B transcription which was associated with pulmonary NO overproduction and subsequent lung injury. Resuscitation significantly attenuated the hemorrhage-induced enzyme upregulation, pulmonary NO overproduction, and lung injury. Blood/saline mixtures were superior to saline as a resuscitation solution in treating hemorrhage-induced pulmonary NO overproduction and lung injury. Hemorrhage and/or resuscitation, however, did not affect the expression of pulmonary CAT-1 and CAT-2A. It is, therefore, concluded that the expression of pulmonary iNOS, CAT-2, and CAT-2B is inducible and that of CAT-1 and CAT-2A is constitutive in hemorrhagic shock rat lungs.
Collapse
Affiliation(s)
- Chun-Jen Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Mackay Junior College of Nursing, Institute of Pharmacology, National Yang-Ming University, 92 Sec. 2, Chung San N. Rd., Taipei 104, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Huang CJ, Tsai PS, Lu YT, Cheng CR, Stevens BR, Skimming JW, Pan WHT. NF-kappaB involvement in the induction of high affinity CAT-2 in lipopolysaccharide-stimulated rat lungs. Acta Anaesthesiol Scand 2004; 48:992-1002. [PMID: 15315617 DOI: 10.1111/j.1399-6576.2004.00454.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endotoxemia stimulates nitric oxide (NO) biosynthesis through induction of inducible NO synthase (iNOS). Cellular uptake of L-arginine, the sole substrate for iNOS, is an important mechanism regulating NO biosynthesis by iNOS. The isozymes of type-2 cationic amino acid transporters, including CAT-2, CAT-2A, and CAT-2B, constitute the most important pathways responsible for trans-membrane L-arginine transportation. Therefore, regulation of CAT-2 isozymes expression may constitute one of the downstream regulatory pathways that control iNOS activity. We investigated the time course of enzyme induction and the role of nuclear factor-kappaB (NF-kappaB) in CAT-2 isozymes expression in lipopolysaccharide-(LPS) treated rat lungs. METHODS Adult male Sprague-Dawley rats were randomly given intravenous injections of normal saline (N/S), LPS, LPS plus NF-kappaB inhibitor pre-treatment (PDTC, dexamethasone, or salicylate), or an NF-kappaB inhibitor alone. The rats were sacrificed at different times after injection and enzyme expression and lung injury were examined. Pulmonary and systemic NO production were also measured. RESULTS LPS co-induced iNOS, CAT-2, and CAT-2B but not CAT-2A expression in the lungs. Furthermore, NF-kappaB actively participated in LPS-induction of iNOS, CAT-2, and CAT-2B. LPS induced pulmonary and systemic NO overproduction and resulted in lung injuries. Attenuation of LPS-induced iNOS, CAT-2, and CAT-2B induction significantly inhibited NO biosynthesis and lessened lung injury. CONCLUSION NF-kappaB actively participates in the induction of CAT-2 and CAT-2B in intact animals. Our data further support the idea that CAT-2 and CAT-2B are crucial in regulating iNOS activity.
Collapse
Affiliation(s)
- C-J Huang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Barksdale AR, Bernard AC, Maley ME, Gellin GL, Kearney PA, Boulanger BR, Tsuei BJ, Ochoa JB. Regulation of arginase expression by T-helper II cytokines and isoproterenol. Surgery 2004; 135:527-35. [PMID: 15118590 DOI: 10.1016/j.surg.2003.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Trauma causes a release of catecholamines, transforming growth factor-beta (TGF-beta), and T-helper II cytokines (TH2). Individually, these substances also induce arginase in macrophages. The purpose of this study was to determine the synergistic interactions between isoproterenol, TGF-beta, and TH2 cytokines on arginase expression in macrophages. METHODS Confluent RAW 264.7 macrophages were incubated with various combinations of interleukins 4, 10, and 13 (IL-4, IL-10, IL-13), and TGF-beta with isoproterenol over 48 hours. Arginase activity, as well as arginase I expression by Western blot and reverse transcriptase-polymerase chain reaction, were measured. RESULTS Although isoproterenol, IL-4, IL-10, and IL-13 individually induced arginase, significant synergy between the combination of isoproterenol with either TGF-beta or the TH2 cytokines was observed. All cytokines except IL-10 also induced arginase I protein and mRNA. Arginase II protein was detected in cells exposed to IL-10. CONCLUSIONS We conclude that isoproterenol synergizes with IL-4, IL-13, and TGF-beta to increase arginase I mRNA and protein, as well as arginase activity in RAW 264.7 macrophages. Further, IL-10 synergizes with isoproterenol to increase arginase activity and arginase II protein. These synergistic mechanisms may compete with nitric oxide synthase for l-arginine substrate, thus shunting away available arginine from nitric oxide production and contributing to cellular immunosuppression observed after trauma.
Collapse
Affiliation(s)
- Andrew R Barksdale
- Department of Surgery, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Scumpia PO, Sarcia PJ, Kelly KM, DeMarco VG, Skimming JW. Hypothermia induces anti-inflammatory cytokines and inhibits nitric oxide and myeloperoxidase-mediated damage in the hearts of endotoxemic rats. Chest 2004; 125:1483-91. [PMID: 15078762 DOI: 10.1378/chest.125.4.1483] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE s: The impairment of cardiac contractility during endotoxemia involves induction of nitric oxide formation through a cascade of events initiated by overexpression of proinflammatory cytokines. We previously showed that hypothermia attenuates endotoxin-induced overexpression of nitric oxide in rat lungs. In the present study, we tested the hypothesis that hypothermia protects against endotoxin-induced myocardial inflammation by changing the balance of pro- and anti-inflammatory cytokines, inhibiting myeloperoxidase, an indicator of neutrophil activity, and inhibiting nitric oxide-mediated protein damage. DESIGN Rats were randomized to treatment with either hypothermia (n = 6; 18 to 24 degrees C) or normothermia (n = 6; 36 to 38 degrees C). Endotoxin (15 mg/kg) was administered intravascularly to anesthetized animals, and heart tissue was harvested 150 min later. MEASUREMENTS AND RESULTS Using enzyme-linked immunosorbent assays (ELISAs), we found that hypothermia induced myocardial expression of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10, while decreasing concentrations of the pro-inflammatory cytokines IL-1beta and growth-related oncogene/cytokine-induced neutrophil chemoattractant (rat homolog of IL-8). Electromobility shift assay revealed that hypothermia inhibited the nuclear translocation of nuclear factor-kappaB. Reverse transcriptase-polymerase chain reaction and Western blot assays revealed that hypothermia attenuated the endotoxin-induced overexpression of both inducible nitric oxide synthase (iNOS) messenger RNA and iNOS protein, respectively. Hypothermia also attenuated nitric oxide-mediated myocardial protein damage, as determined by a nitrotyrosine ELISA. Myocardial myeloperoxidase content, an indicator of neutrophil accumulation and oxidative activity, was also inhibited by hypothermia in endotoxemic rats. CONCLUSION These data demonstrate that hypothermia induces an anti-inflammatory cytokine profile, inhibits neutrophil aggregation, and inhibits the formation of nitric oxide during endotoxemia in the rat.
Collapse
Affiliation(s)
- Philip O Scumpia
- Department of Pediatrics, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
33
|
Yang S, Huang CJ, Tsai PS, Cheng CR, Stevens BR, Skimming JW. Renal transcription of high-affinity type-2 cationic amino acid transporter is up-regulated in LPS-stimulated rodents. Acta Anaesthesiol Scand 2004; 48:308-16. [PMID: 14982563 DOI: 10.1111/j.0001-5172.2004.0338.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sepsis stimulates renal nitric oxide (NO) biosynthesis through up-regulation of inducible NO synthase (iNOS) expression. Type-2 cationic amino acid transporter (CAT-2) mediation of trans-membrane L-arginine (L-Arg) transportation has been identified as one of the crucial regulatory mechanisms involved in the formation of NO by iNOS. We had previously shown that CAT-2B, a high-affinity alternative-spliced transcript of the CAT-2, is involved in induced NO biosynthesis by iNOS (Nitric Oxide, 2002). In this present study, we sought to assess the effects of sepsis on the expression of CAT-2B in lipopolysaccharide (LPS)-stimulated rat kidney. METHODS Forty rats were randomized to either a normal saline (N/S)-treated group or a LPS-treated group. Renal NO production was determined using chemiluminescence. Semi-quantitative RT-PCR was used to determine the mRNA concentrations of iNOS and L-Arg transporters (CAT-1, CAT-2 and CAT-2B) in kidney. RESULTS Lipopolysaccharide-coinduced iNOS, CAT-2 and CAT-2B mRNA expression in kidney and caused renal NO overproduction. A significant linear regression relationship was defined between renal NO concentrations and iNOS, CAT-2 and CAT-2B, respectively. On the contrary, CAT-1 expression was not affected by LPS-stimulation. CONCLUSIONS We provide the first evidence to illustrate that sepsis/septic shock induces the transcription of high-affinity CAT-2B in renal tissues. Transcription of iNOS, CAT-2 and CAT-2B correlates well with renal NO biosynthesis. Regulation of L-Arg uptake by modulating the expression regulation of induced CAT-2 and CAT-2B might be a potential target for therapies against renal pathologic conditions related to NO overproduction.
Collapse
Affiliation(s)
- S Yang
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Manner CK, Nicholson B, MacLeod CL. CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes. J Neurochem 2003; 85:476-82. [PMID: 12675924 DOI: 10.1046/j.1471-4159.2003.01695.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that genetic ablation of cationic amino acid transporter 2 (Cat2) significantly inhibits nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in activated macrophages. Here we report that iNOS activity is impaired by 84% in activated Cat2-deficient astrocytes. Cat2 ablation appears to reduce astrocyte NO synthesis by decreasing the uptake of the sole precursor, arginine, as well as by reducing the expression of iNOS following activation. Excessive or dysregulated NO production by activated astrocytes and other CNS cell types has been implicated in the pathogenesis of neurological disorders. Our results support the idea that manipulation of CAT2 transporter function might be useful for the therapeutic modulation of iNOS activity.
Collapse
Affiliation(s)
- Cathyryne K Manner
- Biomedical Sciences Graduate Program, Cancer Center and Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
35
|
Czapiga M, Colton CA. Microglial function in human APOE3 and APOE4 transgenic mice: altered arginine transport. J Neuroimmunol 2003; 134:44-51. [PMID: 12507771 DOI: 10.1016/s0165-5728(02)00394-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The APOE4 genotype is a known risk factor for Alzheimer's disease (AD) and is associated with poorer outcomes after neuropathological insults. To understand APOE's function, we have examined microglia, the CNS specific macrophage, in transgenic mice expressing the human APOE3 and APOE4 gene allele. Our data demonstrate that arginine uptake is enhanced in APOE4 microglia compared to APOE3 microglia. The increased arginine uptake in APOE4 Tg microglia is associated with an increased expression of mRNA for cationic amino acid transporter-1 (Cat1), a constuitively expressed member of the arginine selective transport system (the y+ transport system) found in most cells. The macrophage-associated transporter, cationic amino acid transporter 2B (Cat2B) did not demonstrate a change in mRNA expression. This change in microglial arginine transport suggests a potential impact of the APOE4 gene allele on those biochemical pathways such as NO production or cell proliferation to which arginine contributes.
Collapse
Affiliation(s)
- M Czapiga
- Department of Physiology, Georgetown University Medical School, Washington, DC, USA
| | | |
Collapse
|
36
|
Scumpia PO, Sarcia PJ, DeMarco VG, Stevens BR, Skimming JW. Hypothermia attenuates iNOS, CAT-1, CAT-2, and nitric oxide expression in lungs of endotoxemic rats. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1231-8. [PMID: 12388361 DOI: 10.1152/ajplung.00102.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endotoxemia stimulates endogenous nitric oxide formation, induces transcription of arginine transporters, and causes lung injury. Hypothermia inhibits nitric oxide formation and is used as a means of organ preservation. We hypothesized that hypothermia inhibits endotoxin-induced intrapulmonary nitric oxide formation and that this inhibition is associated with attenuated transcription of enzymes that regulate nitric oxide formation, such as inducible nitric oxide synthase (iNOS) and the cationic amino acid transporters 1 (CAT-1) and 2 (CAT-2). Rats were anesthetized and randomized to treatment with hypothermia (18-24 degrees C) or normothermia (36-38 degrees C). Endotoxin was administered intravascularly. Concentrations of iNOS, CAT-1, CAT-2 mRNA, iNOS protein, and nitrosylated proteins were measured in lung tissue homogenates. We found that hypothermia abrogated the endotoxin-induced increase in exhaled nitric oxide and lung tissue nitrotyrosine concentrations. Western blot analyses revealed that hypothermia inhibited iNOS, but not endothelial nitric oxide synthase, protein expression in lung tissues. CAT-1, CAT-2, and iNOS mRNA concentrations were lower in the lungs of hypothermic animals. These findings suggest that hypothermia protects against intrapulmonary nitric oxide overproduction and nitric oxide-mediated lung injury by inhibiting transcription of iNOS, CAT-1, and CAT-2.
Collapse
Affiliation(s)
- Philip O Scumpia
- Departments of Pediatrics and Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|