1
|
Nishijima S, Maruyama IN. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans. Front Behav Neurosci 2017; 11:80. [PMID: 28507513 PMCID: PMC5410607 DOI: 10.3389/fnbeh.2017.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 01/06/2023] Open
Abstract
Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US). It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS), and potassium chloride (KCl) as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI) and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM) and long-term memory (LTM), respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected LTM, but not STM. The paradigm established in the present study should allow us to elucidate neuronal circuit plasticity for appetitive learning and memory in C. elegans.
Collapse
Affiliation(s)
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| |
Collapse
|
2
|
Transcription inhibitors prevent amnesia induced by NMDA antagonist-mediated impairment of memory reconsolidation. Learn Behav 2016; 44:250-9. [DOI: 10.3758/s13420-015-0208-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Tamvacakis AN, Senatore A, Katz PS. Identification of genes related to learning and memory in the brain transcriptome of the mollusc, Hermissenda crassicornis. Learn Mem 2015; 22:617-21. [PMID: 26572652 PMCID: PMC4749734 DOI: 10.1101/lm.038158.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
Abstract
The sea slug Hermissenda crassicornis (Mollusca, Gastropoda, Nudibranchia) has been studied extensively in associative learning paradigms. However, lack of genetic information previously hindered molecular-level investigations. Here, the Hermissenda brain transcriptome was sequenced and assembled de novo, producing 165,743 total transcripts. Orthologs of 95 genes implicated in learning were identified. These included genes for a serotonin receptor and a GABA-B receptor subunit that had not been previously described in molluscs, as well as an adenylyl cyclase gene not previously described in gastropods. This study illustrates the Hermissenda transcriptome's potential as an important genetic tool in future learning and memory research.
Collapse
Affiliation(s)
- Arianna N Tamvacakis
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | - Adriano Senatore
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-4010, USA
| |
Collapse
|
4
|
Hawkins RD, Byrne JH. Associative learning in invertebrates. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a021709. [PMID: 25877219 DOI: 10.1101/cshperspect.a021709] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron-motor neuron (SN-MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well.
Collapse
Affiliation(s)
- Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032 New York State Psychiatric Institute, New York, New York 10032
| | - John H Byrne
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030
| |
Collapse
|
5
|
Cavallo JS, Hamilton BN, Farley J. Behavioral and neural bases of extinction learning in Hermissenda. Front Behav Neurosci 2014; 8:277. [PMID: 25191236 PMCID: PMC4137458 DOI: 10.3389/fnbeh.2014.00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/29/2014] [Indexed: 11/13/2022] Open
Abstract
Extinction of classical conditioning is thought to produce new learning that masks or interferes with the original memory. However, research in the nudibranch Hermissenda crassicornis (H.c.) has challenged this view, and instead suggested that extinction erased the original associative memory. We have re-examined extinction in H.c. to test whether extinguished associative memories can be detected on the behavioral and cellular levels, and to characterize the temporal variables involved. Associative conditioning using pairings of light (CS) and rotation (US) produced characteristic suppression of H.c. phototactic behavior. A single session of extinction training (repeated light-alone presentations) reversed suppressed behavior back to pre-training levels when administered 15 min after associative conditioning. This effect was abolished if extinction was delayed by 23 h, and yet was recovered using extended extinction training (three consecutive daily extinction sessions). Extinguished phototactic suppression did not spontaneously recover at any retention interval (RI) tested (2-, 24-, 48-, 72-h), or after additional US presentations (no observed reinstatement). Extinction training (single session, 15 min interval) also reversed the pairing-produced increases in light-evoked spike frequencies of Type B photoreceptors, an identified site of associative memory storage that is causally related to phototactic suppression. These results suggest that the behavioral effects of extinction training are not due to temporary suppression of associative memories, but instead represent a reversal of the underlying cellular changes necessary for the expression of learning. In the companion article, we further elucidate mechanisms responsible for extinction-produced reversal of memory-related neural plasticity in Type B photoreceptors.
Collapse
Affiliation(s)
- Joel S Cavallo
- Program in Neuroscience, Indiana University Bloomington, IN, USA ; Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Brittany N Hamilton
- Program in Neuroscience, Indiana University Bloomington, IN, USA ; Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| | - Joseph Farley
- Program in Neuroscience, Indiana University Bloomington, IN, USA ; Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA
| |
Collapse
|
6
|
Solntseva S, Nikitin V. Conditioned food aversion reconsolidation in snails is impaired by translation inhibitors but not by transcription inhibitors. Brain Res 2012; 1467:42-7. [PMID: 22683361 DOI: 10.1016/j.brainres.2012.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 12/19/2022]
Abstract
Memory is destabilized during retrieval-induced reconsolidation and can therefore be disrupted or modified. In the present study, we examined the role of translation and transcription processes in long-term food aversion memory reconsolidation in the snail Helix lucorum. The administration of the protein synthesis inhibitor anisomycin followed by a reminding procedure (presentation of the conditioned stimulus) led to the development of amnesia that persist for 2 weeks or longer. Administration of the mRNA synthesis inhibitors actinomycin D, α-amanitin, or DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidasole) followed by a reminding procedure did not affect memory retrieval. Our present findings indicate that proteins synthesized from preexisting mRNA that is transcribed during learning and stored in a silent state may be involved in the mechanisms of conditioned food aversion reconsolidation.
Collapse
Affiliation(s)
- Svetlana Solntseva
- Laboratory of Functional Neurochemistry, P. K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Mokhovaya str. 11/4, 125009 Moscow, Russian Federation
| | | |
Collapse
|
7
|
Amano H, Maruyama IN. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans. Learn Mem 2011; 18:654-65. [PMID: 21960709 DOI: 10.1101/lm.2224411] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH 4.0), as an unconditioned stimulus (US). Before the conditioning, worms were attracted to 1-propanol and avoided HCl in chemotaxis assay. In contrast, after massed or spaced training, worms were either not attracted at all to or repelled from 1-propanol on the assay plate. The memory after the spaced training was retained for 24 h, while the memory after the massed training was no longer observable within 3 h. Worms pretreated with transcription and translation inhibitors failed to form the memory by the spaced training, whereas the memory after the massed training was not significantly affected by the inhibitors and was sensitive to cold-shock anesthesia. Therefore, the memories after the spaced and massed trainings can be classified as long-term memory (LTM) and short-term/middle-term memory (STM/MTM), respectively. Consistently, like other organisms including Aplysia, Drosophila, and mice, C. elegans mutants defective in nmr-1 encoding an NMDA receptor subunit failed to form both LTM and STM/MTM, while mutations in crh-1 encoding the CREB transcription factor affected only the LTM.
Collapse
Affiliation(s)
- Hisayuki Amano
- Information Processing Biology Unit, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | | |
Collapse
|
8
|
Jin NG, Crow T. Serotonin regulates voltage-dependent currents in type I(e(A)) and I(i) interneurons of Hermissenda. J Neurophysiol 2011; 106:2557-69. [PMID: 21813747 DOI: 10.1152/jn.00550.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types I(i) and I(eA). Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K(+) current [I(K(A))], a tetraethylammonium-sensitive delayed rectifier K(+) current [I(K(V))], an inward rectifier K(+) current [I(K(IR))], and a hyperpolarization-activated current (I(h)) were characterized. 5-HT decreased the amplitude of I(K(A)) and I(K(V)) in both type I(i) and I(eA) interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of I(K(V)) and a hyperpolarizing shift in the inactivation curve of I(K(A)) in type I(i) interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both I(K(V)) and I(K(A)) in type I(eA) interneurons. In addition, 5-HT decreased the amplitude of I(K(IR)) in type I(i) interneurons and increased the amplitude of I(h) in type I(eA) interneurons. These results indicate that 5-HT-dependent changes in I(K(A)), I(K(V)), I(K(IR)), and I(h) contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons.
Collapse
Affiliation(s)
- Nan Ge Jin
- Dept. of Neurobiology and Anatomy, Univ. of Texas Medical School, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Crow T, Xue-Bian JJ. Proteomic analysis of short- and intermediate-term memory in Hermissenda. Neuroscience 2011; 192:102-11. [PMID: 21736919 DOI: 10.1016/j.neuroscience.2011.06.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/20/2022]
Abstract
Changes in cellular and synaptic plasticity related to learning and memory are accompanied by both upregulation and downregulation of the expression levels of proteins. Both de novo protein synthesis and post-translational modification of existing proteins have been proposed to support the induction and maintenance of memory underlying learning. However, little is known regarding the identity of proteins regulated by learning that are associated with the early stages supporting the formation of memory over time. In this study we have examined changes in protein abundance at two different times following one-trial in vitro conditioning of Hermissenda using two-dimensional difference gel electrophoresis (2D-DIGE), quantification of differences in protein abundance between conditioned and unpaired controls, and protein identification with tandem mass spectrometry. Significant regulation of protein abundance following one-trial in vitro conditioning was detected 30 min and 3 h post-conditioning. Proteins were identified that exhibited statistically significant increased or decreased abundance at both 30 min and 3 h post-conditioning. Proteins were also identified that exhibited a significant increase in abundance only at 30 min, or only at 3 h post-conditioning. A few proteins were identified that expressed a significant decrease in abundance detected at both 30 min and 3 h post-conditioning, or a significant decrease in abundance only at 3 h post-conditioning. The proteomic analysis indicates that proteins involved in diverse cellular functions such as translational regulation, cell signaling, cytoskeletal regulation, metabolic activity, and protein degradation contribute to the formation of memory produced by one-trial in vitro conditioning. These findings support the view that changes in protein abundance over time following one-trial in vitro conditioning involve dynamic and complex interactions of the proteome.
Collapse
Affiliation(s)
- T Crow
- Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | | |
Collapse
|
10
|
de Oliveira Alvares L, Pasqualini Genro B, Diehl F, Molina V, Quillfeldt J. Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience 2008; 154:1648-55. [DOI: 10.1016/j.neuroscience.2008.05.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 11/30/2022]
|
11
|
Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem 2007; 89:293-311. [PMID: 18053752 DOI: 10.1016/j.nlm.2007.09.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 09/30/2007] [Indexed: 12/30/2022]
Abstract
A major component of consolidation theory holds that protein synthesis is required to produce the synaptic modification needed for long-term memory storage. Protein synthesis inhibitors have played a pivotal role in the development of this theory. However, these commonly used drugs have unintended effects that have prompted some to reevaluate the role of protein synthesis in memory consolidation. Here we review the role of protein synthesis in memory formation as proposed by consolidation theory calling special attention to the controversy involving the non-specific effects of a group of protein synthesis inhibitors commonly used to study memory formation in vivo. We argue that molecular and genetic approaches that were subsequently applied to the problem of memory formation confirm the results of less selective pharmacological studies. Thus, to a certain extent, the debate over the role of protein synthesis in memory based on interpretational difficulties inherent to the use of protein synthesis inhibitors may be somewhat moot. We conclude by presenting avenues of research we believe will best provide answers to both long-standing and more recent questions facing field of learning and memory.
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
12
|
Da Silva WC, Bonini JS, Bevilaqua LRM, Medina JH, Izquierdo I, Cammarota M. Inhibition of mRNA synthesis in the hippocampus impairs consolidation and reconsolidation of spatial memory. Hippocampus 2007; 18:29-39. [PMID: 17853412 DOI: 10.1002/hipo.20362] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using two different mRNA synthesis inhibitors, we show that blockade of hippocampal gene expression during restricted posttraining or postretrieval time windows hinders retention of long-term spatial memory for the Morris water maze task, without affecting short-term memory, nonspatial learning, or the functionality of the hippocampus. Our results indicate that spatial memory consolidation induces the activation of the hippocampal transcriptional machinery and suggest the existence of a gene expression-dependent reconsolidation process that operates in the dorsal hippocampus at the moment of retrieval to stabilize the reactivated mnemonic trace.
Collapse
Affiliation(s)
- Weber C Da Silva
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6690, Porto Alegre, Rio Grande do Sul, Brasil
| | | | | | | | | | | |
Collapse
|
13
|
Pettigrew DB, Smolen P, Baxter DA, Byrne JH. Dynamic properties of regulatory motifs associated with induction of three temporal domains of memory in aplysia. J Comput Neurosci 2005; 18:163-81. [PMID: 15714268 DOI: 10.1007/s10827-005-6557-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A model was developed to examine dynamical properties of regulatory motifs correlated with different temporal domains of memory. The model represents short-, intermediate-, and long-term phases of protein kinase A (PKA) activation, which appear related to corresponding phases of facilitation of the Aplysia sensorimotor synapse. The model also represents phosphorylation of the transcription factor CREB1 by PKA and consequent induction of the immediate-early gene Aplysia ubiquitin hydrolase (Ap-uch), which is essential for long-term synaptic facilitation (LTF). Simulations suggest mechanisms responsible for differing profiles of synaptic facilitation following massed vs. spaced exposures to 5-HT, and suggest a novel regulatory motif (gated positive feedback) is important for LTF. Simulations suggest zero-order ultrasensitivity may underlie a requirement of a threshold number of exposures to 5-HT for LTF induction. The model makes predictions for the dynamics of PKA activation and Ap-uch induction when MAP kinase is activated, or when repression of Ap-uch is relieved by inhibiting the transcription factor CREB2. This model may therefore be useful for understanding processes underlying memory formation in Aplysia and other systems.
Collapse
Affiliation(s)
- David B Pettigrew
- W.M. Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, P.O. Box 20708, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
14
|
Rudy JW, Wright-Hardesty K. The temporal dynamics of retention of a context memory: something is missing. Learn Mem 2005; 12:172-7. [PMID: 15774942 PMCID: PMC1074336 DOI: 10.1101/lm.84005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 01/04/2005] [Indexed: 11/25/2022]
Abstract
We use a variation of contextual fear conditioning, called the context pre-exposure facilitation effect (CPFE) to study the rat's memory for context. In this paradigm, the rat is pre-exposed to a conditioning context and later returned to that context, where it is immediately shocked. The memory context is revealed by the fact that pre-exposure to the conditioning context, but not to a different context, greatly enhances conditioned fear produced by immediate shock. We report that rat's retention of the context memory is a nonmonotonic U-shaped function of the interval separating pre-exposure and immediate shock. Retention performance decays rapidly so that within 2 min of pre-exposure there is no evidence that the rat was pre-exposed to the context. Within a few hours, however, a strong CPFE was observed that persisted for at least 28 d. Two hypotheses are discussed: (1) the descending arm of the U represents a retrieval failure, and (2) the U-shaped function represents two discontinuous memory processes initiated in parallel-short-term synaptic changes that are rapidly initiated, but also decay rapidly, and long-term synaptic processes that take time to generate but can endure for days.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology, Center for Neuroscience, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
15
|
Watanabe H, Takaya T, Shimoi T, Ogawa H, Kitamura Y, Oka K. Influence of mRNA and protein synthesis inhibitors on the long-term memory acquisition of classically conditioned earthworms. Neurobiol Learn Mem 2005; 83:151-7. [PMID: 15721799 DOI: 10.1016/j.nlm.2004.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 11/15/2004] [Accepted: 11/16/2004] [Indexed: 11/23/2022]
Abstract
We investigated the process of memory consolidation following classical conditioning of earthworms. Earthworms were conditioned in paired trials by a weak vibration as a conditioned stimulus (CS), and by light as an unconditioned stimulus (US). The occurrence of a shrinking response upon exposure to the CS increased steadily with the number of paired training trials. When the training procedure was changed by increasing the intertrial interval (ITI), it was found that only those worms trained with a 68 s ITI exhibited long-term memory retention for at least 24 h. The influence of mRNA synthesis inhibition by actinomycin-D or of protein synthesis by anisomycin on memory consolidation was also examined. Induction of the long-term memory was blocked when either of these two compounds was injected into the body cavity of the worm within 25 min of conditioning with the 68 s ITI. These results demonstrate that the long-term memory is dependent upon protein synthesis in response to the upregulation of new transcription messengers.
Collapse
Affiliation(s)
- Hikaru Watanabe
- Center for Life Science and Technology, School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Crow T. Pavlovian conditioning of Hermissenda: current cellular, molecular, and circuit perspectives. Learn Mem 2004; 11:229-38. [PMID: 15169851 DOI: 10.1101/lm.70704] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The less-complex central nervous system of many invertebrates make them attractive for not only the molecular analysis of the associative learning and memory, but also in determining how neural circuits are modified by learning to generate changes in behavior. The nudibranch mollusk Hermissenda crassicornis is a preparation that has contributed to an understanding of cellular and molecular mechanisms of Pavlovian conditioning. Identified neurons in the conditioned stimulus (CS) pathway have been studied in detail using biophysical, biochemical, and molecular techniques. These studies have resulted in the identification and characterization of specific membrane conductances contributing to enhanced excitability and synaptic facilitation in the CS pathway of conditioned animals. Second-messenger systems activated by the CS and US have been examined, and proteins that are regulated by one-trial and multi-trial Pavlovian conditioning have been identified in the CS pathway. The recent progress that has been made in the identification of the neural circuitry supporting the unconditioned response (UR) and conditioned response (CR) now provides for the opportunity to understand how Pavlovian conditioning is expressed in behavior.
Collapse
Affiliation(s)
- Terry Crow
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77030, USA.
| |
Collapse
|
17
|
Differential role of mitogen-activated protein kinase in three distinct phases of memory for sensitization in Aplysia. J Neurosci 2003. [PMID: 12736359 DOI: 10.1523/jneurosci.23-09-03899.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway has been implicated recently in synaptic plasticity and memory. Here we used tail shock-induced sensitization of the tail-elicited siphon withdrawal reflex in Aplysia to examine the role of MAPK in three different phases of memory. We show that a specific pattern of serotonin (5-HT) application that produces intermediate-term and long-term synaptic facilitation (ITF and LTF, respectively) of the sensory-motor (SN-MN) synapses in Aplysia leads to sustained activation of extracellular signal-regulated kinase in the ventrocaudal cluster sensory neurons (SNs), which include the tail SNs. Furthermore, repeated tail shocks that induce intermediate-term and long-term memory (ITM and LTM, respectively) for sensitization also lead to sustained MAPK activation in the SNs. Given these results, we next examined the requirement of MAPK activity in (1) SN-MN synaptic facilitation and (2) memory for sensitization in Aplysia, by inhibiting MEK, the upstream kinase that phosphorylates and activates MAPK. In cellular experiments, we show that MAPK activity is required for ITF of tail SN-tail MN synapses, and, in parallel behavioral experiments, we show that ITM requires MAPK activity for its induction but not its expression. In contrast, short-term memory for sensitization does not require MAPK activity. Finally, 5-HT-induced LTF has been shown previously to require MAPK activity. Here we show that LTM for sensitization also requires MAPK activity. These results provide evidence that MAPK plays important roles specifically in long-lasting phases of synaptic plasticity and memory.
Collapse
|
18
|
Inhibition of conditioned stimulus pathway phosphoprotein 24 expression blocks the development of intermediate-term memory in Hermissenda. J Neurosci 2003. [PMID: 12716949 DOI: 10.1523/jneurosci.23-08-03415.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies of memory consolidation have identified multiple phases or stages in the formation of memories. The multiple components of memory can be broadly divided into the three phases; short-term, intermediate-term, and long-term. Although molecular changes underlying short- and long-term memory have been examined extensively, the molecular mechanisms supporting the formation of intermediate-term memory are poorly understood. In several examples of cellular and synaptic plasticity, intermediate memory depends on translation but not transcription. One-trial conditioning in Hermissenda results in the development of intermediate memory that is associated with enhanced cellular excitability and the phosphorylation of a 24 kDa protein referred to as conditioned stimulus pathway phosphoprotein (Csp24). Using amino acid sequences derived from Csp24 peptide fragments, a full-length cDNA was cloned and shown to contain multiple beta-thymosin-like domains. The expression of Csp24 and the development of enhanced excitability, a characteristic of intermediate memory, were blocked by antisense oligonucleotide-mediated downregulation of Csp24 without affecting the induction of immediate enhanced excitability, a characteristic of short-term memory. These results demonstrate that the synthesis of Csp24 is required for the development and maintenance of intermediate memory.
Collapse
|
19
|
One-trial in vitro conditioning regulates a cytoskeletal-related protein (CSP24) in the conditioned stimulus pathway of Hermissenda. J Neurosci 2003. [PMID: 12486141 DOI: 10.1523/jneurosci.22-24-10514.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hermissenda CSP24 (cytoskeletal-related protein 24) is a 24 kDa beta-thymosin-like protein that is associated with intermediate memory. We showed previously that one-trial conditioning resulted in a significant increase in the phosphorylation of CSP24 detected in lysates of the pathway supporting the conditioned stimulus (CS). Here we report the association of the protein with the actin cytoskeleton and the distribution of CSP24-immunoreactive neurons in two sensory structures and the circumesophageal nervous system. Identified photoreceptors, hair cells, and neurons in the cerebropleural and pedal ganglia were immunoreactive for CSP24. Immunoprecipitation experiments with 32PO4-labeled lysates of the circumesophageal nervous system identified a 44 kDa protein band (consistent with actin) that coprecipitates with CSP24. An analysis of immunoprecipitates on Western blots probed with anti-actin antibody also showed that actin coprecipitates with CSP24. Laser confocal microscopy of photoreceptors costained with fluorescently labeled anti-actin antibody and anti-CSP24 antibody, or fluorescent phalloidin and anti-CSP24 antibody showed that CSP24 is localized with actin in the cytosol of photoreceptor cell bodies and colocalized with presumed G-actin, but not F-actin, in regions adjacent to the plasma membrane. Although CSP24 is widely distributed in the Hermissenda nervous system, its regulation by one-trial conditioning was observed only in the CS pathway. Our findings suggest that CSP24 may interact with components of the actin cytoskeleton that contribute to structural changes underlying the formation and maintenance of enduring forms of memory.
Collapse
|
20
|
Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. J Neurosci 2002. [PMID: 12151558 DOI: 10.1523/jneurosci.22-15-06781.2002] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Information storage in the brain is a temporally graded process involving different memory types or phases. It has been assumed for over a century that one or more short-term memory (STM) processes are involved in processing new information while long-term memory (LTM) is being formed. It has been repeatedly reported that LTM requires de novo RNA synthesis around the time of training. Here we show that LTM formation of a one-trial inhibitory avoidance training in rats, a hippocampal-dependent form of contextual fear conditioning, depends on two consolidation periods requiring synthesis of new mRNAs. By injecting the RNA polymerase II inhibitors 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole or alpha-amanitin into the CA1 region of the dorsal hippocampus at various times before and after training, we found that hippocampal gene expression is critical in two time windows: around the time of training and 3-6 hr after training. Interestingly, these two periods of sensitivity to transcriptional inhibitors are similar to those observed using the protein synthesis inhibitor anisomycin. These findings underscore the parallel dependence of LTM formation of contextual fear on mRNA and protein synthesis in the hippocampus and suggest that the two time periods of anisomycin-induced amnesia depend at least in part on new mRNA synthesis.
Collapse
|
21
|
Sutton MA, Ide J, Masters SE, Carew TJ. Interaction between amount and pattern of training in the induction of intermediate- and long-term memory for sensitization in aplysia. Learn Mem 2002; 9:29-40. [PMID: 11917004 PMCID: PMC155928 DOI: 10.1101/lm.44802] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Aplysia, three distinct phases of memory for sensitization can be dissociated based on their temporal and molecular features. A single training trial induces short-term memory (STM, lasting <30 min), whereas five trials delivered at 15-min intervals induces both intermediate-term memory (ITM, lasting >90 min) and long-term memory (LTM, lasting >24 h). Here, we explore the interaction of amount and pattern of training in establishing ITM and LTM by examining memory for sensitization after different numbers of trials (each trial = one tail shock) and different patterns of training (massed vs. spaced). Under spaced training patterns, two trials produced STM exclusively, whereas four or five trials each produced both ITM and LTM. Three spaced trials failed to induce LTM but did produce an early decaying form of ITM (E-ITM) that was significantly shorter and weaker in magnitude than the late-decaying ITM (L-ITM) observed after four to five trials. In addition, E-ITM was induced after three trials with both massed and spaced patterns of training. However, L-ITM and LTM after four to five trials require spaced training: Four or five massed trials failed to induce LTM and produced only E-ITM. Collectively, our results indicate that in addition to three identified phases of memory for sensitization--STM, ITM, and LTM--a unique temporal profile of memory, E-ITM, is revealed by varying either the amount or pattern of training.
Collapse
Affiliation(s)
- Michael A Sutton
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520-8074, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Cellular processes that mediate learning and memory show a remarkable level of conservation between vertebrates and invertebrates. Recent studies have shown that learning and memory formation in invertebrates, so-called 'simple systems', involves a highly complex arrangement of cellular pathways. Some pathways contribute to a single stage of memory formation, whereas others impact on multiple stages of memory development. Distinct cellular pathways may also act in series or in parallel during various stages of memory formation.
Collapse
Affiliation(s)
- B D Burrell
- Department of Biological Sciences, 1392 Lilly Hall of Life Sciences, West Lafayette, IN 47907-1392, USA.
| | | |
Collapse
|
23
|
Sutton MA, Masters SE, Bagnall MW, Carew TJ. Molecular mechanisms underlying a unique intermediate phase of memory in aplysia. Neuron 2001; 31:143-54. [PMID: 11498057 DOI: 10.1016/s0896-6273(01)00342-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Short- and long-term synaptic facilitation induced by serotonin at Aplysia sensory-motor (SN-MN) synapses has been widely used as a cellular model of short- and long-term memory for sensitization. In recent years, a distinct intermediate phase of synaptic facilitation (ITF) has been described at SN-MN synapses. Here, we identify a novel intermediate phase of behavioral memory (ITM) for sensitization in Aplysia and demonstrate that it shares the temporal and mechanistic features of ITF in the intact CNS: (1) it declines completely prior to the onset of LTM, (2) its induction requires protein but not RNA synthesis, and (3) its expression requires the persistent activation of protein kinase A. Thus, in Aplysia, the same temporal and molecular characteristics that distinguish ITF from other phases of synaptic plasticity distinguish ITM from other phases of behavioral memory.
Collapse
Affiliation(s)
- M A Sutton
- Interdepartmental Neuroscience Program, Yale University, 06520, New Haven, CT, USA
| | | | | | | |
Collapse
|
24
|
Crow T, Xue-Bian JJ, Siddiqi V, Neary JT. Serotonin activation of the ERK pathway in Hermissenda: contribution of calcium-dependent protein kinase C. J Neurochem 2001; 78:358-64. [PMID: 11461971 DOI: 10.1046/j.1471-4159.2001.00404.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is an important contributor to synaptic plasticity and learning in both vertebrates and invertebrates. In the nudibranch mollusk Hermissenda, phosphorylation and activation of the extracellular signal-regulated protein kinase (ERK), a key member of a MAPK cascade, is produced by one-trial and multitrial Pavlovian conditioning. Several signal transduction pathways that are activated by 5-hydroxytryptamine (5-HT) and may contribute to conditioning have been identified in type B photoreceptors. However, the regulation of ERK activity by 'upstream' signaling molecules has not been previously investigated in Hermissenda. In the present study we examined the role of protein kinase C (PKC) in the serotonin (5-HT) activation of the ERK pathway. The phorbol ester TPA produced an increase in ERK phosphorylation that was blocked by the PKC inhibitors GF109203X or Gö6976. TPA-dependent ERK phosphorylation was also blocked by the MEK1 inhibitors PD098059 or U0126. The increased phosphorylation of ERK by 5-HT was reduced but not blocked by pretreatment with the calcium chelator BAPTA-AM or pretreatment with Gö6976 or GF109203X. These results indicate that Ca(2+)-dependent PKC activation contributes to ERK phosphorylation, although a PKC-independent pathway is also involved in 5-HT-dependent ERK phosphorylation and activation.
Collapse
Affiliation(s)
- T Crow
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Texas, USA.
| | | | | | | |
Collapse
|
25
|
Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein [beta] and [delta] Co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation. J Neurosci 2001. [PMID: 11150323 DOI: 10.1523/jneurosci.21-01-00084.2001] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cAMP response element-binding protein (CREB) is an evolutionarily conserved transcription regulator essential for long-term memory formation. It is not known, however, whether the molecular events downstream of CREB activation are also conserved. An early, cAMP-dependent event necessary for learning-related long-term synaptic plasticity in the invertebrate Aplysia californica is the induction of the transcription factor CCAAT enhancer-binding protein (C/EBP). Here we show that two homologs in the rat, C/EBPbeta and C/EBPdelta, are induced at discrete times after inhibitory avoidance learning and co-localize with phosphorylated CREB in the hippocampus. This induction is blocked by fornix lesions, which are known to disrupt activation of CREB in the hippocampus and to impair memory consolidation. These results indicate that C/EBPs are evolutionarily conserved components of the CREB-dependent gene cascade activated in long-term memory.
Collapse
|
26
|
Sutton MA, Carew TJ. Parallel molecular pathways mediate expression of distinct forms of intermediate-term facilitation at tail sensory-motor synapses in Aplysia. Neuron 2000; 26:219-31. [PMID: 10798406 DOI: 10.1016/s0896-6273(00)81152-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Three distinct temporal phases of synaptic facilitation (short-, intermediate-, and long-term) are induced by serotonin (5-HT) at sensory (SN) to motor (MN) synapses in Aplysia. Here, we characterize two mechanistically distinct forms of intermediate-term facilitation (ITF) at tail SN-MN synapses. One form, activity-independent ITF, is produced by five spaced pulses of 5-HT in the absence of SN activity. Its induction requires protein synthesis, and its expression requires persistent activation of PKA but not PKC. The other form, activity-dependent ITF, is produced by a single pulse of 5-HT coincident with SN activation. Its induction does not require protein synthesis, and its expression requires persistent activation of PKC but not PKA. These results demonstrate that SN-MN synapses can exhibit two distinct forms of ITF that are mediated by parallel molecular pathways.
Collapse
Affiliation(s)
- M A Sutton
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
27
|
Crow T, Xue-Bian JJ, Siddiqi V. Protein synthesis-dependent and mRNA synthesis-independent intermediate phase of memory in Hermissenda. J Neurophysiol 1999; 82:495-500. [PMID: 10400977 DOI: 10.1152/jn.1999.82.1.495] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The conditioned stimulus pathway in Hermissenda has been used to examine the time-dependent mechanisms of memory consolidation following one-trial conditioning. Here we report an intermediate phase of memory consolidation following one-trial conditioning that requires protein synthesis, but not mRNA synthesis. In conditioned animals, enhanced excitability normally expressed during an intermediate phase of memory was reversed by the protein synthesis inhibitor anisomycin, but not by the mRNA synthesis inhibitor 5, 6-dichloro-1-beta-D-ribobenzimidazole (DRB). Associated with the intermediate phase of memory is an increase in the phosphorylation of a 24-kDa protein. Anisomycin present during the intermediate phase blocked the increased phosphorylation of the 24-kDa phosphoprotein, but did not block the increased phosphorylation of other proteins associated with conditioning or significantly change their baseline phosphorylation. DRB did not reverse enhanced excitability or decrease protein phosphorylation expressed during the intermediate phase of memory formation, but it did reverse enhanced excitability 3.5 h after conditioning. Phosphorylation of the 24-kDa protein may support enhanced excitability during the intermediate phase, in the transition period between short- and long-term memory.
Collapse
Affiliation(s)
- T Crow
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | |
Collapse
|
28
|
Phosphorylation of mitogen-activated protein kinase by one-trial and multi-trial classical conditioning. J Neurosci 1998. [PMID: 9547255 DOI: 10.1523/jneurosci.18-09-03480.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathway supporting the conditioned stimulus (CS) is one site of plasticity that has been studied extensively in conditioned Hermissenda. Several signal transduction pathways have been implicated in classical conditioning of this preparation, although the major emphasis has been on protein kinase C. Here we provide evidence for the activation and phosphorylation of a mitogen-activated protein kinase (MAPK) pathway by one-trial and multi-trial conditioning. A one-trial in vitro conditioning procedure consisting of light (CS) paired with the application of 5-HT results in the increased incorporation of 32PO4 into proteins detected with two-dimensional gel electrophoresis. Two of the phosphoproteins have molecular weights of 44 and 42 kDa, consistent with extracellular signal-regulated protein kinases (ERK1 and ERK2). Phosphorylation of the 44 and 42 kDa proteins by one-trial conditioning was inhibited by pretreatment with PD098059, A MEK1 (ERK-Activating kinase) inhibitor. Assays of ERK activity with brain myelin basic protein as a substrate revealed greater ERK activity for the group that received one-trial conditioning compared with an unpaired control group. Western blot analysis of phosphorylated ERK using antibodies recognizing the dually phosphorylated forms of ERK1 and ERK2 showed an increase in phosphorylation after one-trial conditioning compared with unpaired controls. The increased phosphorylation of ERK after one-trial conditioning was blocked by pretreatment with PD098059. Hermissenda that received 10 or 15 conditioning trials showed significant behavioral suppression compared with pseudo-random controls. After conditioning and behavioral testing, the conditioned animals showed significantly greater phosphorylation of ERK compared with the pseudo-random controls. These results show that the ERK-MAPK signaling pathway is activated in Pavlovian conditioning of Hermissenda.
Collapse
|
29
|
Sahley C, Crow T. Invertebrate Learning. Neurobiol Learn Mem 1998. [DOI: 10.1016/b978-012475655-7/50006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
30
|
Crow T, Siddiqi V. Time-dependent changes in excitability after one-trial conditioning of Hermissenda. J Neurophysiol 1997; 78:3460-4. [PMID: 9405561 DOI: 10.1152/jn.1997.78.6.3460] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The visual system of Hermissenda has been studied extensively as a site of cellular plasticity produced by classical conditioning. A one-trial conditioning procedure consisting of light paired with the application of serotonin (5-HT) to the exposed, but otherwise intact, nervous system produces suppression of phototactic behavior tested 24 h after conditioning. Short- and long-term enhancement (STE and LTE) of excitability in identified type B photoreceptors is a cellular correlate of one-trial conditioning. LTE can be expressed in the absence of STE suggesting that STE and LTE may be parallel processes. To examine the development of enhancement, we studied its time-dependent alterations after one-trial conditioning. Intracellular recordings from identified type B photoreceptors of independent groups collected at different times after conditioning revealed that enhanced excitability follows a biphasic pattern in its development. The analysis of spikes elicited by 2 and 30 s extrinsic current pulses at different levels of depolarization showed that enhancement reached a peak 3 h after conditioning. From its peak, excitability decreased toward baseline control levels 5-6 h after conditioning followed by an increase to a stable plateau at 16 to 24 h postconditioning. Excitability changes measured in cells from unpaired control groups showed maximal changes 1 h posttreatment that rapidly decremented within 2 h. The conditioned stimulus (CS) elicited significantly more spikes 24 h postconditioning for the conditioned group as compared with the unpaired control group. The analysis of the time-dependent development of enhancement may reveal the processes underlying different stages of memory for this associative experience.
Collapse
Affiliation(s)
- T Crow
- Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, Texas 77225, USA
| | | |
Collapse
|