1
|
Mamczarz J, Lane M, Merchenthaler I. Letrozole delays acquisition of water maze task in female BALB/c mice: Possible involvement of anxiety. Horm Behav 2024; 162:105524. [PMID: 38513526 PMCID: PMC11155665 DOI: 10.1016/j.yhbeh.2024.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Letrozole, an aromatase inhibitor preventing estrogen synthesis from testosterone, is used as an adjuvant therapy in estrogen receptor-positive breast cancer patients. However, like other aromatase inhibitors, it induces many side effects, including impaired cognition. Despite its negative effect in humans, results from animal models are inconsistent and suggest that letrozole can either impair or improve cognition. Here, we studied the effects of chronic letrozole treatment on cognitive behavior of adult female BALB/c mice, a relevant animal model for breast cancer studies, to develop an appropriate animal model aimed at testing therapies to mitigate side effects of letrozole. In Morris water maze, letrozole 0.1 mg/kg impaired reference learning and memory. Interestingly, most of the letrozole 0.1 mg/kg-treated mice were able to learn the new platform position in reversal training and performed similar to control mice in a reversal probe test. Results of the reversal test suggest that letrozole did not completely disrupt spatial navigation, but rather delayed acquisition of spatial information. The delay might be related to increased anxiety as suggested by increased thigmotactic behavior during the reference memory training. The learning impairment was water maze-specific since we did not observe impairment in other spatial tasks such as in Y-maze or object location test. In contrast, the dose of 0.3 mg/kg did not have effect on water maze learning and facilitated locomotor habituation and recognition in novel object recognition test. The current study shows that letrozole dose-dependently modulates behavioral response and that its effects are task-dependent.
Collapse
Affiliation(s)
- Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Malcolm Lane
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Istvan Merchenthaler
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
2
|
Wolter M, Huff E, Speigel T, Winters BD, Leri F. Cocaine, nicotine, and their conditioned contexts enhance consolidation of object memory in rats. ACTA ACUST UNITED AC 2019; 26:46-55. [PMID: 30651377 PMCID: PMC6340119 DOI: 10.1101/lm.048579.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
To test the hypothesis that drugs of abuse and their conditioned stimuli (CSs) enhance memory consolidation, the effects of post-training exposure to cocaine and nicotine were compared to the effects of post-training exposure to contextual stimuli that were paired with the effects of these drugs. Using the object recognition (OR) task, it was first demonstrated that both 10 and 20 mg/kg cocaine, and 0.2 and 0.4 mg/kg nicotine, enhanced recognition memory when administered immediately after, but not 6 h after the sample phase. To establish the drug CSs, rats were confined for 2 h in a chamber (the CS+) after injections of 20 mg/kg cocaine, or 0.4 mg/kg nicotine, and in another chamber (the CS−) after injections of vehicle. This was repeated over 10 d (5 drug/CS+ and 5 vehicle/CS− pairings in total). At the end of this conditioning period, when tested in a drug-free state, rats displayed conditioned hyperactivity in the CS+ relative to the CS−. More important, immediate, but not delayed, post-sample exposure to the cocaine CS+, or nicotine CS+, enhanced OR memory. Therefore, this study reports for the first time that contextual stimuli paired with cocaine and nicotine, like the drugs themselves, have the ability to enhance memory consolidation.
Collapse
Affiliation(s)
- Michael Wolter
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ethan Huff
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Talia Speigel
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Managò F, Lopez S, Oliverio A, Amalric M, Mele A, De Leonibus E. Interaction between the mGlu receptors 5 antagonist, MPEP, and amphetamine on memory and motor functions in mice. Psychopharmacology (Berl) 2013. [PMID: 23192313 DOI: 10.1007/s00213-012-2925-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RATIONALE Metabotropic glutamate mGlu receptors 5 (mGluR5) receptors are abundant in corticolimbic circuitry where they modulate glutamate and dopamine signal transduction. OBJECTIVES In this study, we explored the hypothesis that mGluR5 antagonist, (2-methyl-6-(phenylethynyl)pyridine hydrochloride) (MPEP), facilitates dopamine-dependent effects on memory and motor functions. METHODS To this aim, we examined the effects of different doses (from 0 to 24 mg/kg) of the mGluR5 antagonist, MPEP, on the modulation of amphetamine-dependent behaviors, namely passive avoidance, locomotor activity, and rotation behavior in intact and dopamine-depleted CD1 male mice. RESULTS We demonstrated that a low dose (3 mg/kg) of MPEP, which is void of behavioral effects on its own, facilitates amphetamine-induced effects independently on the behavior measured both in naïve and in dopamine-lesioned mice; this synergistic effect is lost when higher doses of MPEP are used. CONCLUSION The results are discussed in terms of possible balance between dopamine and glutamate activity in regulating the proper fine tuning of information processing.
Collapse
Affiliation(s)
- Francesca Managò
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Università degli Studi di Roma "La Sapienza", Rome, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Ardjmand A, Rezayof A, Zarrindast MR. Involvement of central amygdala NMDA receptor mechanism in morphine state-dependent memory retrieval. Neurosci Res 2011; 69:25-31. [DOI: 10.1016/j.neures.2010.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/25/2010] [Accepted: 09/14/2010] [Indexed: 12/11/2022]
|
5
|
Sunyer B, An G, Kang SU, Höger H, Lubec G. Strain-dependent hippocampal protein levels of GABAB-receptor subunit 2 and NMDA-receptor subunit 1. Neurochem Int 2009; 55:253-6. [DOI: 10.1016/j.neuint.2009.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
|
6
|
Rezayof A, Sharifi K, Zarrindast MR, Rassouli Y. Modulation of ethanol state-dependent learning by dorsal hippocampal NMDA receptors in mice. Alcohol 2008; 42:667-74. [PMID: 18774674 DOI: 10.1016/j.alcohol.2008.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 05/09/2008] [Accepted: 05/23/2008] [Indexed: 01/31/2023]
Abstract
The possible role of N-methyl-D-aspartate (NMDA) receptors of dorsal hippocampus on ethanol state-dependent learning was studied in adult male mice (Pasteur Institute, Iran). As a model of memory, a single-trial step-down passive avoidance task was used. All animals were bilaterally implanted with cannulae into the CA1 regions of dorsal hippocampi. Results show that intraperitoneal (i.p.) administration of ethanol (0.5 and 1 g/kg) 30 min before training impaired memory performance in animals when tested 24h later. Pretest administration of the same doses of ethanol-induced state-dependent retrieval of the memory acquired under pretraining ethanol (1 g/kg, i.p.) influence. Pretest intra-CA1 microinjection of NMDA (0.001, 0.01, and 0.1 microg/mouse) by itself had no effect on memory retrieval and ethanol-induced amnesia. However, pretest intra-CA1 administration of the same doses of NMDA with an ineffective dose of ethanol (0.25 g/kg, i.p.) significantly restored the retrieval and potentiated ethanol state-dependent learning. On the other hand, pretest administration of a competitive NMDA receptor antagonist D-AP5 (D-(-)-2-Amino-5-phosphonopentanoic acid) (0.01, 0.1, and 1 microg/mouse, intra-CA1) or a noncompetitive NMDA receptor antagonist MK-801 maleate [(5S, 10R)-(+)-5-Methyl-10, 11-dihydro-5H-dibenzo [a, d] cyclohepten-5, 10-imine maleate] (0.25, 0.5, and 1 g/mouse, intra-CA1) 5 min before the administration of ethanol (1 g/kg, i.p.) significantly inhibited ethanol state-dependent learning. Intra-CA1 pretest administration of D-AP5 (0.01, 0.1, and 1 microg/mouse) or MK-801 maleate [5S, 10R)-(+)-5-Methyl-10, 11-dihydro-5H-dibenzo [a, d] cyclohepten-5, 10-imine maleate] (0.25, 0.5, and 1 microg/mouse) alone did not affect memory retention. It may be concluded that dorsal hippocampal NMDA receptors are involved in mediating ethanol state-dependent learning.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box 4155-6455, Tehran, Iran.
| | | | | | | |
Collapse
|
7
|
Ciamei A, Morton AJ. Rigidity in social and emotional memory in the R6/2 mouse model of Huntington’s disease. Neurobiol Learn Mem 2008; 89:533-44. [DOI: 10.1016/j.nlm.2007.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/22/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
8
|
El-Ghundi M, O'Dowd BF, George SR. Insights into the Role of Dopamine Receptor Systems in Learning and Memory. Rev Neurosci 2007; 18:37-66. [PMID: 17405450 DOI: 10.1515/revneuro.2007.18.1.37] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is well established that learning and memory are complex processes involving and recruiting different brain modulatory neurotransmitter systems. Considerable evidence points to the involvement of dopamine in various aspects of cognition, and interest has been focused on investigating the clinical relevance of dopamine systems to age-related cognitive decline and manifestations of cognitive impairment in schizophrenia, Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. In the past decade or so, in spite of the molecular cloning of the five dopamine receptor subtypes, their specific roles in brain function remained inconclusive due to the lack of completely selective ligands that could distinguish between the members of the D1-like and D2-like dopamine receptor families. One of the most important advances in the field of dopamine research has been the generation of mutant mouse models permitting evaluation of the dopaminergic system using gene targeting technologies. These mouse models represent an important approach to explore the functional roles of closely related receptor subtypes. In this review, we present and discuss evidence on the role of dopamine receptors in different aspects of learning and memory at the cellular, molecular and behavioral levels. We compare evidence using conventional pharmacological, lesion or electrophysiological studies with results from mice with targeted deletions of different subtypes of dopamine receptor genes. We particularly focus on dopamine D1 and D2 receptors in an effort to delineate their specific roles in various aspects of cognitive function. We provide strong evidence, from our own recent work as well as others, that dopamine is part of the network that plays a very important role in cognitive function, and that although multiple dopamine receptor subtypes contribute to different aspects of learning and memory, the D1 receptor seems to play a more prominent role in mediating plasticity and specific aspects of cognitive function, including spatial learning and memory processes, reversal learning, extinction learning, and incentive learning.
Collapse
Affiliation(s)
- Mufida El-Ghundi
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
9
|
Ahmadi S, Zarrindast MR, Haeri-Rohani A, Rezayof A, Nouri M. Nicotine improves morphine-induced impairment of memory: Possible involvement ofN-methyl-D-aspartate receptors in the nucleus accumbens. Dev Neurobiol 2007; 67:1118-27. [PMID: 17565710 DOI: 10.1002/dneu.20456] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The possible involvement of N-methyl-D-aspartate (NMDA) receptors in the nucleus accumbens (NAc) in nicotine's effect on impairment of memory by morphine was investigated. A passive avoidance task was used for memory assessment in male Wistar rats. Subcutaneous (s.c.) administration of morphine (5 and 10 mg/kg) after training impaired memory performance in the animals when tested 24 h later. Pretest administration of the same doses of morphine reversed impairment of memory because of post-training administration of the opioid. Moreover, administration of nicotine (0.2 and 0.4 mg/kg, s.c.) before the test prevented impairment of memory by morphine (5 mg/kg) given after training. Impairment of memory performance in the animals because of post-training administration of morphine (5 mg/kg) was also prevented by pretest administration of a noncompetitive NMDA receptor antagonist, MK-801 (0.75 and 1 microg/rat). Interestingly, an ineffective dose of MK-801 (0.5 microg/rat) in combination with low doses (0.075 and 0.1 mg/kg) of nicotine, which had no effects alone, synergistically improved memory performance impaired by morphine given after training. On the other hand, pretest administration of NMDA (0.1 and 0.5 microg/rat), which had no effect alone, in combination with an effective dose (0.4 mg/kg, s.c.) of nicotine prevented the improving effect of nicotine on memory impaired by pretreatment morphine. The results suggest a possible role for NMDA receptors of the NAc in the improving effect of nicotine on the morphine-induced amnesia.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Animal biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
10
|
Podhorna J, Didriksen M. Performance of male C57BL/6J mice and Wistar rats in the water maze following various schedules of phencyclidine treatment. Behav Pharmacol 2005; 16:25-34. [PMID: 15706135 DOI: 10.1097/00008877-200502000-00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In order to establish an animal model of cognitive impairments relevant to schizophrenia, we set out to obtain an optimal treatment protocol with phencyclidine (PCP) that would lead to robust cognitive impairment with minimal PCP-related adverse effects. Effects of various doses (0.63-5 mg/kg), pre-treatment period (0, 3, 7 and 10 days before the beginning of acquisition) and treatment schedules (before the first or immediately after the last trial on each day) of PCP on the performance of male C57BL/6J mice and Wistar rats in the spatial version of the water maze were studied. In mice, a 10-day pre-treatment period was required to prevent PCP-induced motor impairments, whereas a 3-day pre-treatment was sufficient in rats. PCP impaired spatial learning in both rats and mice, if animals were administered PCP prior to the first trial. The optimal dose was 2.5 mg/kg. In contrast, animals given PCP immediately after the daily training sessions performed as well as controls. Thus, PCP impairs spatial learning in the water maze only when present in the organism. It can be concluded that PCP interferes with learning, and perhaps retrieval, but not consolidation of newly acquired information.
Collapse
Affiliation(s)
- J Podhorna
- Department of Psychopharmacology - Psychosis, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen - Valby, Denmark
| | | |
Collapse
|
11
|
Costanzi M, Battaglia M, Rossi-Arnaud C, Cestari V, Castellano C. Effects of anandamide and morphine combinations on memory consolidation in cd1 mice: involvement of dopaminergic mechanisms. Neurobiol Learn Mem 2004; 81:144-9. [PMID: 14990234 DOI: 10.1016/j.nlm.2003.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 09/11/2003] [Accepted: 09/19/2003] [Indexed: 11/18/2022]
Abstract
In the present research the interaction between the endogenous ligand for the cannabinoid CB1 receptor anandamide (arachidonylethanolamide) and morphine in memory consolidation was investigated. Four sets of experiments were carried out with CD1 mice tested in a one-trial inhibitory avoidance task. The drugs were administered intraperitoneally after training of the animals in the apparatus. In the first set of experiments morphine (0.3 or 0.5, but not 0.15mg/kg) or anandamide (3 or 6 but not 1.5mg/kg) dose-dependently impaired memory consolidation. In the second set of experiments the administration of an otherwise ineffective dose of anandamide (1.5mg/kg) enhanced the memory impairment exerted by morphine (0.3 and 0.5mg/kg) when the drugs were injected immediately after training. In the third set of experiments the combined treatments of anandamide (1.5mg/kg) and morphine (0.5mg/kg) 2h after training were ineffective showing that the effects observed on performance following immediate posttraining administration of anandamide and morphine combinations were reflecting direct influences on memory consolidation. In the fourth set of experiments otherwise ineffective doses of the D1 DA receptor agonist SKF 38393 or the D2 DA receptor agonist LY 171555 antagonized the memory impairment produced by anandamide and morphine in combination, suggesting a possible involvement of dopaminergic mechanisms.
Collapse
Affiliation(s)
- Marco Costanzi
- Istituto di Neuroscienze del CNR, Sezione di Psicobiologia e Psicofarmacologia, Viale Marx 15, 00137 Roma, Italy.
| | | | | | | | | |
Collapse
|
12
|
Bernaerts P, Tirelli E. Facilitatory effect of the dopamine D4 receptor agonist PD168,077 on memory consolidation of an inhibitory avoidance learned response in C57BL/6J mice. Behav Brain Res 2003; 142:41-52. [PMID: 12798264 DOI: 10.1016/s0166-4328(02)00371-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The still unknown contribution of the D4 receptors to memory consolidation was studied examining the memory effects of the dopamine D4 agonist PD168,077, the putative dopamine D4 antagonist L745,870, their mutual combination, and the combination of the D4 agonist with representative compounds acting as agonist or antagonist on the D1, D2 and the D3 receptors. Memory consolidation was assessed in C57BL/6J mice using the one-trial step-through inhibitory avoidance task, the compounds being injected immediately after training (foot-shock) and performance measured 24h later. PD168,077 (0.5-10mg/kg) dose-dependently improved memory performance and L745,870 (0.05-5mg/kg) at doses lower than 1mg/kg increased and at doses higher than 1mg/kg impaired memory performance. PD168,077 did not affect the paradoxical promnesic effect of low doses (0.1-0.5mg/kg) of L745,870, but antagonised the memory-impairing effect induced by 5mg/kg L745,870. The D1 antagonist SCH23390 (0.025-0.05 mg/kg) and the D2 antagonist eticlopride (0.01-0.05 mg/kg) antagonised the promnesic effects of PD168,077, which attenuated the decreasing effect on memory consolidation of both D1 and D2 antagonists. Accordingly, the D1 agonist SKF38393 (5-20mg/kg) and the D2 agonist quinelorane (0.1-1 mg/kg) both synergistically magnified the memory-improving effects of the D4 agonist. The dopamine D3 antagonist U99194A (2.5-10mg/kg) did not affect the promnesic effects induced by the D4 agonist, which nevertheless abolished the U99194A-induced promnesic effects. Additionally, the amnesic effects produced by the D3 agonist 7-OH-DPAT (0.01-1 microg/kg) was attenuated by PD168,077. These results suggest a potential role of dopamine D4 receptors in memory consolidation, which would be similar to that of the D1 and D2 receptors and probably opposite to that of the D3 receptors.
Collapse
Affiliation(s)
- Pascale Bernaerts
- Laboratoire de Neuroscience Comportementale et de Psychopharmacologie Expérimentale, Département des Sciences Cognitives, Université de Liège, Boulevard du Rectorat 5/B32, B-4000 Liège, Belgium
| | | |
Collapse
|
13
|
Brown RW, Beale KS, Jay Frye GD. Mecamylamine blocks enhancement of reference memory but not working memory produced by post-training injection of nicotine in rats tested on the radial arm maze. Behav Brain Res 2002; 134:259-65. [PMID: 12191812 DOI: 10.1016/s0166-4328(02)00047-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The focus of this study was to analyze whether the psychostimulant nicotine would enhance reference and working memory consolidation in rats tested on the 8-arm radial arm maze. Mecamylamine, a nicotine antagonist, was used to attempt to block the enhancement of memory consolidation. All rats were given one training trial/day for 12 consecutive days, and 4 arms were baited. Rats were separated into five groups: the saline-nicotine group received an intraperitoneal (i.p.) injection of saline immediately after each trial followed 15 min later by an subcutaneous (s.c.) injection of nicotine (0.6 mg/kg free base); the nicotine-delay group received an s.c. injection of nicotine 2 h after each training trial, two groups received an i. p. injection of one of two different doses of mecamylamine (2.5 and 6.0 mg/kg) immediately after each trial, which was followed 15 min later by an s.c. nicotine injection, and a control group received an i.p. injection of saline immediately and 15 min after each training trial. Results showed that the saline-nicotine group made fewer reference and working memory errors than the saline- or nicotine-delay groups, but only the effect of nicotine on reference memory was blocked by the higher dose of mecamylamine. It appears from these results that nicotine's effects on reference and working memory may be mediated through different mechanisms.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Psychology, East Tennessee State University, PO Box 70649, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
14
|
Podhorna J, Brown RE. Strain differences in activity and emotionality do not account for differences in learning and memory performance between C57BL/6 and DBA/2 mice. GENES, BRAIN, AND BEHAVIOR 2002; 1:96-110. [PMID: 12884980 DOI: 10.1034/j.1601-183x.2002.10205.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examined emotionality, activity, learning and memory, as well as the influence of emotionality and activity on learning and memory performance in C57BL/6 and DBA/2 mice using a mouse-test battery. DBA/2 mice performed more poorly than C57BL/6 mice in complex learning tasks such as the water maze and object recognition tasks. In contrast, C57BL/ 6 mice showed attenuated habituation tonovelty in the open field apparatus and poorer performance in the step-down passive avoidance task. The C57BL/6 mice were less exploratory and more anxious than the DBA/ 2 mice. The anxiety score (open arm entries in the elevated plus maze) was significantly correlated with all measures of learning and memory in the object recognition task, and some measures in the passive avoidance and water maze tasks. Analysis of covariance (with open arm entries as a covariate) revealed that some measures on trial 1 of the object recognition task, but not the memory scores on trial 2,were confounded by anxiety. No confounding factors of anxiety were found in the water maze or passive avoidance tasks. Similar results were obtained with the activity scores (line crossing and rearing in the open field). In conclusion, strain differences in activity and anxiety did not account for strain differences in learning and memory performance of C57BL/6 and DBA/2 mice. Nonetheless, the importance of using complete behavioural test batteries should be stressed to ensure that strain differences in learning and memory tasks are not confounded by non-cognitive factors.
Collapse
Affiliation(s)
- J Podhorna
- Department of Psychology Dalhousie University Halifax, Nova Scotia, Canada B3H 4J1
| | | |
Collapse
|
15
|
Aversano M, Ciamei A, Cestari V, Passino E, Middei S, Castellano C. Effects of MK-801 and ethanol combinations on memory consolidation in CD1 mice: involvement of GABAergic mechanisms. Neurobiol Learn Mem 2002; 77:327-37. [PMID: 11991761 DOI: 10.1006/nlme.2001.4029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present research the effect of the noncompetitive N-methyl-d-aspartate receptor antagonist MK-801 and ethanol combinations on memory consolidation and the involvement of GABAergic mechanisms in this effect were investigated in CD1 mice injected intraperitoneally with the drugs immediately or 120 min after training in a one-trial inhibitory avoidance apparatus and tested for retention 24 h later. The results showed that (a) the retention performances of mice were impaired in a dose-dependent manner by immediate posttraining MK-801 (0.2 and 0.3, but not 0.1 mg/kg) and ethanol (1 and 2, but not 0.5 g/kg) administrations; (b) an otherwise ineffective dose of MK-801 (0.1 mg/kg) enhanced the deleterious effect exerted by ethanol (1 and 2 g/kg); (c) an otherwise ineffective dose of muscimol (0.5 mg/kg) enhanced, while otherwise ineffective doses of picrotoxin (0.25 mg/kg) or bicuculline (0.1 mg/kg) antagonized, this effect; and (d) no effect was observed when the treatments were carried out 120 min after training, suggesting that the effects observed following immediate posttraining administrations were due to the influence on the consolidation of memory. From these experiments it is evident that (a) MK-801 enhances ethanol's effects on memory consolidation and (b) GABAergic mechanisms are involved in this effect.
Collapse
Affiliation(s)
- Marco Aversano
- Istituto di Psicobiologia e Psicofarmacologia del CNR, Viale Marx 15, 00137 Rome, Italy
| | | | | | | | | | | |
Collapse
|