1
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
2
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
3
|
Lee GH, Kim V, Lee SG, Jeong E, Kim C, Lee YB, Kim D. Catalytic enhancements in cytochrome P450 2C19 by cytochrome b5. Toxicol Res 2024; 40:215-222. [PMID: 38525137 PMCID: PMC10959859 DOI: 10.1007/s43188-023-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 03/26/2024] Open
Abstract
Human cytochrome P450 2C19 catalyzes P450 enzyme reactions of various substrates, including steroids and clinical drugs. Recombinant P450 2C19 enzyme with histidine tag was successfully expressed in Escherichia coli and purified using affinity column chromatography. Ultra-performance liquid chromatography-tandem mass (UPLC-MS/MS) spectrometry showed that the purified P450 2C19 enzyme catalyzed 5-hydroxylation reaction of omeprazole. The purified enzyme displayed typical type I binding spectra to progesterone with a Kd value of 4.5 ± 0.2 µM, indicating a tight substrate binding. P450 2C19 catalyzed the hydroxylation of progesterone to produce 21-hydroxy (OH) as a major and 17-OH product as a minor product. Steady-state kinetic analysis of progesterone 21-hydroxylation indicated that the addition of cytochrome b5 stimulated a five-times catalytic turnover number of P450 2C19 with a kcat value of 1.07 ± 0.08 min-1. The molecular docking model of progesterone in the active site of P450 2C19 displayed that the 21-carbon of progesterone was located close to the heme with a distance of 4.7 Å, suggesting 21-hydroxylation of progesterone is the optimal reaction of P450 2C19 enzyme for a productive orientation of the substrate. Our findings will help investigate the extent to which cytochrome b5 affects the metabolism of P450 2C19 to drugs and steroids. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00219-8.
Collapse
Affiliation(s)
- Gyu-Hyeong Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Sung-Gyu Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Eunseo Jeong
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Changmin Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Yoo-Bin Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdongro, Gwangjjn-Gu, Seoul, 05025 Republic of Korea
| |
Collapse
|
4
|
Tateishi Y, Webb SN, Li B, Liu L, Lindsey Rose K, Leser M, Patel P, Guengerich FP. Proteomics, modeling, and fluorescence assays delineate cytochrome b 5 residues involved in binding and stimulation of cytochrome P450 17A1 17,20-lyase. J Biol Chem 2024; 300:105688. [PMID: 38280431 PMCID: PMC10878793 DOI: 10.1016/j.jbc.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
Cytochrome b5 (b5) is known to stimulate some catalytic activities of cytochrome P450 (P450, CYP) enzymes, although mechanisms still need to be defined. The reactions most strongly enhanced by b5 are the 17,20-lyase reactions of P450 17A1 involved in steroid biosynthesis. We had previously used a fluorescently labeled human b5 variant (Alexa 488-T70C-b5) to characterize human P450 17A1-b5 interactions, but subsequent proteomic analyses indicated that lysines in b5 were also modified with Alexa 488 maleimide in addition to Cys-70, due to disulfide dimerization of the T70C mutant. A series of b5 variants were constructed with Cys replacements for the identified lysine residues and labeled with the dye. Fluorescence attenuation and the function of b5 in the steroid lyase reaction depended on the modified position. Apo-b5 (devoid of heme group) studies revealed the lack of involvement of the b5 heme in the fluorescence attenuation. A structural model of b5 with P450 17A1 was predicted using AlphaFold-Multimer algorithms/Rosetta docking, based upon the individual structures, which predicted several new contacts not previously reported, that is, interactions of b5 Glu-48:17A1 Arg-347, b5 Glu-49:17A1 Arg-449, b5 Asp-65:17A1 Arg-126, b5 Asp-65:17A1 Arg-125, and b5 Glu-61:17A1 Lys-91. Fluorescence polarization assays with two modified b5 variants yielded Kd values (for b5-P450 17A1) of 120 to 380 nM, the best estimate of binding affinity. We conclude that both monomeric and dimeric b5 can bind to P450 17A1 and stimulate activity. Results with the mutants indicate that several Lys residues in b5 are sensitive to the interaction with P450 17A1, including Lys-88 and Lys-91.
Collapse
Affiliation(s)
- Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephany N Webb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lu Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Micheal Leser
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Purvi Patel
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Uno Y, Uehara S, Ushirozako G, Murayama N, Suemizu H, Yamazaki H. Cytochrome P450 1A2 and 2C enzymes autoinduced by omeprazole in dog hepatocytes and human HepaRG and HepaSH cells are involved in omeprazole 5-hydroxylation and sulfoxidation. Xenobiotica 2023; 53:465-473. [PMID: 37800661 DOI: 10.1080/00498254.2023.2266840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The induction assay for the cytochromes P450 (P450s) is an important tool in drug discovery and development. The inductions of dog P450 1A2 and 3A12 by omeprazole and rifampicin were functionally characterised in dog hepatocytes and were compared with induction in human HepaRG and HepaSH cells.P450 1A2-dependent ethoxyresorufin O-deethylation was induced by R,S-omeprazole and P450 3 A-dependent midazolam 1'-hydroxylation was induced by rifampicin, and both reactions were significantly enhanced in cultured dog hepatocytes and human HepaRG and HepaSH cells.Recombinant dog P450 1A2 exhibited activities towards R- and S-omeprazole 5-hydroxylation with low Km values of 23-28 µM, whereas dog P450 2C21 and 3A12 efficiently mediated S-omeprazole 5-hydroxylation and sulfoxidation, respectively, with high Vmax values of 12-17 min-1.Although omeprazole 5-hydroxylation by human P450 2C19 (and sulfoxidation by P450 3A4) in human HepaSH cells were slightly (∼2-fold) induced by R,S-omeprazole, dog P450 1A2 was autoinduced by omeprazole in dog hepatocytes and showed enhanced R-omeprazole 5-hydroxylation activity (∼5-fold).These results indicate that omeprazole can be an autoinducer of P450 1A2 in hepatocytes, and this enzyme was found to be involved in omeprazole 5-hydroxylation and sulfoxidation in dog hepatocytes and human HepaRG and HepaSH cells.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Uehara
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Suemizu
- Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
6
|
Shimizu M, Uehara S, Ohyama K, Nishimura H, Tanaka Y, Saito Y, Suemizu H, Yoshida S, Yamazaki H. Pharmacokinetic Models Scaled-up from Humanized-liver Mouse Data Can Account for Drug Monitoring Results of Atomoxetine and Its 4-Hydroxylated and N-Demethylated Metabolites i n Pediatric Patients Genotyped for Cytochrome P450 2D6. Drug Metab Dispos 2023; 52:DMD-AR-2023-001481. [PMID: 37879849 DOI: 10.1124/dmd.123.001481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Atomoxetine is a cytochrome P450 (P450) 2D6 probe substrate and an approved medicine for attention-deficit/hyperactivity disorder. In this humanized-liver mouse study, interactions between atomoxetine and the P450 2D6 probe drug paroxetine were observed. Human physiologically based pharmacokinetic (PBPK) models were established by scaling up humanized-liver mouse data obtained in the absence or presence of paroxetine. These models could explain the drug monitoring results of atomoxetine and its primary 4-hydroxylated and N-demethylated metabolites in Japanese children aged 8-14 years and could be used to help establish the correct dosage and for the evaluation of clinical outcomes. The results of simple PBPK models (using input parameters that reflected the subjects' small body size and normal or reduced P450 2D6-dependent clearance) were in general agreement with one-point measured plasma concentrations of atomoxetine and its 4-hydroxylated and N-demethylated metabolites in 13 pediatric participants. Unexpectedly high hepatic exposure, possibly in intermediate-metabolizer patients harboring CYP2D6*10 or 2D6*36 alleles, might in part explain the adverse effects of atomoxetine prescribed alone recorded in a Japanese adverse-event database. The steady-state, one-point drug monitoring data from the participants indicated extensive biotransformation of atomoxetine to 4-hydroxyatomoxetine under individually prescribed doses of atomoxetine. These results also suggest that a relatively narrow range of 4-hydroxyatomoxetine and N-desmethylatomoxetine concentration ratios in spot urine and/or plasma samples from pediatric patients could be a simple semiquantitative determinant factor for P450 2D6 intermediate metabolizers, compared with the wide range of concentrations of the two primary metabolites and substrate in extensive metabolizers. Significance Statement Validated simple pharmacokinetic models are able to predict steady-state plasma concentrations of the approved medicine atomoxetine and its primary metabolites in the majority of pediatric patients. The package insert advises careful dose escalation, especially for poor metabolizers; however, no simple way exists to determine P450 2D6 phenotypes. A relatively narrow range ratio of 4-hydroxyatomoxetine and N-desmethylatomoxetine in spot urine/plasma samples could be a simple semi-quantitative determinant factor for P450 2D6 intermediate metabolizers to optimize or confirm the correct dosage.
Collapse
Affiliation(s)
- Makiko Shimizu
- Lab. of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Japan
| | | | | | | | - Yoichi Tanaka
- Division of Medicinal Safety Science, National Institute of Health Sciences, Japan
| | | | | | | | - Hiroshi Yamazaki
- Lab. Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Japan
| |
Collapse
|
7
|
Ushirozako G, Murayama N, Tsukiyama-Kohara K, Yamazaki H, Uno Y. Tree shrew cytochrome P450 2E1 is a functional enzyme that metabolises chlorzoxazone and p-nitrophenol. Xenobiotica 2023; 53:573-580. [PMID: 37934191 DOI: 10.1080/00498254.2023.2280996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/08/2023]
Abstract
Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.
Collapse
Affiliation(s)
- Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| |
Collapse
|
8
|
Liu L, Cui H, Huang Y, Yan H, Zhou Y, Wan Y. Molecular docking and in vitro evaluations reveal the role of human cytochrome P450 3A4 in the cross-coupling metabolism of phenolic xenobiotics. ENVIRONMENTAL RESEARCH 2023; 220:115256. [PMID: 36634892 DOI: 10.1016/j.envres.2023.115256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Metabolism generally transforms xenobiotics into more polar and hydrophilic products, facilitating their elimination from the body. Recently, a new metabolic pathway that transforms phenolic xenobiotics into more lipophilic and bioactive dimer products was discovered. To elucidate the role of cytochrome P450 (CYP) enzymes in mediating this cross-coupling metabolism, we used high-throughput screening to identify the metabolites generated from the coupling of 20 xenobiotics with four endogenous metabolites in liver microsomes. Endogenous vitamin E (VE) was the most reactive metabolite, as VE reacted with seven phenolic xenobiotics containing various structures (e.g., an imidazoline ring or a diphenol group) to generate novel lipophilic ethers such as bakuchiol-O-VE, phentolamine-O-VE, phenylethyl resorcinol-O-VE, 2-propanol-O-VE, and resveratrol-O-VE. Seven recombinant CYP enzymes were successfully expressed and purified in Escherichia coli. Integration of the results of recombinant human CYP incubation and molecular docking identified the central role of CYP3A4 in the cross-coupling metabolic pathway. Structural analysis revealed the π-π interactions, hydrogen bonds, and hydrophobic interactions between reactive xenobiotics and VE in the malleable active sites of CYP3A4. The consistency between the molecular docking results and the in vitro human cytochrome P450 evaluation shows that docking calculations can be used to screen molecules participating in cross-coupling metabolism. The results of this study provide supporting evidence for the overlooked toxicological effects induced by direct reactions between xenobiotics and endogenous metabolites during metabolic processes.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hao Yan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Uno Y, Noda Y, Murayama N, Tsukiyama-Kohara K, Yamazaki H. Novel cytochrome P450 1 (CYP1) genes in tree shrews are expressed and encode functional drug-metabolizing enzymes. Comp Biochem Physiol C Toxicol Pharmacol 2023; 265:109534. [PMID: 36563947 DOI: 10.1016/j.cbpc.2022.109534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/19/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Tree shrews (Tupaia belangeri) are a non-rodent primate-like species sometimes used for biomedical research involving hepatitis virus infections and toxicology. Genome analysis has indicated similarities between tree shrews and humans in the numbers of cytochromes P450 (P450 or CYP), which constitute a family of important drug-metabolizing enzymes; however, P450s have not been fully investigated in tree shrews. In this study, we identified CYP1A1, CYP1A2, CYP1B1, and CYP1D1 cDNAs from tree shrew liver and compared their characteristics with dog, pig, and human CYP1As. The deduced amino acid sequences of tree shrew CYP1s were highly identical (82-87 %) to human CYP1s. In tree shrews, CYP1A1 and CYP1A2 mRNAs were preferentially expressed in liver, whereas CYP1D1 mRNA was preferentially expressed in kidney and lung. In contrast, CYP1B1 mRNA was expressed in various tissues, with the most abundant expression in spleen. Among the tree shrew CYP1 mRNAs, CYP1A2 mRNA was most abundant in liver, and CYP1B1 mRNA was most abundant in kidney, small intestine, and lung. All tree shrew CYP1 proteins heterologously expressed in Escherichia coli catalyzed caffeine and estradiol in a similar manner to tree shrew liver microsomes and human, dog, and pig CYP1 proteins. These results suggest that tree shrew CYP1A1, CYP1A2, CYP1B1, and CYP1D1 genes, different form human pseudogene CYP1D1P, are expressed in liver, small intestine, lung, and/or kidney and encode functional drug-metabolizing enzymes important in toxicology.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Yutaro Noda
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
10
|
Uno Y, Jikuya S, Noda Y, Murayama N, Yamazaki H. A Comprehensive Investigation of Dog Cytochrome P450 3A (CYP3A) Reveals a Functional Role of Newly Identified CYP3A98 in Small Intestine. Drug Metab Dispos 2023; 51:38-45. [PMID: 35772769 DOI: 10.1124/dmd.121.000749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Dogs are frequently used in drug metabolism studies, and their important drug-metabolizing enzymes, including cytochromes P450 (P450), have been analyzed. In humans, CYP3A4 is an especially important P450 due to its abundance and major roles in liver and intestine. In the present study, dog CYP3A98 and CYP3A99 were identified and characterized, along with previously identified CYP3A12 and CYP3A26. The dog CYP3A cDNAs contained open reading frames of 503 amino acids and shared high sequence identity (78%-80%) with human CYP3As. Among the dog CYP3A mRNAs, CYP3A98 mRNA was expressed most abundantly in small intestine. In contrast, dog CYP3A12 and CYP3A26 mRNAs were expressed in liver, where CYP3A12 mRNA was the most abundant. The four CYP3A genes had similar gene structures and formed a gene cluster in the dog and human genomes. Metabolic assays of dog CYP3A proteins heterologously expressed in Escherichia coli indicated that the dog CYP3As tested were functional enzymes with respect to typical human CYP3A4 substrates. Dog CYP3A98 efficiently catalyzed oxidations of nifedipine, alprazolam, and midazolam, indicating major roles of CYP3A98 in the small intestine. Dog CYP3A12 and CYP3A26 metabolizing nifedipine and/or midazolam would play roles in these reactions in the liver. In contrast, dog CYP3A99 showed minimal mRNA expression and minimal metabolic activity, and its contribution to overall drug metabolism is, therefore, negligible. These results indicated that newly identified dog CYP3A98, a testosterone 6 β - and estradiol 16 α -hydroxylase, was abundantly expressed in the small intestine and is likely the major CYP3A in the small intestine in combination with liver-specific CYP3A12. SIGNIFICANCE STATEMENT: Novel dog cytochromes P450 3A98 (CYP3A98) and CYP3A99 were identified and characterized to be functional and highly identical to human CYP3A4. Known CYP3A12 and new CYP3A98 efficiently catalyzed estradiol 16α-hydroxylation and midazolam 1'-hydroxylation. CYP3A98 mRNA was expressed in small intestine, whereas CYP3A12 mRNA was predominant in liver. Dog hepatic CYP3A12 and intestinal CYP3A98 are the enzymes likely responsible for the metabolic clearances of orally administered drugs, unlike human CYP3A4/5, which are in both the liver and intestine.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Shiori Jikuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Yutaro Noda
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| |
Collapse
|
11
|
Guengerich FP. Drug Metabolism: A Half-Century Plus of Progress, Continued Needs, and New Opportunities. Drug Metab Dispos 2023; 51:99-104. [PMID: 35868640 PMCID: PMC11024512 DOI: 10.1124/dmd.121.000739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
The systematic study of drug metabolism began in the 19th Century, but most of what we know now has been learned in the last 50 years. Drug metabolism continues to play a critical role in pharmaceutical development and clinical practice, as well as contributing to toxicology, chemical carcinogenesis, endocrinology, and drug abuse. The importance of the field will continue, but its nature will continue to develop with changes in analytical chemistry, structural biology, and artificial intelligence. Challenges and opportunities include toxicology, defining roles of genetic variations, and application to clinical issues. Although the focus of this Minireview is cytochrome P450, the same principles apply to other enzymes and transporters involved in drug metabolism. SIGNIFICANCE STATEMENT: Progress in the field of drug metabolism over the past 50 years has helped make the pharmaceutical enterprise what it is today. Drug metabolism will continue to be important. Challenges and opportunities for the future are discussed.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
12
|
Guengerich FP. On 'Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions' by Alfred Hildebrandt and Ronald W. Estabrook. Arch Biochem Biophys 2022; 726:109177. [PMID: 35305998 PMCID: PMC9893037 DOI: 10.1016/j.abb.2022.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
This paper by Alfred G. Hildebrandt and Ronald W. Estabrook at the University of Texas (Southwestern) Medical School, led to the concept of cytochrome b5 (b5) as an auxiliary protein facilitating some cytochrome P450 (P450) reactions in the liver and other tissues. The gist of the paper is that DPNH (now known as NADH) enhanced rates of TPNH (now NADPH)-supported N-demethylation of O-ethylmorphine in rat liver microsomes. The conclusion was that b5 was providing an electron to the ferrous-oxy form of P450 (Fe2+O2), which was supported by some spectral observations on the oxidation state of b5 in the microsomes in the steady state. This observation led to a flurry of activity, which is still in progress. This paper has been cited 678 times in Google (558 in Clarivate), and I have often cited it myself. A PubMed search for the terms P450 andb5 yielded 2244 results.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Bldg, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA.
| |
Collapse
|
13
|
Uno Y, Morikuni S, Shiraishi M, Asano A, Kawaguchi H, Murayama N, Yamazaki H. A comprehensive analysis of six forms of cytochrome P450 2C (CYP2C) in pigs. Xenobiotica 2022; 52:963-972. [PMID: 36373600 DOI: 10.1080/00498254.2022.2148139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigs are an important species used in drug metabolism studies; however, the cytochromes P450 (P450s or CYPs) have not been fully investigated in pigs.In this study, pig CYP2C32, CYP2C33, CYP2C34, CYP2C36, CYP2C42, and CYP2C49 cDNAs were isolated and found to contain open reading frames of 490 or 494 amino acids that shared 64-82% sequence identity with human CYP2C8/9/18/19.Pig CYP2C genes formed a gene cluster in a genomic region that corresponded to that of the human CYP2C cluster; an additional gene cluster was formed by pig CYP2C33a and CYP2C33b distant from the first cluster but located in the same chromosome.Among the tissues analysed, these pig CYP2C mRNAs were preferentially expressed in liver, small intestine, and/or kidney; pig CYP2C49, CYP2C32, CYP2C34, and CYP2C33 mRNAs were the most abundant CYP2C mRNAs in liver, jejunum, ileum, and kidney, respectively.Metabolic assays showed that pig CYP2C proteins (heterologously expressed in Escherichia coli) metabolised typical human CYP2C substrates diclofenac, warfarin, and/or omeprazole.The results suggest that these pig CYP2Cs are functional enzymes able to metabolise human CYP2C substrates in liver and small intestine, just as human CYP2Cs do.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Saho Morikuni
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Mitsuya Shiraishi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Atsushi Asano
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | | | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
14
|
Humanized liver TK-NOG mice with functional deletion of hepatic murine cytochrome P450s as a model for studying human drug metabolism. Sci Rep 2022; 12:14907. [PMID: 36050438 PMCID: PMC9437039 DOI: 10.1038/s41598-022-19242-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022] Open
Abstract
Chimeric TK-NOG mice with a humanized liver (normal Hu-liver) are a unique animal model for predicting drug metabolism in humans. However, residual mouse hepatocytes occasionally prevent the precise evaluation of human drug metabolism. Herein, we developed a novel humanized liver TK-NOG mouse with a conditional knockout of liver-specific cytochrome P450 oxidoreductase (POR cKO Hu-liver). Immunohistochemical analysis revealed only a few POR-expressing cells around the portal vein in POR cKO mouse livers. NADPH-cytochrome c reductase and cytochrome P450 (P450)-mediated drug oxidation activity in liver microsomes from POR cKO mice was negligible. After the intravenous administration of S-warfarin, high circulating and urinary levels of S-7-hydroxywarfarin (a major human metabolite) were observed in POR cKO Hu-liver mice. Notably, the circulating and urinary levels of S-4′-hydroxywarfarin (a major warfarin metabolite in mice) were much lower in POR cKO Hu-liver mice than in normal Hu-liver mice. POR cKO Hu-liver mice with minimal interference from mouse hepatic P450 oxidation activity are a valuable model for predicting human drug metabolism.
Collapse
|
15
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
16
|
Harris KL, Thomson RES, Gumulya Y, Foley G, Carrera-Pacheco SE, Syed P, Janosik T, Sandinge AS, Andersson S, Jurva U, Bodén M, Gillam EMJ. Ancestral sequence reconstruction of a cytochrome P450 family involved in chemical defence reveals the functional evolution of a promiscuous, xenobiotic-metabolizing enzyme in vertebrates. Mol Biol Evol 2022; 39:6593376. [PMID: 35639613 PMCID: PMC9185370 DOI: 10.1093/molbev/msac116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors. Younger ancestors and extant forms generally demonstrated higher activity toward typical CYP1 xenobiotic and steroid substrates than older ancestors, suggesting significant diversification away from the original CYP1 function. Caffeine metabolism appears to be a recently evolved trait of the CYP1A subfamily, observed in the mammalian CYP1A lineage, and may parallel the recent evolution of caffeine synthesis in multiple separate plant species. Likewise, the aryl hydrocarbon receptor agonist, 6-formylindolo[3,2-b]carbazole (FICZ) was metabolized to a greater extent by certain younger ancestors and extant forms, suggesting that activity toward FICZ increased in specific CYP1 evolutionary branches, a process that may have occurred in parallel to the exploitation of land where UV-exposure was higher than in aquatic environments. As observed with previous reconstructions of P450 enzymes, thermostability correlated with evolutionary age; the oldest ancestor was up to 35 °C more thermostable than the extant forms, with a 10T50 (temperature at which 50% of the hemoprotein remains intact after 10 min) of 71 °C. This robustness may have facilitated evolutionary diversification of the CYP1s by buffering the destabilizing effects of mutations that conferred novel functions, a phenomenon which may also be useful in exploiting the catalytic versatility of these ancestral enzymes for commercial application as biocatalysts.
Collapse
Affiliation(s)
- Kurt L Harris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador
| | - Parnayan Syed
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Tomasz Janosik
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Södertälje, Sweden
| | - Ann-Sofie Sandinge
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Shalini Andersson
- Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Ulrik Jurva
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| |
Collapse
|
17
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
18
|
Gong Y, Li T, Li Q, Liu S, Liu N. The Central Role of Multiple P450 Genes and Their Co-factor CPR in the Development of Permethrin Resistance in the Mosquito Culex quinquefasciatus. Front Physiol 2022; 12:802584. [PMID: 35095564 PMCID: PMC8792746 DOI: 10.3389/fphys.2021.802584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes’ increasing resistance to insecticides is becoming a major threat for control efforts worldwide. Multiple P450 genes that are up-regulated in permethrin resistant strains of Culex quinquefasciatus have been linked to the development of resistance. In the current study, we characterized the function of six P450 genes, CYP6P14, CYP6BZ2, CYP9J33, CYP9J34, CYP9J40, and CYP9J45, that are overexpressed in the permethrin resistant Culex mosquitoes and showed their capability in metabolism of permethrin. These six P450 genes can convert 3-phenoxybenzoic alcohol (PBCHO) to a less toxic product, 3-phenoxybenzoic acid (PBCOOH), indicating that these P450s play an important role in permethrin degradation pathways. Although we know multiple P450 genes are over-expressed in permethrin resistant Culex mosquitoes, it remains to be seen whether cytochrome P450-reductase (CPR) gene that are co-overexpressed with P450 genes in permethrin resistant mosquitoes do indeed serve as a resistance mechanism. An in-depth investigation of the expression of CPR gene in resistant mosquitoes was conducted in permethrin resistant mosquitoes. The finding of CPR gene overexpression in permethrin resistant mosquitoes suggested the importance of co-overexpression of multiple P450 genes with their obligatory electron donor CPR in the complex detoxification system, boosting the metabolism of permethrin and hence the development of permethrin resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Qi Li
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Shikai Liu
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- *Correspondence: Nannan Liu,
| |
Collapse
|
19
|
Zhao X, Liu CJ. Biocatalytic system for comparatively assessing the functional association of monolignol cytochrome P450 monooxygenases with their redox partners. Methods Enzymol 2022; 676:133-158. [DOI: 10.1016/bs.mie.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below. In addition, approaches which can be used to visualize the uncertainty arising from the use of enzyme kinetic data within the context of predicting human pharmacokinetics are discussed.
Collapse
|
21
|
Kim D, Kim V, Tateishi Y, Guengerich FP. Cytochrome b 5 Binds Tightly to Several Human Cytochrome P450 Enzymes. Drug Metab Dispos 2021; 49:902-909. [PMID: 34330716 DOI: 10.1124/dmd.121.000475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have been reported in the past 50-plus years regarding the stimulatory role of cytochrome b 5 (b 5) in some, but not all, microsomal cytochrome P450 (P450) reactions with drugs and steroids. A missing element in most of these studies has been a sensitive and accurate measure of binding affinities of b 5 with P450s. In the course of work with P450 17A1, we developed a fluorescent derivative of a human b 5 site-directed mutant, Alexa 488-T70C-b 5, that could be used in binding assays at sub-μM concentrations. Alexa 488-T70C-b 5 bound to human P450s 1A2, 2B6, 2C8, 2C9, 2E1, 2S1, 4A11, 3A4, and 17A1, with estimated K d values ranging from 2.5 to 61 nM. Only weak binding was detected with P450 2D6, and no fluorescence attenuation was observed with P450 2A6. All of the P450s that bound b 5 have some reported activity stimulation except for P450 2S1. The affinity of P450 3A4 for b 5 was decreased somewhat by the presence of a substrate or inhibitor. The fluorescence of a P450 3A4•Alexa 488-T70C-b 5 complex was partially restored by titration with NADPH-P450 reductase (POR) (K d,apparent 89 nM), suggesting the existence of a ternary P450 3A4-b 5-POR complex, as observed previously with P450 17A1. Gel filtration evidence was also obtained for this ternary complex with P450 3A4. Overall, the results indicated that the affinity of b 5 for many P450s is very high, and that ternary P450-b 5-POR complexes are relevant in P450 3A4 reactions as opposed to a shuttle mechanism. SIGNIFICANCE STATEMENT: High-affinity binding of cytochrome b 5 (b 5) (K d < 100 nM) was observed with many drug-metabolizing cytochrome P450 (P450) enzymes. There is some correlation of binding with reported stimulation, with several exceptions. Evidence is provided for a ternary P450 3A4-b 5-NADPH-P450 reductase complex.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - Vitchan Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| |
Collapse
|
22
|
Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J Xenobiot 2021; 11:94-114. [PMID: 34206277 PMCID: PMC8293344 DOI: 10.3390/jox11030007] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically, and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge compounds. This short-review is intended to provide a summary on the major roles of CYPs in Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the most relevant aspects of past and current CYP research. Initially, (I) a general overview of the main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are presented. This is followed by (II) a background overview on major achievements in the past of the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed by (IV) a summary description on CYP's location and function in mammals. Subsequently, (V) the physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted, followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP research field.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.R.); (M.K.)
| | | | | |
Collapse
|
23
|
Shimada T, Nagayoshi H, Murayama N, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP. Liquid chromatography-tandem mass spectrometry analysis of oxidation of 2'-, 3'-, 4'- and 6-hydroxyflavanones by human cytochrome P450 enzymes. Xenobiotica 2021; 51:139-154. [PMID: 33047997 PMCID: PMC7875482 DOI: 10.1080/00498254.2020.1836433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
2'-Hydroxyflavanone (2'OHFva), 3'OHFva, 4'OHFva, and 6OHFva, the major oxidative products of flavanone by human cytochrome P450 (P450, CYP) enzymes, were studied in regard to further oxidation by human CYP1A1, 1A2, 1B1.1, 1B1.3, and 2A6. The products formed were analyzed with LC-MS/MS and characterized by their positive ion fragmentations on mass spectrometry. Several di-hydroxylated flavanone (diOHFva) and di-hydroxylated flavone (diOHFvo) products, detected by analyzing parent ions at m/z 257 and 255, respectively, were found following incubation of these four hydroxylated flavanones with P450s. The m/z 257 products were produced at higher levels than the latter with four substrates examined. The structures of the m/z 257 products were characterized by LC-MS/MS product ion spectra, and the results suggest that 3'OHFva and 4'OHFva are further oxidized mainly at B-ring by P450s while 6OHFva oxidation was at A-ring. Different diOHFvo products (m/z 255) were also characterized by LC-MS/MS, and the results suggested that most of these diOHFvo products were formed through oxidation or desaturation of the diOHFva products (m/z 257) by P450s. Only when 4'OHFva (m/z 241) was used as a substrate, formation of 4'OHFvo (m/z 239) was detected, indicating that diOHFvo might also be formed through oxidation of 4'OHFvo by P450s. Finally, our results indicated that CYP1 family enzymes were more active than CYP2A6 in catalyzing the oxidation of these four hydroxylated flavanones, and these findings were supported by molecular docking studies of these chemicals with active sites of P450 enzymes.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Haruna Nagayoshi
- Division of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
24
|
Heintze T, Klein K, Hofmann U, Zanger UM. Differential effects on human cytochromes P450 by CRISPR/Cas9-induced genetic knockout of cytochrome P450 reductase and cytochrome b5 in HepaRG cells. Sci Rep 2021; 11:1000. [PMID: 33441761 PMCID: PMC7806635 DOI: 10.1038/s41598-020-79952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
HepaRG cells are increasingly accepted as model for human drug metabolism and other hepatic functions. We used lentiviral transduction of undifferentiated HepaRG cells to deliver Cas9 and two alternative sgRNAs targeted at NADPH:cytochrome P450 oxidoreductase (POR), the obligate electron donor for microsomal cytochromes P450 (CYP). Cas9-expressing HepaRGVC (vector control) cells were phenotypically similar to wild type HepaRG cells and could be differentiated into hepatocyte-like cells by DMSO. Genetic POR-knockout resulted in phenotypic POR knockdown of up to 90% at mRNA, protein, and activity levels. LC–MS/MS measurement of seven CYP-activities showed differential effects of POR-knockdown with CYP2C8 being least and CYP2C9 being most affected. Further studies on cytochrome b5 (CYB5), an alternative NADH-dependent electron donor indicated particularly strong support of CYP2C8-dependent amodiaquine N-deethylation by CYB5 and this was confirmed by genetic CYB5 single- and POR/CYB5 double-knockout. POR-knockdown also affected CYP expression on mRNA and protein level, with CYP1A2 being induced severalfold, while CYP2C9 was strongly downregulated. In summary our results show that POR/NADPH- and CYB5/NADH-electron transport systems influence human drug metabolizing CYPs differentially and differently than mouse Cyps. Our Cas9-expressing HepaRGVC cells should be suitable to study the influence of diverse genes on drug metabolism and other hepatic functions.
Collapse
Affiliation(s)
- Tamara Heintze
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany. .,Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
25
|
Santes-Palacios R, Olguín-Reyes S, Hernández-Ojeda SL, Camacho-Carranza R, Espinosa-Aguirre JJ. Differential inhibition of naringenin on human and rat cytochrome P450 2E1 activity. Toxicol In Vitro 2020; 69:105009. [DOI: 10.1016/j.tiv.2020.105009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
|
26
|
Ogiso T, Fukami T, Zhongzhe C, Konishi K, Nakano M, Nakajima M. Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid. Toxicology 2020; 448:152648. [PMID: 33259822 DOI: 10.1016/j.tox.2020.152648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Mefenamic acid (MFA), one of the nonsteroidal anti-inflammatory drugs (NSAIDs), sometimes causes liver injury. Quinoneimines formed by cytochrome P450 (CYP)-mediated oxidation of MFA are considered to be causal metabolites of the toxicity and are detoxified by glutathione conjugation. A previous study reported that NAD(P)H:quinone oxidoreductase 1 (NQO1) can reduce the quinoneimines, but NQO1 is scarcely expressed in the human liver. The purpose is to identify enzyme(s) responsible for the decrease in MFA-quinoneimine formation in the human liver. The formation of MFA-quinoneimine by recombinant CYP1A2 and CYP2C9 was significantly decreased by the addition of human liver cytosol, and the extent of the decrease in the metabolite formed by CYP1A2 was larger than that by CYP2C9. By column chromatography, superoxide dismutase 1 (SOD1) was identified from the human liver cytosol as an enzyme decreasing MFA-quinoneimine formation. Addition of recombinant SOD1 into the reaction mixture decreased the formation of MFA-quinoneimine from MFA by recombinant CYP1A2. By a structure-activity relationship study, we found that SOD1 decreased the formation of quinoneimines from flufenamic acid and tolfenamic acid, but did not affect those produced from acetaminophen, amodiaquine, diclofenac, and lapatinib. Thus, SOD1 may selectively decrease the quinoneimine formation from fenamate-class NSAIDs. To examine whether SOD1 can attenuate cytotoxicity caused by MFA, siRNA for SOD1 was transfected into CYP1A2-overexpressed HepG2 cells. The leakage of lactate dehydrogenase caused by MFA treatment was significantly increased by knockdown of SOD1. In conclusion, we found that SOD1 can serve as a detoxification enzyme for quinoneimines to protect from drug-induced toxicity.
Collapse
Affiliation(s)
- Takuo Ogiso
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Cheng Zhongzhe
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Keigo Konishi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
27
|
Modulation of CYP2C9 activity and hydrogen peroxide production by cytochrome b 5. Sci Rep 2020; 10:15571. [PMID: 32968106 PMCID: PMC7511354 DOI: 10.1038/s41598-020-72284-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/28/2020] [Indexed: 11/09/2022] Open
Abstract
Cytochromes P450 (CYP) play a major role in drug detoxification, and cytochrome b5 (cyt b5) stimulates the catalytic cycle of mono-oxygenation and detoxification reactions. Collateral reactions of this catalytic cycle can lead to a significant production of toxic reactive oxygen species (ROS). One of the most abundant CYP isoforms in the human liver is CYP2C9, which catalyzes the metabolic degradation of several drugs including nonsteroidal anti-inflammatory drugs. We studied modulation by microsomal membrane-bound and soluble cyt b5 of the hydroxylation of salicylic acid to gentisic acid and ROS release by CYP2C9 activity in human liver microsomes (HLMs) and by CYP2C9 baculosomes. CYP2C9 accounts for nearly 75% of salicylic acid hydroxylation in HLMs at concentrations reached after usual aspirin doses. The anti-cyt b5 antibody SC9513 largely inhibits the rate of salicylic acid hydroxylation by CYP2C9 in HLMs and CYP2C9 baculosomes, increasing the KM approximately threefold. Besides, soluble human recombinant cyt b5 stimulates the Vmax nearly twofold while it decreases nearly threefold the Km value in CYP2C9 baculosomes. Regarding NADPH-dependent ROS production, soluble recombinant cyt b5 is a potent inhibitor both in HLMs and in CYP2C9 baculosomes, with inhibition constants of 1.04 ± 0.25 and 0.53 ± 0.06 µM cyt b5, respectively. This study indicates that variability in cyt b5 might be a major factor underlying interindividual variability in the metabolism of CYP2C9 substrates.
Collapse
|
28
|
Heterologous expression of high-activity cytochrome P450 in mammalian cells. Sci Rep 2020; 10:14193. [PMID: 32843676 PMCID: PMC7447777 DOI: 10.1038/s41598-020-71035-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
The evaluation of Cytochrome P450 (CYP) enzymatic activity is essential to estimate drug pharmacokinetics. Numerous CYP allelic variants have been identified; the functional characterisation of these variants is required for their application in precision medicine. Results from heterologous expression systems using mammalian cells can be integrated in in vivo studies; however, other systems such as E. coli, bacteria, yeast, and baculoviruses are generally used owing to the difficulty in expressing high CYP levels in mammalian cells. Here, by optimising transfection and supplementing conditions, we developed a heterologous expression system using 293FT cells to evaluate the enzymatic activities of three CYP isoforms (CYP1A2, CYP2C9, and CYP3A4). Moreover, we established co-expression with cytochrome P450 oxidoreductase and cytochrome b5. This expression system would be a potential complementary or beneficial alternative approach for the pharmacokinetic evaluation of clinically used and developing drugs in vitro.
Collapse
|
29
|
Guengerich FP. Cytochrome P450 2E1 and its roles in disease. Chem Biol Interact 2020; 322:109056. [PMID: 32198084 PMCID: PMC7217708 DOI: 10.1016/j.cbi.2020.109056] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
Cytochrome P450 (P450) 2E1 is the major P450 enzyme involved in ethanol metabolism. That role is shared with two other enzymes that oxidize ethanol, alcohol dehydrogenase and catalase. P450 2E1 is also involved in the bioactivation of a number of low molecular weight cancer suspects, as validated in vivo in mouse models where cancers could be attenuated by deletion of Cyp2e1. P450 2E1 does not have a role in global production of reactive oxygen species but localized roles are possible, e.g. in mitochondria. The structures, conformations, and catalytic mechanisms of P450 2E1 have some unusual features among P450s. The concentration of hepatic P450 varies ≥10-fold among humans, possibly in part due to single nucleotide variants. The level of P450 2E1 may have relevance in the rates of oxidation of drugs, particularly acetaminophen and anesthetics.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA.
| |
Collapse
|
30
|
Gentry KA, Anantharamaiah GM, Ramamoorthy A. Probing protein-protein and protein-substrate interactions in the dynamic membrane-associated ternary complex of cytochromes P450, b 5, and reductase. Chem Commun (Camb) 2019; 55:13422-13425. [PMID: 31638629 PMCID: PMC6879317 DOI: 10.1039/c9cc05904k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (cytP450) interacts with two redox partners, cytP450 reductase and cytochrome-b5, to metabolize substrates. Using NMR, we reveal changes in the dynamic interplay when all three proteins are incorporated into lipid nanodiscs in the absence and presence of substrates.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
31
|
Uehara S, Uno Y, Yamazaki H. The marmoset cytochrome P450 superfamily: Sequence/phylogenetic analyses, genomic structure, and catalytic function. Biochem Pharmacol 2019; 171:113721. [PMID: 31751534 DOI: 10.1016/j.bcp.2019.113721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
Abstract
The common marmoset (Callithrix jacchus) is a New World monkey that has attracted much attention as a potentially useful primate model for preclinical testing. A total of 36 marmoset cytochrome P450 (P450) isoforms in the P450 1-51 subfamilies have been identified and characterized by the application of genome analysis and molecular functional characterization. In this mini-review, we provide an overview of the genomic structures, sequence identities, and substrate selectivities of marmoset P450s compared with those of human P450s. Based on the sequence identity, phylogeny, and genomic organization of marmoset P450s, orthologous relationships were established between human and marmoset P450s. Twenty-four members of the marmoset P450 1A, 2A, 2B, 2C, 2D, 2E, 3A, 4A, and 4F subfamilies shared high degrees of homology in terms of cDNA (>89%) and amino acid sequences (>85%) with the corresponding human P450s; P450 2C76 was among the exceptions. Phylogenetic analysis using amino acid sequences revealed that marmoset P450s in the P450 1-51 families were located in the same clades as their human and macaque P450 homologs. This finding underlines the evolutionary closeness of marmoset P450s to their human and macaque homologs. Most marmoset P450 1-4 enzymes catalyzed the typical drug-metabolizing reactions of the corresponding human P450 homologs, except for some differences of P450 2A6 and 2B6. Consequently, it appears that the substrate specificities of enzymes in the P450 1-4 families are generally similar in marmosets and humans. The information presented here supports a better understanding of the functional characteristics of marmoset P450s and their similarities and differences with human P450s. It is hoped that this mini-review will facilitate the successful use of marmosets as primate models in drug metabolism and pharmacokinetic studies.
Collapse
Affiliation(s)
- Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
32
|
Feng M, Li H, You S, Zhang J, Lin H, Wang M, Zhou J. Effect of hexavalent chromium on the biodegradation of tetrabromobisphenol A (TBBPA) by Pycnoporus sanguineus. CHEMOSPHERE 2019; 235:995-1006. [PMID: 31561316 DOI: 10.1016/j.chemosphere.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The influence of Cr(VI) on the degradation of tetrabromobisphenol A (TBBPA) by a typical species of white rot fungi, Pycnoporus sanguineus, was investigated in this study. The results showed that P. sanguineus together with its intracellular and extracellular enzyme could effectively degrade TBBPA. The degradation efficiency of TBBPA by both P. sanguineus and its enzymes decreased significantly when Cr(VI) concentration increased from 0 to 40 mg/L. The subsequent analysis about cellular distribution of TBBPA showed that the extracellular amount of TBBPA increased with the increment of Cr(VI) concentration, but the content of TBBPA inside fungal cells exhibited an opposite variation tendency. The inhibition of TBBPA degradation by P. sanguineus was partly attributed to the increase of cell membrane permeability and the decrease of cell membrane fluidity caused by Cr(VI). In addition, the decline of H+-ATPase and Mg2+-ATPase activities was also an important factor contributing to the suppression of TBBPA degradation in the system containing concomitant Cr(VI). Moreover, the activities of two typical extracellular lignin-degrading enzymes of P. sanguineus, MnP and Lac, were found to descend with ascended Cr(VI) level. Cr(VI) could also obviously suppress the gene expression of four intracellular enzymes implicated in TBBPA degradation, including two cytochrome P450s, glutathione S-transferases and pentachlorophenol 4-monooxygenase, which resulted in a decline of TBBPA degradation efficiency by fungal cells and intracellular enzyme in the presence of Cr(VI). Overall, this study provides new insights into the characteristics and mechanisms involved in TBBPA biodegradation by white rot fungi in an environment where heavy metals co-exist.
Collapse
Affiliation(s)
- Mi Feng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China.
| | - Haixiang Li
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Shaohong You
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Jun Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Hua Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Meiqian Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jiahua Zhou
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| |
Collapse
|
33
|
Yoo SE, Yi M, Kim WY, Cho SA, Lee SS, Lee SJ, Shin JG. Influences of cytochrome b5 expression and its genetic variant on the activity of CYP2C9, CYP2C19 and CYP3A4. Drug Metab Pharmacokinet 2019; 34:201-208. [PMID: 30992242 DOI: 10.1016/j.dmpk.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 11/28/2022]
Abstract
The objective of the present study was to investigate the effects of cytochrome b5 (cytb5) on the drug metabolism catalyzed by CYP2C9, CYP2C19 and CYP3A4. Activities of CYP2C9, CYP2C19, and CYP3A4 were determined by using the prototypical substrates tolbutamide, omeprazole and midazolam, respectively. Cytb5 protein and mRNA contents showed large inter-individual variations with 11- and 6-fold range, respectively. All of three P450s showed an increased activity in proportion to the amount of cytb5 expression. Particularly, CYP3A4 showed the strongest correlation between cytb5 protein amount and the activity, followed by CYP2C9 and CYP2C19. The putative splicing variant, c.288G>A (rs7238987) was identified and was screened in 36 liver tissues by direct DNA sequencing. Liver tissues having a splicing variant exhibited unexpected sizes of cytb5 mRNA and a decreased expression tendency of cytb5 protein compared to the wild-type. A decreased activity in the metabolism of the CYP2C19 substrate omeprazole was observed in liver tissues carrying the splicing variant when compared to the wild-type Cytb5 (P < 0.05). The present results propose that different expression of cytb5 can cause variations in CYP mediated drug metabolism, which may explain, at least in part, the inter-individual difference in drug responses in addition to the CYP genetic polymorphisms.
Collapse
Affiliation(s)
- Sung-Eun Yoo
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - MyeongJin Yi
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Woo-Young Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Sun-Ah Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Su-Jun Lee
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea.
| |
Collapse
|
34
|
Ershov PV, Yablokov ЕO, Florinskaya AV, Mezentsev YV, Kaluzhskiy LА, Tumilovich AM, Gilep АА, Usanov SA, Ivanov АS. SPR-Based study of affinity of cytochrome P450s / redox partners interactions modulated by steroidal substrates. J Steroid Biochem Mol Biol 2019; 187:124-129. [PMID: 30468857 DOI: 10.1016/j.jsbmb.2018.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
The goal of this work was to test the hypothesis that the affinity of protein-protein interactions in the cytochrome P450-dependent monooxygenase system is modulated by the low-molecular-weight compounds (substrates or inhibitors). The surface plasmon resonance (SPR) based study was carried out using the recombinant protein preparations of three microsomal cytochromes P450 (CYP17A1, CYP21A2, and CYP2C19) and their redox partners: cytochrome b5 (CYB5A), NADPH - cytochrome P450 reductase (CPR), and also iron-sulfur protein adrenodoxin (Adx). As a result, we have revealed some specificity of the influence of the steroid substrates on the binding affinity of CYPs with their redox partners, namely: the lack of effect on CPR/CYPs and Adx/CYP complex formation, and a significant effect on interactions between CYB5A and steroidogenic CYPs. The equilibrium dissociation constant (Kd) value of the CYB5A/CYP17A1 complex decreased by 5 times in the presence of progesterone (P4), which was due to a 10 times increase in the association rate constant (kon). In this case, a twofold increase in the dissociation rate constant (koff) value of CYB5A/CYP17A1 complex formation was observed. It was also demonstrated that the affinity of CYB5A/CYP17A1 interaction increased in the presence of two other steroidal substrates 17α-hydroxyprogesterone and pregnenolone and that effect was comparable with P4. In contrast, only the twofold decrease in the affinity of CYB5A/CYP21A2 interaction in the presence of P4 was caused by a slight increase in the koff value (the kon value of the complex did not change). This indicates a different format of the steroidal substrates effects expressed in a change in the stability of the CYB5A/CYPs complexes. Thus, it was found that P4 modulated the both kinetic and equilibrium constants of CYB5A/CYP17A1 and CYB5/CYP21A2 complex formation and complexes, while not affecting the CYB5A/CYP2C19 interaction (2C19 is the cytochrome P450 isoenzyme possessing broad substrate specificity), thereby indicating a specific influence of steroidal substrates on interactions involving steroidogenic CYPs. Our results are consistent with current understanding of the role of CYB5A as a regulator of cytochrome P450 activity in P450-dependent monooxygenase system.
Collapse
Affiliation(s)
- P V Ershov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia.
| | - Е O Yablokov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - A V Florinskaya
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - Yu V Mezentsev
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - L А Kaluzhskiy
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| | - A M Tumilovich
- Institute of Bioorganic Chemistry National Academy of Science of Belarus, 220141, Minsk, Kuprevicha str. 5/2, Belarus
| | - А А Gilep
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia; Institute of Bioorganic Chemistry National Academy of Science of Belarus, 220141, Minsk, Kuprevicha str. 5/2, Belarus
| | - S A Usanov
- Institute of Bioorganic Chemistry National Academy of Science of Belarus, 220141, Minsk, Kuprevicha str. 5/2, Belarus
| | - А S Ivanov
- Federal State Budgetary Institution "V.N. Orekhovich Research Institute of Biomedical Chemistry", 119121, Moscow, Pogodinskaya str. 10, building 8, Russia
| |
Collapse
|
35
|
Reed L, Indra R, Mrizova I, Moserova M, Schmeiser HH, Wolf CR, Henderson CJ, Stiborova M, Phillips DH, Arlt VM. Application of hepatic cytochrome b 5/P450 reductase null (HBRN) mice to study the role of cytochrome b 5 in the cytochrome P450-mediated bioactivation of the anticancer drug ellipticine. Toxicol Appl Pharmacol 2019; 366:64-74. [PMID: 30685480 PMCID: PMC6382462 DOI: 10.1016/j.taap.2019.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 01/30/2023]
Abstract
The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.
Collapse
Affiliation(s)
- Lindsay Reed
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Moserova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom.
| |
Collapse
|
36
|
Devarajan S, Moon I, Ho MF, Larson NB, Neavin DR, Moyer AM, Black JL, Bielinski SJ, Scherer SE, Wang L, Weinshilboum RM, Reid JM. Pharmacogenomic Next-Generation DNA Sequencing: Lessons from the Identification and Functional Characterization of Variants of Unknown Significance in CYP2C9 and CYP2C19. Drug Metab Dispos 2019; 47:425-435. [PMID: 30745309 DOI: 10.1124/dmd.118.084269] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
CYP2C9 and CYP2C19 are highly polymorphic pharmacogenes; however, clinically actionable genetic variability in drug metabolism due to these genes has been limited to a few common alleles. The identification and functional characterization of less-common open reading frame sequence variation might help to individualize therapy with drugs that are substrates for the enzymes encoded by these genes. The present study identified seven uncharacterized variants each in CYP2C9 and CYP2C19 using next-generation sequence data for 1013 subjects, and functionally characterized the encoded proteins. Constructs were created and transiently expressed in COS-1 cells for the assay of protein concentration and enzyme activities using fluorometric substrates and liquid chromatography- tandem mass spectrometry with tolbutamide (CYP2C9) and (S)-mephenytoin (CYP2C19) as prototypic substrates. The results were compared with the SIFT, Polyphen, and Provean functional prediction software programs. Cytochrome P450 oxidoreductase (CPR) activities were also determined. Positive correlations were observed between protein content and fluorometric enzyme activity for variants of CYP2C9 (P < 0.05) and CYP2C19 (P < 0.0005). However, CYP2C9 709G>C and CYP2C19 65A>G activities were much lower than predicted based on protein content. Substrate intrinsic clearance values for CYP2C9 218C>T, 343A>C, and CYP2C19 337G>A, 518C>T, 556C>T, and 557G>A were less than 25% of wild-type allozymes. CPR activity levels were similar for all variants. In summary, sequencing of CYP2C9 and CYP2C19 in 1013 subjects identified low-frequency variants that had not previously been functionally characterized. In silico predictions were not always consistent with functional assay results. These observations emphasize the need for high-throughput methods for pharmacogene variant mutagenesis and functional characterization.
Collapse
Affiliation(s)
- Sandhya Devarajan
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Irene Moon
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Ming-Fen Ho
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Nicholas B Larson
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Drew R Neavin
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Ann M Moyer
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - John L Black
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Suzette J Bielinski
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Steven E Scherer
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Liewei Wang
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Richard M Weinshilboum
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Joel M Reid
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| |
Collapse
|
37
|
Abstract
Enzymes are complex biological catalysts and are critical to life. Most oxidations of chemicals are catalyzed by cytochrome P450 (P450, CYP) enzymes, which generally utilize mixed-function oxidase stoichiometry, utilizing pyridine nucleotides as electron donors: NAD(P)H + O2 + R → NAD(P)+ + RO + H2O (where R is a carbon substrate and RO is an oxidized product). The catalysis of oxidations is largely understood in the context of the heme iron-oxygen complex generally referred to as Compound I, formally FeO3+, whose basis was in peroxidase chemistry. Many X-ray crystal structures of P450s are now available (≥ 822 structures from ≥146 different P450s) and have helped in understanding catalytic specificity. In addition to hydroxylations, P450s catalyze more complex oxidations, including C-C bond formation and cleavage. Enzymes derived from P450s by directed evolution can even catalyze more unusual reactions, e.g. cyclopropanation. Current P450 questions under investigation include the potential role of the intermediate Compound 0 (formally FeIII-O2 -) in catalysis of some reactions, the roles of high- and low-spin forms of Compound I, the mechanism of desaturation, the roles of open and closed structures of P450s in catalysis, the extent of processivity in multi-step oxidations, and the role of the accessory protein cytochrome b 5. More global questions include exactly how structure drives function, prediction of catalysis, and roles of multiple protein conformations.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
38
|
Uno Y, Uehara S, Murayama N, Yamazaki H. Cytochrome P450 1A1, 2C9, 2C19, and 3A4 Polymorphisms Account for Interindividual Variability of Toxicological Drug Metabolism in Cynomolgus Macaques. Chem Res Toxicol 2018; 31:1373-1381. [PMID: 30412386 DOI: 10.1021/acs.chemrestox.8b00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochromes P450 (P450s) and their genetic variants in humans are important drug-metabolizing enzymes partly accounting for interindividual variations in drug metabolism and toxicity. However, these genetic variants in P450s have not been fully investigated in cynomolgus macaques, a nonhuman primate species widely used in toxicological studies. In this study, genetic variants found in cynomolgus CYP1A1, CYP2C9 (formerly CYP2C43), CYP2C19 (CYP2C75), and CYP3A4 (CYP3A8) were assessed on functional importance. Resequencing of CYP1A1 in cynomolgus macaques found 18 nonsynonymous variants, of which M121I and V382I were located in SRSs, domains potentially important for P450 function. By further analyzing these two variants, V382I was significantly associated with lower drug-metabolizing activities in the liver for the heterozygotes than the wild types. Similarly, the heterozygotes or homozygotes of CYP2C9 variants (A82V and H344R) and CYP2C19 variant (A490V) showed significantly lower drug-metabolizing activities in the liver than the wild types. Moreover, the homozygotes of CYP3A4 variant (S437N) showed significantly higher activities than the wild type in the liver. Kinetic analyses using recombinant proteins revealed that CYP2C9 variants (A82V and H344R) showed substantially lower Ks values than the wild type, although CYP1A1 variant (V382I) showed kinetic parameters similar to the wild type. Likewise, CYP2C19 variant (A490V) showed substantially a lower Vmax/ Km value than the wild type, whereas CYP3A4 variant (S437N) showed a higher Vmax/ Km value than the wild type. These results suggest the toxicologically functional importance of CYP2C9 variants (A82V and H344R), CYP2C19 variant (A490V), and CYP3A4 variant (S437N) for hepatic drug metabolism in cynomolgus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd., Kainan , Wakayama 642-0017 , Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| |
Collapse
|
39
|
Feng M, Yin H, Peng H, Lu G, Liu Z, Dang Z. iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1758-1767. [PMID: 30061077 DOI: 10.1016/j.envpol.2018.07.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
40
|
Esteves F, Campelo D, Urban P, Bozonnet S, Lautier T, Rueff J, Truan G, Kranendonk M. Human cytochrome P450 expression in bacteria: Whole-cell high-throughput activity assay for CYP1A2, 2A6 and 3A4. Biochem Pharmacol 2018; 158:134-140. [PMID: 30308189 DOI: 10.1016/j.bcp.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
Cytochrome P450s (CYPs) are key enzymes involved in drug and xenobiotic metabolism. A wide array of in vitro methodologies, including recombinant sources, are currently been used to assess CYP catalysis, to identify the metabolic profile of compounds, potential drug-drug interactions, protein-protein interactions in the CYP enzyme complex and the role of polymorphic enzymes. We report here on a bacterial whole-cells high-throughput method for the activity evaluation of human CYP1A2, 2A6, and 3A4, when sustained by NADPH cytochrome P450 oxidoreductase (CPR), in the absence or presence of cytochrome b5 (CYB5). This new assay consists of a microplate real-time fluorometric method, with direct measurement of metabolite formation, in a suspension of Escherichia coli BTC-CYP bacteria, a human CYP competent tester strain when incubated with specific fluorogenic substrates. Overall, the maximum turnover (kcat) velocities of the three human CYPs resulting from the whole-BTC cells assays were similar to those obtained when applying the corresponding standard reference membrane fractions assays. CYP activity screening with co-expression of CYB5 suggests an enhancing effect of CYB5 on the kcat of specific isoforms, when using the whole-BTC cells assay. Our results demonstrate that this new approach can offer an efficient high-throughput method for screening of CYP1A2, 2A6 and 3A4 activity and can be potentially applicable for other human CYPs. This can be of particular use for timely and efficient screening of chemical libraries or mutant libraries of CYP enzyme complex proteins, without the necessity for labor intensive isolation of subcellular fractions.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal. http://www.fcm.unl.pt
| | - Diana Campelo
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - José Rueff
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Nagayoshi H, Murayama N, Kakimoto K, Takenaka S, Katahira J, Lim YR, Kim V, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Site-specific oxidation of flavanone and flavone by cytochrome P450 2A6 in human liver microsomes. Xenobiotica 2018; 49:791-802. [PMID: 30048196 DOI: 10.1080/00498254.2018.1505064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The roles of human cytochrome P450 (P450 or CYP) 2A6 in the oxidation of flavanone [(2R)- and (2S)-enantiomers] and flavone were studied in human liver microsomes and recombinant human P450 enzymes. CYP2A6 was highly active in oxidizing flavanone to form flavone, 2'-hydroxy-, 4'-, and 6-hydroxyflavanones and in oxidizing flavone to form mono- and di-hydroxylated products, such as mono-hydroxy flavones M6, M7, and M11 and di-hydroxy flavones M3, M4, and M5. Liver microsomes prepared from human sample HH2, defective in coumarin 7-hydroxylation activity, were very inefficient in forming 2'-hydroxyflavanone from flavanone and a mono-hydroxylated product, M6, from flavone. Coumarin and anti-CYP2A6 antibodies strongly inhibited the formation of these metabolites in microsomes prepared from liver samples HH47 and 54, which were active in coumarin oxidation activities. Molecular docking analysis showed that the C2'-position of (2R)-flavanone (3.8 Å) was closer to the iron center of CYP2A6 than the C6-position (10 Å), while distances from C2' and C6 of (2S)-flavanone to the CYP2A6 were 6.91 Å and 5.42 Å, respectively. These results suggest that CYP2A6 catalyzes site-specific oxidation of (racemic) flavanone and also flavone in human liver microsomes. CYP1A2 and CYP2B6 were also found to play significant roles in some of the oxidations of these flavonoids by human liver microsomes.
Collapse
Affiliation(s)
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | | | - Shigeo Takenaka
- c Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , Habikino Osaka , Japan
| | - Jun Katahira
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| | - Young-Ran Lim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Vitchan Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Donghak Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Masayuki Komori
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| | - F Peter Guengerich
- f Department of Biochemistry Vanderbilt University School of Medicine , Nashville , Tennessee , USA
| | - Tsutomu Shimada
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| |
Collapse
|
42
|
Gentry KA, Zhang M, Im SC, Waskell L, Ramamoorthy A. Substrate mediated redox partner selectivity of cytochrome P450. Chem Commun (Camb) 2018; 54:5780-5783. [PMID: 29781479 DOI: 10.1039/c8cc02525h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Investigating the interplay between cytochrome-P450 and its redox partners (CPR and cytochrome-b5) is vital for understanding the metabolism of most hydrophobic drugs. Dynamic structural interactions with the ternary complex, with and without substrates, captured by NMR reveal a gating mechanism for redox partners to promote P450 function.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | |
Collapse
|
43
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
44
|
Hiratsuka M, Hirasawa N, Oshima Y, Kodama S, Miyata T, Dan T, Takatoku H, Kuribayashi H, Nakamura R, Saito Y. Points-to-consider documents: Scientific information on the evaluation of genetic polymorphisms during non-clinical studies and phase I clinical trials in the Japanese population. Drug Metab Pharmacokinet 2018; 33:141-149. [PMID: 29703433 DOI: 10.1016/j.dmpk.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/05/2017] [Accepted: 01/15/2018] [Indexed: 01/11/2023]
Abstract
Pharmacotherapy shows striking individual differences in pharmacokinetics and pharmacodynamics, involving drug efficacy and adverse reactions. Recent genetic research has revealed that genetic polymorphisms are important intrinsic factors for these inter-individual differences. This pharmacogenomic information could help develop safer and more effective precision pharmacotherapies and thus, regulatory guidance/guidelines were developed in this area, especially in the EU and US. The Project for the Promotion of Progressive Medicine, Medical Devices, and Regenerative Medicine by the Ministry of Health, Labour and Welfare, performed by Tohoku University, reported scientific information on the evaluation of genetic polymorphisms, mainly on drug metabolizing enzymes and transporters, during non-clinical studies and phase I clinical trials in Japanese subjects/patients. We anticipate that this paper will be helpful in drug development for the regulatory usage of pharmacogenomic information, most notably pharmacokinetics.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Susumu Kodama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshio Miyata
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takashi Dan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | - Ryosuke Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan
| |
Collapse
|
45
|
Reed L, Mrizova I, Barta F, Indra R, Moserova M, Kopka K, Schmeiser HH, Wolf CR, Henderson CJ, Stiborova M, Phillips DH, Arlt VM. Cytochrome b 5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b 5 /P450 reductase null (HBRN) mice. Arch Toxicol 2018; 92:1625-1638. [PMID: 29368147 PMCID: PMC5882632 DOI: 10.1007/s00204-018-2162-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
Collapse
Affiliation(s)
- Lindsay Reed
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Frantisek Barta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Michaela Moserova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
46
|
Dong AN, Pan Y, Palanisamy UD, Yiap BC, Ahemad N, Ong CE. Site-Directed Mutagenesis of Cytochrome P450 2D6 and 2C19 Enzymes: Expression and Spectral Characterization of Naturally Occurring Allelic Variants. Appl Biochem Biotechnol 2018. [DOI: 10.1007/s12010-018-2728-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Uno Y, Uehara S, Yamazaki H. Polymorphisms of cytochrome P450 2B6 (CYP2B6) in cynomolgus and rhesus macaques. J Med Primatol 2018; 47:232-237. [PMID: 29468688 DOI: 10.1111/jmp.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cytochrome P450 2B6 (CYP2B6) is an important drug-metabolizing enzyme and is expressed in liver. Although human CYP2B6 variants account for variable enzyme properties among individuals and populations, CYP2B6 genetic variants have not been investigated in cynomolgus macaques, widely used in drug metabolism studies. METHODS CYP2B6 was resequenced in 120 cynomolgus macaques and 23 rhesus macaques by direct sequencing. RESULTS Twenty-three non-synonymous variants were found, of which 12 and 3 were unique to cynomolgus macaques and rhesus macaques, respectively. By functional characterization using the 14 variant proteins, 8 variants (V114I, R253C, M435I, V459M, L465P, C475S, R487C, and R487H) showed different rate (>1.5-fold) of testosterone 16β-hydroxylation to wild type. However, the four variants (M435I, L465P, C475S, and R487H) were analyzed in liver microsomes, and the catalytic rates were not substantially different from wild type. CONCLUSIONS Macaque CYP2B6 was polymorphic, and the genotype could partly account for variable enzyme activities of macaque CYP2B6.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
48
|
Kakimoto K, Murayama N, Takenaka S, Nagayoshi H, Lim YR, Kim V, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone. Xenobiotica 2018; 49:131-142. [PMID: 29310511 DOI: 10.1080/00498254.2018.1426133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. We previously reported that flavone and flavanone interact spectrally with cytochrome P450 (P450 or CYP) 2A6 and 2A13 and other human P450s and inhibit catalytic activities of these P450 enzymes. In this study, we studied abilities of CYP1A1, 1A2, 1B1, 2A6, 2A13, 2C9 and 3A4 to oxidize flavone and flavanone. 2. Human P450s oxidized flavone to 6- and 5-hydroxylated flavones, seven uncharacterized mono-hydroxylated flavones, and five di-hydroxylated flavones. CYP2A6 was most active in forming 6-hydroxy- and 5-hydroxyflavones and several mono- and di-hydroxylated products. 3. CYP2A6 was also very active in catalyzing flavanone to form 2'- and 6-hydroxyflavanones, the major products, at turnover rates of 4.8 min-1 and 1.3 min-1, respectively. Other flavanone metabolites were 4'-, 3'- and 7-hydroxyflavanone, three uncharacterized mono-hydroxylated flavanones and five mono-hydroxylated flavones, including 6-hydroxyflavone. CYP2A6 catalyzed flavanone to produce flavone at a turnover rate of 0.72 min-1 that was ∼3-fold higher than that catalyzed by CYP2A13 (0.29 min-1). 4. These results indicate that CYP2A6 and other human P450s have important roles in metabolizing flavone and flavanone, two unsubstituted flavonoids, present in dietary foods. Chemical mechanisms of P450-catalyzed desaturation of flavanone to form flavone are discussed.
Collapse
Affiliation(s)
- Kensaku Kakimoto
- a Osaka Institute of Public Health , Higashinari-ku , Osaka , Japan
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Shigeo Takenaka
- c Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University , Habikino , Osaka , Japan
| | - Haruna Nagayoshi
- a Osaka Institute of Public Health , Higashinari-ku , Osaka , Japan
| | - Young-Ran Lim
- d Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Vitchan Kim
- d Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Donghak Kim
- d Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Masayuki Komori
- e Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan , and
| | - F Peter Guengerich
- f Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Tsutomu Shimada
- e Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan , and
| |
Collapse
|
49
|
Traylor MJ, Baek JM, Richards KE, Fusetto R, Huang W, Josh P, Chen Z, Bollapragada P, O'Hair RAJ, Batterham P, Gillam EMJ. Recombinant expression and characterization of Lucilia cuprina CYP6G3: Activity and binding properties toward multiple pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:14-22. [PMID: 28918158 DOI: 10.1016/j.ibmb.2017.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
The Australian sheep blowfly, Lucilia cuprina, is a primary cause of sheep flystrike and a major agricultural pest. Cytochrome P450 enzymes have been implicated in the resistance of L. cuprina to several classes of insecticides. In particular, CYP6G3 is a L. cuprina homologue of Drosophila melanogaster CYP6G1, a P450 known to confer multi-pesticide resistance. To investigate the basis of resistance, a bicistronic Escherichia coli expression system was developed to co-express active L. cuprina CYP6G3 and house fly (Musca domestica) P450 reductase. Recombinant CYP6G3 showed activity towards the high-throughput screening substrates, 7-ethoxycoumarin and p-nitroanisole, but not towards p-nitrophenol, coumarin, 7-benzyloxyresorufin, or seven different luciferin derivatives (P450-Glo™ substrates). The addition of house fly cytochrome b5 enhanced the kcat for p-nitroanisole dealkylation approximately two fold (17.8 ± 0.5 vs 9.6 ± 0.2 min-1) with little effect on KM (13 ± 1 vs 10 ± 1 μM). Inhibition studies and difference spectroscopy revealed that the organochlorine compounds, DDT and endosulfan, and the organophosphate pesticides, malathion and chlorfenvinphos, bind to the active site of CYP6G3. All four pesticides showed type I binding spectra with spectral dissociation constants in the micromolar range suggesting that they may be substrates of CYP6G3. While no significant inhibition was seen with the organophosphate, diazinon, or the neonicotinoid, imidacloprid, diazinon showed weak binding in spectral assays, with a Kd value of 23 ± 3 μM CYP6G3 metabolised diazinon to the diazoxon and hydroxydiazinon metabolites and imidacloprid to the 5-hydroxy and olefin metabolites, consistent with a proposed role of CYP6G enzymes in metabolism of phosphorothioate and neonicotinoid insecticides in other species.
Collapse
Affiliation(s)
- Matthew J Traylor
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Jong-Min Baek
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Katelyn E Richards
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Roberto Fusetto
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - W Huang
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Peter Josh
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Zhenzhong Chen
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Padma Bollapragada
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia
| | - Richard A J O'Hair
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Philip Batterham
- The Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biology, University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
50
|
Bart AG, Scott EE. Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. J Biol Chem 2017; 292:20818-20833. [PMID: 29079577 DOI: 10.1074/jbc.ra117.000220] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/22/2017] [Indexed: 02/04/2023] Open
Abstract
The small heme-containing protein cytochrome b5 can facilitate, inhibit, or have no effect on cytochrome P450 catalysis, often in a P450-dependent and substrate-dependent manner that is not well understood. Herein, solution NMR was used to identify b5 residues interacting with different human drug-metabolizing P450 enzymes. NMR results revealed that P450 enzymes bound to either b5 α4-5 (CYP2A6 and CYP2E1) or this region and α2-3 (CYP2D6 and CYP3A4) and suggested variation in the affinity for b5 Mutations of key b5 residues suggest not only that different b5 surfaces are responsible for binding different P450 enzymes, but that these different complexes are relevant to the observed effects on P450 catalysis.
Collapse
Affiliation(s)
| | - Emily E Scott
- From the Biophysics Program and .,the Departments of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|