1
|
Leduc L, Leclère M, Gauthier LG, Marcil O, Lavoie J. Severe asthma in horses is associated with increased airway innervation. J Vet Intern Med 2024; 38:485-494. [PMID: 38054207 PMCID: PMC10800206 DOI: 10.1111/jvim.16941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Altered innervation structure and function contribute to airway hyperresponsiveness in human asthma, yet the role of innervation in airflow limitation in asthma in horses remains unknown. HYPOTHESIS To characterize peribronchial innervation in horses with asthma. We hypothesized that airway innervation increases in horses with asthma compared with controls. ANIMALS Formalin-fixed lung samples from 8 horses with severe asthma and 8 healthy horses from the Equine Respiratory Tissue Biobank. Ante-mortem lung function was recorded. METHODS Blinded case-control study. Immunohistochemistry was performed using rabbit anti-s100 antibody as a neuronal marker for myelinating and non-myelinating Schwann cells. The number and cumulative area of nerves in the peribronchial region and associated with airway smooth muscle were recorded using histomorphometry and corrected for airway size. RESULTS Both the number (median [IQR]: 1.87 × 10-5 nerves/μm2 [1.28 × 10-5 ]) and the cumulative nerve area (CNA; 1.03 × 10-3 CNA/μm2 [1.57 × 10-3 ]) were higher in the peribronchial region of horses with asthma compared with controls (5.17 × 10-6 nerves/μm2 [3.76 × 10-6 ], 4.14 × 10-4 CNA/μm2 [2.54 × 10-4 ], Mann-Whitney, P = .01). The number of nerves within or lining airway smooth muscle was significantly higher in horses with asthma (4.47 × 10-6 nerves/μm2 [5.75 × 10-6 ]) compared with controls (2.26 × 10-6 nerves/μm2 [1.16 × 10-6 ], Mann-Whitney, P = .03). CONCLUSIONS AND CLINICAL IMPORTANCE Asthma in horses is associated with greater airway innervation, possibly contributing to airway smooth muscle remodeling and exacerbating severity of the disease.
Collapse
Affiliation(s)
- Laurence Leduc
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalSaint‐HyacintheQuebecCanada
| | - Mathilde Leclère
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalSaint‐HyacintheQuebecCanada
| | | | | | - Jean‐Pierre Lavoie
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalSaint‐HyacintheQuebecCanada
| |
Collapse
|
2
|
Calzetta L, Pistocchini E, Ritondo BL, Cavalli F, Camardelli F, Rogliani P. Muscarinic receptor antagonists and airway inflammation: A systematic review on pharmacological models. Heliyon 2022; 8:e09760. [PMID: 35785239 PMCID: PMC9240991 DOI: 10.1016/j.heliyon.2022.e09760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Airway inflammation is crucial in the pathogenesis of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Current evidence supports the beneficial impact of muscarinic receptor antagonists against airway inflammation from bench-to-bedside. Considering the numerous sampling approaches and the ethical implications required to study inflammation in vivo in patients, the use of pre-clinical models is inevitable. Starting from our recently published systematic review concerning the impact of muscarinic antagonists, we have systematically assessed the current pharmacological models of airway inflammation and provided an overview on the advances in in vitro and ex vivo approaches. The purpose of in vitro models is to recapitulate selected pathophysiological parameters or processes that are crucial to the development of new drugs within a controlled environment. Nevertheless, immortalized cell lines or primary airway cells present major limitations, including the inability to fully replicate the conditions of the corresponding cell types within a whole organism. Induced animal models are extensively used in research in the attempt to replicate a respiratory condition reflective of a human pathological state, although considering animal models with spontaneously occurring respiratory diseases may be more appropriate since most of the clinical features are accompanied by lung pathology resembling that of the human condition. In recent years, three-dimensional organoids have become an alternative to animal experiments, also because animal models are unable to fully mimic the complexity of human pulmonary diseases. Ex vivo studies performed on human isolated airways have a superior translational value compared to in vitro and animal models, as they retain the morphology and the microenvironment of the lung in vivo. In the foreseeable future, greater effort should be undertaken to rely on more physiologically relevant models, that provide translational value into clinic and have a direct impact on patient outcomes.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
- Corresponding author.
| | - Elena Pistocchini
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Camardelli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
3
|
Calzetta L, Pistocchini E, Ritondo BL, Roncada P, Cito G, Britti D, Matera MG. Isolated airways in equine respiratory pharmacology: They never lie. Pulm Pharmacol Ther 2019; 59:101849. [PMID: 31553927 DOI: 10.1016/j.pupt.2019.101849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/21/2019] [Indexed: 12/29/2022]
Abstract
Pre-clinical studies on human isolated bronchi have relevant translational value in human in vivo, conversely no investigation has been performed to assess whether data resulting from equine isolated airways can have any translational application in asthmatic horses. Thus, a meta-regression analysis via random-effect method was carried out to correlate the pharmacological characteristics of bronchodilators resulting from experiments performed in equine isolated bronchi with their impact on the lung function outcomes in asthmatic horses. Data on the potency of different bronchodilators were extracted from four ex vivo studies involving 68 horses, and related with the maximum change in transpulmonary pressure (ΔPplmax), pulmonary resistance (RL), and dynamic lung compliance (Cdyn) resulting from the meta-analysis of clinical trials aimed to assess the effect of different bronchodilator classes, namely antimuscarinic agents and β2-adrenoreceptor (β2-AR) agonists, on lung function of asthmatic horses. The potency (pEC50) detected in equine isolated bronchi for each specific bronchodilator did not significantly (P > 0.05) influence the bronchorelaxant effect resulting from clinical trials. RL was characterized by a flatter meta-regression line (slope 0.01, 95%CI -0.25 - 0.28) with respect to ΔPplmax (slope 0.90, 95%CI -4.06 - 2.26) and Cdyn (slope 0.09, 95%CI -0.21 - 0.04). The quality of evidence was moderate for RL and ΔPplmax and low for Cdyn. This quantitative synthesis provides the indirect evidence that pre-clinical investigations performed by using equine isolated airways may produce useful data to predict the impact of bronchodilators on the RL of asthmatic horses. Further translational studies are needed to directly confirm the results of this research.
Collapse
Affiliation(s)
- Luigino Calzetta
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy; Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy.
| | - Elena Pistocchini
- Unit of Laboratory Medicine, Veterinary Hospital Gregorio VII, Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Giuseppe Cito
- ASL Roma 2, UOC Tutela igienico sanitaria degli alimenti di origine animale, Rome, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
4
|
Calzetta L, Rogliani P, Pistocchini E, Mattei M, Cito G, Alfonsi P, Page C, Matera MG. Combining long-acting bronchodilators with different mechanisms of action: A pharmacological approach to optimize bronchodilation of equine airways. J Vet Pharmacol Ther 2018; 41:546-554. [PMID: 29582435 DOI: 10.1111/jvp.12504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
Abstract
The ultra long-acting β2 -adrenoceptor agonist olodaterol plus the ultra long-acting muscarinic antagonist tiotropium bromide are known to relax equine airways. In human bronchi combining these drugs elicits a positive interaction, thus we aimed to characterize this information further in equine isolated airways stimulated by electrical field stimulation (EFS) and using the Concentration-Reduction Index (CRI) and Combination Index (CI) equations. The drugs were administered alone and together by reproducing ex vivo the concentration-ratio delivered by the currently available fixed-dose combination (1:1). The single agents elicited a significant (p < .05) concentration-dependent reduction in the EFS-induced contractility, that was synergistically improved (CI 0.18) when administered in combination (0.9 logarithms more potent, 24% more effective than the monocomponents). The drugs mixture allowed a reduction in the concentration of olodaterol from ≃1 to ≃2.3 logarithms. A favorable CRI was detected also for tiotropium bromide, whose concentration can be reduced ≃1 logarithm at medium effect levels, remaining positive up to submaximal relaxant effect in the presence of olodaterol. The combination of tiotropium bromide/olodaterol allows the reduction in the concentration of the monocomponents to achieve airway smooth muscle relaxation, thus potentially decreases the risk of adverse events when these drugs are used to treat severe asthmatic horses.
Collapse
Affiliation(s)
- L Calzetta
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - P Rogliani
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - M Mattei
- Department of Biology, Centro Servizi Interdipartimentale-STA, University of Rome Tor Vergata, Rome, Italy
| | - G Cito
- ASL Roma 2, UOC Tutela Igienico Sanitaria Degli Alimenti di Origine Animale, Rome, Italy
| | - P Alfonsi
- ASL Roma 2, UOC Igiene Degli Allevamenti e Delle Produzioni Zootecniche, Rome, Italy
| | - C Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - M G Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
5
|
Calzetta L, Rogliani P, Pistocchini E, Mattei M, Cito G, Alfonsi P, Page C, Matera MG. Effect of lipopolysaccharide on the responsiveness of equine bronchial tissue. Pulm Pharmacol Ther 2018; 49:88-94. [PMID: 29408044 DOI: 10.1016/j.pupt.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 02/09/2023]
Abstract
Recurrent airway obstruction (RAO) is a main characteristic of horses with severe equine asthma syndrome. The presence of bacterial lipopolysaccharide (LPS) in the airways of horses is thought to play a crucial role in the clinical expression of this disorder. This study pharmacologically characterized the effect of LPS on the responsiveness of equine bronchial tissue. Equine isolated bronchi were incubated overnight with LPS (0.1-100 ng/ml) and then stimulated by electrical field stimulation (EFS). The role of capsaicin sensitive-sensory nerves (capsaicin desensitization treatment), neurokinin-2 (NK2) receptors (blocked by GR159897), transient receptor potential vanilloid type 1 receptors (TRPV1; blocked by SB366791), and neurokinin A (NKA) were investigated. Untreated bronchi were used as control tissues. LPS (1 ng/ml) significantly increased the EFS-evoked contractility of equine bronchi compared with control tissues (+742 ± 123 mg; P < 0.001). At higher concentrations LPS induced desensitization to airways hyperresponsiveness (AHR; EC50: 5.9 ± 2.6 ng/ml). Capsaicin desensitization and GR159897 significantly prevented AHR induced by LPS at EFS1-50Hz (-197 ± 25%; P < 0.01). SB366791 inhibited AHR at very low EFS frequency (EFS1Hz -193 ± 29%; P < 0.01 vs. LPS-treated bronchi). LPS (1 ng/ml) significantly (P < 0.01) increased 3.7 ± 0.7 fold the release of NKA compared with control bronchi. LPS induces biphasic dysfunctional bronchial contractility due to the stimulation of capsaicin sensitive-sensory nerves, increased release of NKA, and activation of NK2 receptors, whereas TRPV1 receptors appear to play a marginal role in this response. The overnight challenge with low concentrations of LPS represents a suitable model to investigate pharmacological options that may be of value in the treatment of equine RAO.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.
| | - Paola Rogliani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Maurizio Mattei
- Department of Biology, Centro Servizi Interdipartimentale-STA, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Cito
- ASL Roma 2, UOC Tutela Igienico Sanitaria Degli Alimenti di Origine Animale, Rome, Italy
| | - Pietro Alfonsi
- ASL Roma 2, UOC Igiene Degli Allevamenti e Delle Produzioni Zootecniche, Rome, Italy
| | - Clive Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
Calzetta L, Rogliani P, Mattei M, Alfonsi P, Cito G, Pistocchini E, Cazzola M, Matera MG. Pharmacological characterization of the interaction between tiotropium and olodaterol administered at 5:5 concentration-ratio in equine bronchi. COPD 2017; 14:526-532. [PMID: 28745522 DOI: 10.1080/15412555.2017.1344627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Equine airways represent a suitable ex vivo model to study the functional impact of pharmacological treatments on human chronic obstructive pulmonary disorders, such as asthma and chronic obstructive pulmonary disease (COPD). We aimed to characterize the pharmacological interaction between the long-acting muscarinic antagonist (LAMA) tiotropium and the long-acting β2-agonist (LABA) olodaterol in equine airways. The effect of tiotropium and olodaterol, administered alone and in combination at the ratio of concentrations reproducing ex vivo the concentration-ratio delivered by the currently available fixed-dose combination (FDC) (5:5), was investigated on the cholinergic contractile tone induced by the parasympathetic activation of equine isolated airways. The drug interaction was analysed by using the Bliss Independence and Unified Theory models. Both tiotropium and olodaterol induced a sub-maximal concentration-dependent inhibition of bronchial contractility (Emax: tiotropium 83.6 ± 14.8%, olodaterol 76.9 ± 17.9%; pEC50: tiotropium 8.2 ± 0.5; olodaterol 8.3 ± 0.6). When administered at 5:5 concentration-ratio, tiotropium plus olodaterol completely inhibited the bronchial contractility (Emax 102.7 ± 8.4%; pEC50 9.0 ± 0.7). Strong synergistic interaction was detected for tiotropium/olodaterol combination (combination index 0.011). When administered at low concentrations, the drug mixture elicited up to 94.6 ± 9.5% effect that was 36.0 ± 8.1% greater than the expected additive effect. The results of this study demonstrate that the co-administration of tiotropium plus olodaterol at 5:5 concentration-ratio leads to synergistic inhibition of equine bronchial contractility when compared with either drug administered alone. These findings suggest that the currently available LABA/LABA FDC may be effective in delivering tiotropium/olodaterol combination at equipotency concentrations of each monocomponent into the lung and, thus, inducing synergistic effect in the airways.
Collapse
Affiliation(s)
- Luigino Calzetta
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Paola Rogliani
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Maurizio Mattei
- b Department of Biology, Centro Servizi Interdipartimentale-STA , University of Rome Tor Vergata , Rome , Italy
| | - Pietro Alfonsi
- c ASL Roma 2, UOC Igiene degli Allevamenti e delle Produzioni Zootecniche , Rome , Italy
| | - Giuseppe Cito
- d ASL Roma 2, UOC Tutela igienico sanitaria degli alimenti di origine animale , Rome , Italy
| | | | - Mario Cazzola
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome , Italy
| | - Maria Gabriella Matera
- f Department of Experimental Medicine , University of Campania Luigi Vanvitelli , Naples , Italy
| |
Collapse
|
7
|
Abraham G. The importance of muscarinic receptors in domestic animal diseases and therapy: Current and future perspectives. Vet J 2016; 208:13-21. [DOI: 10.1016/j.tvjl.2015.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023]
|
8
|
Pirie RS. Recurrent airway obstruction: a review. Equine Vet J 2014; 46:276-88. [PMID: 24164473 DOI: 10.1111/evj.12204] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/05/2013] [Indexed: 12/01/2022]
Abstract
Recurrent airway obstruction is a widely recognised airway disorder, characterised by hypersensitivity-mediated neutrophilic airway inflammation and lower airway obstruction in a subpopulation of horses when exposed to suboptimal environments high in airborne organic dust. Over the past decade, numerous studies have further advanced our understanding of different aspects of the disease. These include clarification of the important inhaled airborne agents responsible for disease induction, improving our understanding of the underlying genetic basis of disease susceptibility and unveiling the fundamental immunological mechanisms leading to establishment of the classic disease phenotype. This review, as well as giving a clinical overview of recurrent airway obstruction, summarises much of the work in these areas that have culminated in a more thorough understanding of this debilitating disease.
Collapse
Affiliation(s)
- R S Pirie
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
9
|
Zhou J, Alvarez-Elizondo MB, Botvinick E, George SC. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction. J Appl Physiol (1985) 2011; 112:627-37. [PMID: 22114176 DOI: 10.1152/japplphysiol.00739.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biomedical Engineering, Universityof California, Irvine, CA 92697-2715, USA
| | | | | | | |
Collapse
|
10
|
Evaluation of the effects of the R- and S-enantiomers of salbutamol on equine isolated bronchi. Pulm Pharmacol Ther 2010; 24:221-6. [PMID: 21195788 DOI: 10.1016/j.pupt.2010.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 12/01/2010] [Accepted: 12/23/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND Equine obstructive pulmonary disease, also known as heaves or recurrent airway obstruction (RAO) is a common equine pulmonary disease with some similarities to human asthma and COPD, which represents a major cause of morbidity and loss of lung performance. Salbutamol has been widely used for the treatment of human airway diseases and has usually been prepared as the racemic form of the drug. However, recently the R-enantiomer of salbutamol has been introduced into clinical practice in the treatment of asthma in humans and this has been suggested to be an improvement on the racemic form of the drug; therefore thus the S-enantiomer has been demonstrated to have adverse effects in the lung and thus using the R-enantiomer may improve the therapeutic ratio. However, little is known about the properties of the R- and S-enantiomers of salbutamol in equine airways and the present study has evaluated the relaxant effects of racemic β(2)-agonists in comparison with the R- and S-enantiomers in isolated equine isolated bronchi, as well as the bronchoprotective effects of these drugs on cholinergic and histaminergic pathway. METHODS We have studied the effects of the R- and S-enantiomers of salbutamol on bronchi isolated from RAO-affected or unaffected horses. The first study assayed the relaxant effects of R- and S-salbutamol on isolated bronchial rings contracted with carbachol or histamine at a sub-maximal concentration (EC70). A second study evaluated the effects of R- and S-salbutamol on semi-logarithmic cumulative concentration-response curves induced by carbachol or histamine. Specific software was used to calculate statistical significance and the appropriate sigmoidal curve-fitting model. RESULTS Neither enantiomers of salbutamol caused a relaxant effect on the sub-maximal plateau contractile effects of carbachol; in fact, both R- and S-salbutamol induced a slight, but significant contraction (P ≤ 0.05) compared to the controls. In contrast, R-salbutamol induced a significant relaxation of bronchi pre-contracted with histamine (RAO-unaffected: 92.06% ± 2.00; RAO-affected 100.20 ± 3.99; P ≤ 0.01). S-salbutamol induced a weak relaxation (RAO-unaffected: 15.81% ± 5.65; RAO-affected 12.36 ± 5.15) when compared to that induced by papaverine. The incubation with either R- or S-salbutamol shifted rightward (P ≤ 0.001) the carbachol contraction curve in RAO-unaffected bronchi, but not in RAO-affected bronchi, compared to control tissues. R-salbutamol induced a reduction in E(max) values (C: 9.07 gr ± 0.68; R-salb.: 6.36 gr ± 0.21; P ≤ 0.01) in normal bronchi. On the contrary it reduced the histamine potency in RAO-affected bronchi (EC50 7.10 μM ± 0.35, P < 0.001). The incubation with S-salbutamol shifted leftward the histamine concentration curve in both normal bronchi (C: 7.00 μM ± 0.29; S-salb.: 2.25 μM ± 0.19; P ≤ 0.001) and bronchi from RAO-affected horses (C: 2.80 μM ± 0.26; S-salb.: 1.50 μM ± 0.80; P ≤ 0.05). CONCLUSION Our studies have demonstrated that S-salbutamol elicited a modest increase in contraction of equine airway smooth muscle induced by carbachol and induced a significant hyperresponsiveness to histamine. These results confirm the ability of the S-enantiomer of salbutamol to potentiate the contractile effect of certain spasmogens on airway smooth muscle. Such an adverse effect would be determined in the airways of horses with RAO and suggest that if salbutamol is to be used in the treatment of symptoms of RAO in horses, the R-enantiomer, rather than the racemic mixture should be considered.
Collapse
|
11
|
|
12
|
|
13
|
Abraham G, Kottke C, Ungemach FR. Equine recurrent airway obstruction does not alter airway muscarinic acetylcholine receptor expression and subtype distribution. J Vet Pharmacol Ther 2007; 30:401-9. [PMID: 17803731 DOI: 10.1111/j.1365-2885.2007.00897.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recurrent airway obstruction (RAO) or heaves, bronchospasm has been attributed to enhanced cholinergic activity. However, the expression and function of muscarinic acetylcholine receptors (mAChR) and their signaling components are not yet known. Thus, we examined the expression, subtype distribution and postreceptor signaling pathways of mAChR in the peripheral lung, bronchial and tracheal epithelia with the underlying smooth muscle from nine horses with RAO and 11 healthy control horses. In RAO horses, no significant segment-dependent alteration in mAChR density and subtype distribution (assessed by [N-methyl-3H]-scopolamine binding; ([3H]-NMS)), was found, except a trend in receptor down-regulation in some peripheral parts of the lung. The total number of high mAChR binding sites (assessed by carbachol-displacement experiments in the presence or absence of guanosine 5'-triphosphate) was not changed in RAO, suggesting that the functional coupling of mAChR to the corresponding G-proteins is intact. The M2-mediated inhibition of adenylate cyclase (AC) as well as the M3-receptor-G(q/11)-phospholipase C (PLC) activity was not different between RAO and control airway tissues. In conclusion, in equine RAO airways, mAChR expression and function were not altered, and thus appear not to account for the enhanced cholinergic activity in RAO.
Collapse
Affiliation(s)
- G Abraham
- Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, Leipzig, Germany
| | | | | |
Collapse
|
14
|
Abraham G, Kottke C, Ammer H, Dhein S, Ungemach FR. Segment-dependent expression of muscarinic acetylcholine receptors and G-protein coupling in the equine respiratory tract. Vet Res Commun 2006; 31:207-26. [PMID: 17180451 DOI: 10.1007/s11259-006-3396-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2005] [Indexed: 11/26/2022]
Abstract
Muscarinic receptors are considered to be of comparable clinical importance in chronic obstructive pulmonary disease (COPD) in equines and in humans. At present, data are scarce on the expression and distribution of probable subtypes of these receptors and their signalling pathways in airway segments, including lung parenchyma and bronchial and tracheal epithelium with the underlying smooth muscle in horses. Specific [N-methyl-3H]scopolamine chloride ([3H]NMS) binding to all three tissues was saturable and of high affinity, with KD values ranging between 1.6+/-0.7 and 1.9+/-0.3 nmol/L. [3H]NMS binding identified a higher density of total muscarinic receptors (fmol/mg protein) in the trachea (720+/-59 nmol/L) than in bronchi (438+/-48 nmol/L) or lung (22 +/- 3 nmol/L). Competitive binding studies using [3H]NMS and the unlabelled subtype-selective antagonists pirenzepine and telenzepine (M1), methoctramine and himbacine (M2), 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) (M3), tropicamide (M4) and mamba toxin (MT-3) (M4) indicated the presence of at least three muscarinic receptor subtypes in peripheral lung tissue (50:40:24-28%: M2>M3>M1), whereas in bronchus and trachea M2 subtypes (87-90%) predominated over M3 (14-22%), and M1 subtypes were lacking. No differences were found between tissues in high-affinity binding sites for carbachol in the absence (31-36%) or presence of guanosine 5'-triphosphate (GTP) (approximately 100%). Western blotting for G-protein alpha-subunits showed a much more robust expression of G(alphai1/2) in the trachea (with highest receptor density) than in the lung or bronchi, whereas G(alphas)-protein was dominantly expressed in bronchus. Concomitantly, carbachol inhibited isoproterenol- and GTP-stimulated adenylyl cyclase activity with increasing muscarinic receptor expression (trachea > bronchi > lung). We conclude that the expression and signalling pathways of muscarinic receptors in the equine respiratory tract are segment-dependent. These receptors might contribute to the pathogenesis of COPD in the horse and could provide potential drug targets for the therapeutic use of anticholinergics in this species.
Collapse
Affiliation(s)
- G Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, Leipzig
| | | | | | | | | |
Collapse
|
15
|
Polikepahad S, Paulsen DB, Moore RM, Costa LRR, Venugopal CS. Immunohistochemical determination of the expression of endothelin receptors in bronchial smooth muscle and epithelium of healthy horses and horses affected by summer pasture-associated obstructive pulmonary disease. Am J Vet Res 2006; 67:348-57. [PMID: 16454644 DOI: 10.2460/ajvr.67.2.348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To immunohistochemically determine the expression of endothelin (ET) receptors in bronchial smooth muscle and epithelium of healthy horses and horses affected by summer pasture-associated obstructive pulmonary disease (SPAOPD). SAMPLE POPULATION Tissue specimens obtained from 8 healthy and 8 SPAOPD-affected horses. PROCEDURE Horses were examined and assigned to healthy and SPAOPD groups. Horses were then euthanatized, and tissue specimens containing bronchi of approximately 4 to 8 mm in diameter were immediately collected from all lung lobes, fixed in zinc-formalin solution for 12 hours, and embedded in paraffin. Polyclonal primary antibodies against ET-A or ET-B receptors at a dilution of 1:200 and biotinylated IgG secondary antibodies were applied to tissue sections, followed by the addition of an avidin-biotin immunoperoxidase complex. Photographs of the stained slides were digitally recorded and analyzed by use of image analysis software to determine the intensity of staining. Two-way ANOVA was used for statistical analysis. RESULTS The left diaphragmatic lung lobe of SPAOPD-affected horses had a significantly greater area of bronchial smooth muscle that immunostained for ET-A, compared with that for healthy horses. All lung lobes of SPAOPD-affected horses, except for the right diaphragmatic lobe, had significantly greater staining for ET-B receptors in bronchial smooth muscle, compared with results for healthy horses. CONCLUSIONS AND CLINICAL RELEVANCE This study revealed overexpression of ET-A and, in particular, ETB receptors in the bronchial smooth muscle of SPAOPD-affected horses, which suggested upregulation of these receptors. These findings improve our understanding of the role of ET-1 in the pathogenesis of SPAOPD.
Collapse
Affiliation(s)
- Sumanth Polikepahad
- Equine Health Studies Program, Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|