1
|
Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, Iannelli F, Drufuca L, Bason R, Orsenigo F, Parazzoli D, Pavani M, Cancila V, Piccolo S, Scita G, Ciliberto A, Tripodo C, Pagani M, Foiani M. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci U S A 2024; 121:e2404551121. [PMID: 38990945 PMCID: PMC11260125 DOI: 10.1073/pnas.2404551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.
Collapse
Affiliation(s)
- Giulia Bastianello
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Gururaj Rao Kidiyoor
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Conor Lowndes
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Qingsen Li
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Raoul Bonnal
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Jeffrey Godwin
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabio Iannelli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | | | - Ramona Bason
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Fabrizio Orsenigo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Dario Parazzoli
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Mattia Pavani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Stefano Piccolo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Department of Molecular Medicine, University of Padua, Padua35123, Italy
| | - Giorgio Scita
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Andrea Ciliberto
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
| | - Claudio Tripodo
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo90133, Italy
| | - Massimiliano Pagani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Università degli Studi di Milano, Milan20122, Italy
| | - Marco Foiani
- Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia molecolare—the Associazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology, Milano20139, Italy
- Istituto di Genetica Molecolare, Centro Nazionale Ricerca, Pavia27100, Italy
- Cancer Science Institute of Singapore, National University of Singapore, Singapore117599, Singapore
| |
Collapse
|
2
|
Wu H, Liu S, Wu D, Zhou H, Wu G. Tumor extrachromosomal DNA: Biogenesis and recent advances in the field. Biomed Pharmacother 2024; 174:116588. [PMID: 38613997 DOI: 10.1016/j.biopha.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Extrachromosomal DNA (ecDNA) is a self-replicating circular DNA originating from the chromosomal genome and exists outside the chromosome. It contains specific gene sequences and non-coding regions that regulate transcription. Recent studies have demonstrated that ecDNA is present in various malignant tumors. Malignant tumor development and poor prognosis may depend on ecDNA's distinctive ring structure, which assists in amplifying oncogenes. During cell division, an uneven distribution of ecDNA significantly enhances tumor cells' heterogeneity, allowing tumor cells to adapt to changes in the tumor microenvironment and making them more resistant to treatments. The application of ecDNA as a cancer biomarker and therapeutic target holds great potential. This article examines the latest advancements in this area and discusses the potential clinical applications of ecDNA.
Collapse
Affiliation(s)
- Haomin Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Shiqi Liu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Di Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Haonan Zhou
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Gang Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China.
| |
Collapse
|
3
|
Kumaki Y, Oda G, Ikeda S. Targeting MET Amplification: Opportunities and Obstacles in Therapeutic Approaches. Cancers (Basel) 2023; 15:4552. [PMID: 37760522 PMCID: PMC10526812 DOI: 10.3390/cancers15184552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The MET gene plays a vital role in cellular proliferation, earning it recognition as a principal oncogene. Therapies that target MET amplification have demonstrated promising results both in preclinical models and in specific clinical cases. A significant obstacle to these therapies is the ability to distinguish between focal amplification and polysomy, a task for which simple MET copy number measurement proves insufficient. To effectively differentiate between the two, it is crucial to utilize comparative measures, including in situ hybridization (ISH) with the centromere or next generation sequencing (NGS) with adjacent genes. Despite the promising potential of MET amplification treatment, the judicious selection of patients is paramount to maximize therapeutic efficacy. The effectiveness of MET inhibitors can fluctuate depending on the extent of MET amplification. Future research must seek to establish the ideal threshold value for MET amplification, identify the most efficacious combination therapies, and innovate new targeted treatments for patients exhibiting MET amplification.
Collapse
Affiliation(s)
- Yuichi Kumaki
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | - Goshi Oda
- Department of Specialized Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| | - Sadakatsu Ikeda
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Genomic and transcriptomic analyses reveal a tandem amplification unit of 11 genes and mutations in mismatch repair genes in methotrexate-resistant HT-29 cells. Exp Mol Med 2021; 53:1344-1355. [PMID: 34521988 PMCID: PMC8492700 DOI: 10.1038/s12276-021-00668-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
DHFR gene amplification is commonly present in methotrexate (MTX)-resistant colon cancer cells and acute lymphoblastic leukemia. In this study, we proposed an integrative framework to characterize the amplified region by using a combination of single-molecule real-time sequencing, next-generation optical mapping, and chromosome conformation capture (Hi-C). We identified an amplification unit spanning 11 genes, from the DHFR gene to the ATP6AP1L gene position, with high adjusted interaction frequencies on chromosome 5 (~2.2 Mbp) and a twenty-fold tandemly amplified region, and novel inversions at the start and end positions of the amplified region as well as frameshift insertions in most of the MSH and MLH genes were detected. These mutations might stimulate chromosomal breakage and cause the dysregulation of mismatch repair. Characterizing the tandem gene-amplified unit may be critical for identifying the mechanisms that trigger genomic rearrangements. These findings may provide new insight into the mechanisms underlying the amplification process and the evolution of drug resistance. Sequencing a large region of DNA containing many surplus copies of genes linked to drug resistance in colon cancer cells may illuminate how these genomic rearrangements arise. Such regions of gene amplification are highly repetitive, making them impossible to sequence using ordinary methods, and little is known about how they are generated. Using advanced methods, Jeong-Sun Seo at Seoul National University Bundang Hospital in South Korea and co-workers sequenced a region of gene amplification in colon cancer cells. The amplified region was approximately 20 times the length of that in healthy cells and contained many copies of an eleven-gene segment, including a gene implicated in drug resistance. The region also contained mutations in chromosomal repair genes which would disrupt repair pathways. These results illuminate the genetic changes that lead to gene amplification and drug resistance in cancer cells.
Collapse
|
5
|
Uysal D, Kowalewski KF, Kriegmair MC, Wirtz R, Popovic ZV, Erben P. A comprehensive molecular characterization of the 8q22.2 region reveals the prognostic relevance of OSR2 mRNA in muscle invasive bladder cancer. PLoS One 2021; 16:e0248342. [PMID: 33711044 PMCID: PMC7954304 DOI: 10.1371/journal.pone.0248342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Technological advances in molecular profiling have enabled the comprehensive identification of common regions of gene amplification on chromosomes (amplicons) in muscle invasive bladder cancer (MIBC). One such region is 8q22.2, which is largely unexplored in MIBC and could harbor genes with potential for outcome prediction or targeted therapy. To investigate the prognostic role of 8q22.2 and to compare different amplicon definitions, an in-silico analysis of 357 patients from The Cancer Genome Atlas, who underwent radical cystectomy for MIBC, was performed. Amplicons were generated using the GISTIC2.0 algorithm for copy number alterations (DNA_Amplicon) and z-score normalization for mRNA gene overexpression (RNA_Amplicon). Kaplan-Meier survival analysis, univariable, and multivariable Cox proportional hazard ratios were used to relate amplicons, genes, and clinical parameters to overall (OS) and disease-free survival (DFS). Analyses of the biological functions of 8q22.2 genes and genomic events in MIBC were performed to identify potential targets. Genes with prognostic significance from the in silico analysis were validated using RT-qPCR of MIBC tumor samples (n = 46). High 8q22.2 mRNA expression (RNA-AMP) was associated with lymph node metastases. Furthermore, 8q22.2 DNA and RNA amplified patients were more likely to show a luminal subtype (DNA_Amplicon_core: p = 0.029; RNA_Amplicon_core: p = 0.01). Overexpression of the 8q22.2 gene OSR2 predicted shortened DFS in univariable (HR [CI] 1.97 [1.2; 3.22]; p = 0.01) and multivariable in silico analysis (HR [CI] 1.91 [1.15; 3.16]; p = 0.01) and decreased OS (HR [CI] 6.25 [1.37; 28.38]; p = 0.0177) in RT-qPCR data analysis. Alterations in different levels of the 8q22.2 region are associated with manifestation of different clinical characteristics in MIBC. An in-depth comprehensive molecular characterization of genomic regions involved in cancer should include multiple genetic levels, such as DNA copy number alterations and mRNA gene expression, and could lead to a better molecular understanding. In this study, OSR2 is identified as a potential biomarker for survival prognosis.
Collapse
Affiliation(s)
- Daniel Uysal
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karl-Friedrich Kowalewski
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Ralph Wirtz
- STRATIFYER Molecular Pathology GmbH, Köln, Germany
| | - Zoran V. Popovic
- Institute of Pathology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Philipp Erben
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
6
|
Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol 2021; 10:625332. [PMID: 33614505 PMCID: PMC7886978 DOI: 10.3389/fonc.2020.625332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
MYCN, a member of MYC proto-oncogene family, encodes a basic helix-loop-helix transcription factor N-MYC. Abnormal expression of N-MYC is correlated with high-risk cancers and poor prognosis. Initially identified as an amplified oncogene in neuroblastoma in 1983, the oncogenic effect of N-MYC is expanded to multiple neuronal and nonneuronal tumors. Direct targeting N-MYC remains challenge due to its "undruggable" features. Therefore, alternative therapeutic approaches for targeting MYCN-driven tumors have been focused on the disruption of transcription, translation, protein stability as well as synthetic lethality of MYCN. In this review, we summarize the latest advances in understanding the molecular mechanisms of MYCN dysregulation in cancers.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaoyu Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
7
|
Bianchi JJ, Murigneux V, Bedora-Faure M, Lescale C, Deriano L. Breakage-Fusion-Bridge Events Trigger Complex Genome Rearrangements and Amplifications in Developmentally Arrested T Cell Lymphomas. Cell Rep 2020; 27:2847-2858.e4. [PMID: 31167132 PMCID: PMC6581794 DOI: 10.1016/j.celrep.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022] Open
Abstract
To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53−/− lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2−/−p53−/− T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3. We show that this amplicon is generated by breakage-fusion-bridge during mitosis and arises distinctly in T cell lymphomas originating from an early progenitor stage. Notably, we report amplification of the corresponding syntenic region (11q23) in a subset of human leukemia leading to the overexpression of several cancer genes, including MLL/KMT2A. Our findings provide direct evidence that lymphocytes undergo malignant transformation through distinct genome architectural routes that are determined by both RAG-dependent and RAG-independent DNA damage and a block in cell development. Lymphomas from RAG2/p53- and p53-deficient mice bear distinct genome architectures Block in T cell development leads to 9qA4-5.3 rearrangements and amplifications Breakage-fusion-bridge events trigger 9qA4-5.3 aberrations in early T cell lymphomas The syntenic region 11q23 is amplified in some human hematological cancers
Collapse
Affiliation(s)
- Joy J Bianchi
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
8
|
Benstead-Hume G, Wooller SK, Downs JA, Pearl FMG. Defining Signatures of Arm-Wise Copy Number Change and Their Associated Drivers in Kidney Cancers. Int J Mol Sci 2019; 20:E5762. [PMID: 31744086 PMCID: PMC6887958 DOI: 10.3390/ijms20225762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC).
Collapse
Affiliation(s)
- Graeme Benstead-Hume
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| | - Sarah K. Wooller
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| | - Jessica A Downs
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK;
| | - Frances M. G. Pearl
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| |
Collapse
|
9
|
Abel Y, Rederstorff M. SnoRNAs and the emerging class of sdRNAs: Multifaceted players in oncogenesis. Biochimie 2019; 164:17-21. [DOI: 10.1016/j.biochi.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
|
10
|
FGF19 amplification reveals an oncogenic dependency upon autocrine FGF19/FGFR4 signaling in head and neck squamous cell carcinoma. Oncogene 2019; 38:2394-2404. [PMID: 30518874 DOI: 10.1038/s41388-018-0591-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/04/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
The fibroblast growth factor 19 gene FGF19 has previously been reported to be amplified in several cancer types and encodes for a key autocrine signaler known to promote tumorigenic growth. Thus, it is imperative to understand which cancers are oncogenically addicted to FGF19 amplification as well as the role it serves in these cancer types. We report for the first time high FGF19 amplification in head and neck squamous cell carcinomas (HNSCC), which is associated with increased autocrine secretion of FGF19 and poor patient outcome in HNSCC. FGF19 amplification corresponded with constitutive activation of FGF receptor 4 (FGFR4)-dependent ERK/AKT-p70S6K-S6 signaling activation in HNSCC cells, and addition of human recombinant FGF19 could promote cell proliferation and soft agar colony formation in HNSCC cells with low FGF19 expression through activation of FGFR4 and downstream signaling cascades. In contrast, FGF19 knockout counteracts the observed effects in HNSCC cells carrying high endogenous FGF19, with knockout of FGF19 significantly suppressing tumor growth in an orthotopic mouse model of HNSCC. Collectively, this study demonstrates that FGF19 gene amplification corresponds with an increased dependency upon FGF19/FGFR4 autocrine signaling in HNSCC, revealing a therapeutic target for this cancer type.
Collapse
|
11
|
Nakatani K, Yamaoka T, Ohba M, Fujita KI, Arata S, Kusumoto S, Taki-Takemoto I, Kamei D, Iwai S, Tsurutani J, Ohmori T. KRAS and EGFR Amplifications Mediate Resistance to Rociletinib and Osimertinib in Acquired Afatinib-Resistant NSCLC Harboring Exon 19 Deletion/T790M in EGFR. Mol Cancer Ther 2018; 18:112-126. [PMID: 30322949 DOI: 10.1158/1535-7163.mct-18-0591] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/24/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
Abstract
The critical T790M mutation in EGFR, which mediates resistance to first- and second-generation EGFR tyrosine kinase inhibitors (TKI; gefitinib, erlotinib, and afatinib), has facilitated the development of third-generation mutation-selective EGFR TKIs (rociletinib and osimertinib). We previously reported heterogeneous afatinib-resistant mechanisms, including emergence of T790M-EGFR, and responses to third-generation EGFR TKIs. Here, we used afatinib-resistant lung adenocarcinoma cells [AfaR (formerly AFR3) cells], carrying exon 19 deletion/T790M in EGFR To identify the novel resistance mechanisms in post-afatinib treatment, RocR1/RocR2 and OsiR1/OsiR2 cells were established using increasing concentrations of rociletinib and osimertinib, respectively. Attenuation of exon 19 deletion and T790M was confirmed in both rociletinib-resistant cells; in addition, EGFR and KRAS amplification was observed in RocR1 and RocR2, respectively. Significant KRAS amplification was observed in the osimertinib-resistant cell lines, indicating a linear and reversible increase with increased osimertinib concentrations in OsiR1 and OsiR2 cells. OsiR1 cells maintained osimertinib resistance with KRAS amplification after osimertinib withdrawal for 2 months. OsiR2 cells exhibited KRAS attenuation, and osimertinib sensitivity was entirely recovered. Phospho-EGFR (Y1068) and growth factor receptor-bound protein 2 (GRB2)/son of sevenless homolog 1 (SOS1) complex was found to mediate osimertinib resistance in OsiR1 cells with sustained KRAS activation. After 2 months of osimertinib withdrawal, this complex was dissociated, and the EGFR signal, but not the GRB2/SOS1 signal, was activated. Concomitant inhibition of MAPK kinase and EGFR could overcome osimertinib resistance. Thus, we identified a heterogeneous acquired resistance mechanism for third-generation EGFR TKIs, providing insights into the development of novel treatment strategies.
Collapse
Affiliation(s)
- Kaori Nakatani
- Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute (formerly, Institute of Molecular Oncology), Tokyo, Japan.
| | - Motoi Ohba
- Advanced Cancer Translational Research Institute (formerly, Institute of Molecular Oncology), Tokyo, Japan
| | - Ken-Ichi Fujita
- Advanced Cancer Translational Research Institute (formerly, Institute of Molecular Oncology), Tokyo, Japan
| | - Satoru Arata
- Advanced Cancer Translational Research Institute (formerly, Institute of Molecular Oncology), Tokyo, Japan.,Center for Biotechnology, Showa University, Tokyo, Japan
| | - Sojiro Kusumoto
- Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Iori Taki-Takemoto
- Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Daisuke Kamei
- Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Shinichi Iwai
- Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute (formerly, Institute of Molecular Oncology), Tokyo, Japan
| | - Tohru Ohmori
- Advanced Cancer Translational Research Institute (formerly, Institute of Molecular Oncology), Tokyo, Japan.,Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Fischer U, Kim E, Keller A, Meese E. Specific amplifications and copy number decreases during human neural stem cells differentiation towards astrocytes, neurons and oligodendrocytes. Oncotarget 2018; 8:25872-25884. [PMID: 28415661 PMCID: PMC5432223 DOI: 10.18632/oncotarget.15980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
There is growing evidence that gene amplifications are an attribute of normal cells during development and differentiation. During neural progenitor cell differentiation half of the genome is involved in amplification process. To answer the question how specific amplifications occur at different stages and in different lineages of differentiation we analyzed the genes CDK4, MDM2, EGFR, GINS2, GFAP, TP53, DDB1 and MDM4 in human neural stem cells that were induced to differentiate towards astrocytes, neurons and oligodendrocytes. We found specific amplification pattern for each of the eight analyzed genes both in undifferentiated neural stem and progenitor cells and in cells that were induced for differentiation. Different amplification patterns were also found between adherently grown neural stem cells and cells that were grown as spheres. The most frequently amplified genes were MDM2 and CDK4 with the latter amplified in all three lineages at all analyzed stages. Amplification of the analyzed genes was also found in four glioma stem-like cells. The combined amplification data of stem cells and of tumor stem cells can help to define cell populations at the origin of the tumor. Furthermore, we detected a decrease of gene copies at specific differentiation stages most frequently for MDM4. This study shows specific amplification pattern in defined stem cell populations within specific time windows during differentiation processes indicating that amplifications occur in an orderly sequence during the differentiation of human neural stem and progenitor cells.
Collapse
Affiliation(s)
- Ulrike Fischer
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Ella Kim
- Translational Neurooncology Research Group, Johannes Gutenberg University, Mainz, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
13
|
MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. Leukemia 2018; 32:2152-2166. [PMID: 29467491 PMCID: PMC6170393 DOI: 10.1038/s41375-018-0033-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023]
Abstract
Double minutes (dmin), homogeneously staining regions, and ring chromosomes are vehicles of gene amplification in cancer. The underlying mechanism leading to their formation as well as their structure and function in acute myeloid leukemia (AML) remain mysterious. We combined a range of high-resolution genomic methods to investigate the architecture and expression pattern of amplicons involving chromosome band 8q24 in 23 cases of AML (AML-amp). This revealed that different MYC-dmin architectures can coexist within the same leukemic cell population, indicating a step-wise evolution rather than a single event origin, such as through chromothripsis. This was supported also by the analysis of the chromothripsis criteria, that poorly matched the model in our samples. Furthermore, we found that dmin could evolve toward ring chromosomes stabilized by neocentromeres. Surprisingly, amplified genes (mainly PVT1) frequently participated in fusion transcripts lacking a corresponding DNA template. We also detected a significant overexpression of the circular RNA of PVT1 (circPVT1) in AML-amp cases versus AML with a normal karyotype. Our results show that 8q24 amplicons in AML are surprisingly plastic DNA structures with an unexpected association to novel fusion transcripts and circular RNAs.
Collapse
|
14
|
Bagci O, Kurtgöz S. Amplification of Cellular Oncogenes in Solid Tumors. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:341-6. [PMID: 26417556 PMCID: PMC4561439 DOI: 10.4103/1947-2714.163641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The term gene amplification refers to an increase in copy number of a gene. Upregulation of gene expression through amplification is a general mechanism to increase gene dosage. Oncogene amplifications have been shown in solid human cancers and they are often associated with progression of cancer. Defining oncogene amplification is useful since it is used as a prognostic marker in clinical oncology nowadays, especially v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2) targeted agents are used in breast cancer patients with high level of HER2 overexpression as a therapeutic approach. However, patients without HER2 overexpression do not appear to benefit from these agents. We concluded that determination of oncogene amplification in solid tumors is an important factor in treatment of human cancers with many unknowns. We have referred to PubMed and some databases to prepare this article.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Genetics, Suleyman Demirel University, School of Medicine, Isparta, Turkey
| | - Serkan Kurtgöz
- Department of Medical Genetics, Suleyman Demirel University, School of Medicine, Isparta, Turkey
| |
Collapse
|
15
|
Rao PH, Zhao S, Zhao YJ, Yu A, Rainusso N, Trucco M, Allen-Rhoades W, Satterfield L, Fuja D, Borra VJ, Man TK, Donehower LA, Yustein JT. Coamplification ofMyc/Pvt1and homozygous deletion ofNlrp1locus are frequent genetics changes in mouse osteosarcoma. Genes Chromosomes Cancer 2015; 54:796-808. [DOI: 10.1002/gcc.22291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/19/2015] [Accepted: 07/29/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Pulivarthi H. Rao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Shuying Zhao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Yi-Jue Zhao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Alexander Yu
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Nino Rainusso
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Matteo Trucco
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Wendy Allen-Rhoades
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Laura Satterfield
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| | - Daniel Fuja
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| | - Vishnupriya J. Borra
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Tsz-Kwong Man
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Lawrence A. Donehower
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
- Department of Molecular & Cellular Biology; Baylor College of Medicine; Houston TX 77030
- Department of Molecular Virology & Microbiology; Baylor College of Medicine; Houston TX 77030
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| | - Jason T. Yustein
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
- Department of Molecular & Cellular Biology; Baylor College of Medicine; Houston TX 77030
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| |
Collapse
|
16
|
Tang G, DiNardo C, Zhang L, Ravandi F, Khoury JD, Huh YO, Muzzafar T, Medeiros LJ, Wang SA, Bueso-Ramos CE. MLL gene amplification in acute myeloid leukemia and myelodysplastic syndromes is associated with characteristic clinicopathological findings and TP53 gene mutation. Hum Pathol 2015; 46:65-73. [PMID: 25387813 DOI: 10.1016/j.humpath.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 02/03/2023]
Abstract
MLL gene rearrangements are well-recognized aberrations in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). In contrast, MLL gene amplification in AML/MDS remains poorly characterized. Here, we report a series of 21 patients with myeloid neoplasms associated with MLL gene amplification from 1 institution. This series included 13 men and 8 women, with a median age of 64 years. Eleven patients presented as AML with myelodysplasia-related changes, 6 as therapy-related AML, and 4 as therapy-related MDS. All patients had a highly complex karyotype, including frequent -5/del(5q), -18, and -17/del(17p) abnormalities; 16 patients were hypodiploid. TP53 mutations were detected in all 12 patients tested, and 3 patients showed TP53 mutation before MLL amplification. Morphologically, the leukemic cells frequently showed cytoplasmic vacuoles, bilobed nuclei, and were associated with background dyspoiesis. Immunophenotypically, 15 patients had a myeloid and 4 had myelomonocytic immunophenotype. Laboratory coagulopathies were common; 7 patients developed disseminated intravascular coagulopathy, and 3 died of intracranial bleeding. All patients were refractory to therapy; the median overall survival was 1 month, after MLL gene amplification was detected. We concluded that AML/MDS with MLL gene amplification is likely a subset of therapy-related AML/MDS or AML with myelodysplasia-related changes, associated with distinct clinicopathological features, frequent disseminated intravascular coagulopathy, a highly complex karyotype, TP53 deletion/mutation, and an aggressive clinical course.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liping Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang O Huh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tariq Muzzafar
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Thorenoor N, Slaby O. Small nucleolar RNAs functioning and potential roles in cancer. Tumour Biol 2014; 36:41-53. [DOI: 10.1007/s13277-014-2818-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022] Open
|
18
|
Ricciuti B, Mecca C, Crinò L, Baglivo S, Cenci M, Metro G. Non-coding RNAs in lung cancer. Oncoscience 2014; 1:674-705. [PMID: 25593996 PMCID: PMC4278269 DOI: 10.18632/oncoscience.98] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/15/2014] [Indexed: 12/14/2022] Open
Abstract
The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | | | - Lucio Crinò
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Sara Baglivo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Matteo Cenci
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
19
|
Guimier A, Ferrand S, Pierron G, Couturier J, Janoueix-Lerosey I, Combaret V, Mosseri V, Thebaud E, Gambart M, Plantaz D, Marabelle A, Coze C, Rialland X, Fasola S, Lapouble E, Fréneaux P, Peuchmaur M, Michon J, Delattre O, Schleiermacher G. Clinical characteristics and outcome of patients with neuroblastoma presenting genomic amplification of loci other than MYCN. PLoS One 2014; 9:e101990. [PMID: 25013904 PMCID: PMC4094484 DOI: 10.1371/journal.pone.0101990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/13/2014] [Indexed: 01/01/2023] Open
Abstract
Background Somatically acquired genomic alterations with MYCN amplification (MNA) are key features of neuroblastoma (NB), the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s) distinct from MYCN. Methods Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. Results In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8) presented regional amplification(s) without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases). This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26) had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22). Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05). Conclusion NBs harbouring regional amplification(s) without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy.
Collapse
Affiliation(s)
- Anne Guimier
- Institut Curie, Département de Pédiatrie, Paris, France
| | | | - Gaëlle Pierron
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | | | | | - Valérie Combaret
- Centre Léon Bérard, Laboratoire de recherche translationnelle, Lyon, France
| | | | - Estelle Thebaud
- CHU Nantes, Service d'Hémato-Oncologie Pédiatrique, Nantes, France
| | - Marion Gambart
- CHU Toulouse, Service d'Hémato-Oncologie Pédiatrique, Toulouse, France
| | - Dominique Plantaz
- CHU Grenoble, Service d'Hémato-Oncologie Pédiatrique, Grenoble, France
| | - Aurélien Marabelle
- Institut d'Hématologie et d'Oncologie Pédiatrique, Centre de Lutte contre le Cancer Léon Bérard, Lyon, France
| | - Carole Coze
- Aix-Marseille Univ et APHM, Hôpital d'Enfants de La Timone, Service d'Hématologie-Oncologie Pédiatrique, Marseille, France
| | - Xavier Rialland
- CHU Angers, Service d'Hémato-Oncologie Pédiatrique, Angers, France
| | - Sylvie Fasola
- Hôpital Trousseau, Service d'Hémato-Oncologie Pédiatrique, Paris, France
| | - Eve Lapouble
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Paul Fréneaux
- Institut Curie, Laboratoire d'anatomie pathologique, Paris, France
| | - Michel Peuchmaur
- APHP, hôpital Universitaire Robert Debré, Service de Pathologie, Paris, France, et Université Diderot Paris 7, Sorbonne Paris Cité, Paris, France
| | - Jean Michon
- Institut Curie, Département de Pédiatrie, Paris, France
| | - Olivier Delattre
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- Institut Curie, Département de Pédiatrie, Paris, France
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Nord KH, Macchia G, Tayebwa J, Nilsson J, Vult von Steyern F, Brosjö O, Mandahl N, Mertens F. Integrative genome and transcriptome analyses reveal two distinct types of ring chromosome in soft tissue sarcomas. Hum Mol Genet 2013; 23:878-88. [PMID: 24070870 DOI: 10.1093/hmg/ddt479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene amplification is a common phenomenon in malignant neoplasms of all types. One mechanism behind increased gene copy number is the formation of ring chromosomes. Such structures are mitotically unstable and during tumor progression they accumulate material from many different parts of the genome. Hence, their content varies considerably between and within tumors. Partly due to this extensive variation, the genetic content of many ring-containing tumors remains poorly characterized. Ring chromosomes are particularly prevalent in specific subtypes of sarcoma. Here, we have combined fluorescence in situ hybridization (FISH), global genomic copy number and gene expression data on ring-containing soft tissue sarcomas and show that they harbor two fundamentally different types of ring chromosome: MDM2-positive and MDM2-negative rings. While the former are often found in an otherwise normal chromosome complement, the latter seem to arise in the context of general chromosomal instability. In line with this, sarcomas with MDM2-negative rings commonly show complete loss of either CDKN2A or RB1 -both known to be important for genome integrity. Sarcomas with MDM2-positive rings instead show co-amplification of a variety of potential driver oncogenes. More than 100 different genes were found to be involved, many of which are known to induce cell growth, promote proliferation or inhibit apoptosis. Several of the amplified and overexpressed genes constitute potential drug targets.
Collapse
Affiliation(s)
- Karolin H Nord
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Amplification and deletion of the RAPH1 gene in breast cancer patients. Mol Biol Rep 2013; 40:6613-7. [PMID: 24057252 DOI: 10.1007/s11033-013-2774-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Lamellipodin protein (Lpd), encoded by the RAPH1 gene, modulates the assembly of actin cytoskeleton through its binding to the Ena/VASPs proteins, and acts in cellular motility and lamelipodial protrusion. The region where RAPH1 gene is located (2q33) is deleted in various types of cancer and the gene expression changes in tumors when compared to normal tissues. Amplifications and deletions of the RAPH1 gene were investigated in breast carcinoma samples, in order to determine the possible relationship of the gene with breast cancer tumorigenesis and lymph node metastasis. RAPH1 gene alterations were determined by relative quantification, standard curve method using Real-time PCR technique in samples of tumor and peripheral blood from 52 patients. Regression and correlation analyses were conducted using gene alterations and clinicopathological data. All samples analyzed were altered, with 63.5 % deletion cases and 36.5 % amplification cases. The logistic regression and correlation analysis with clinicopathological data did not show significant results. The results suggest that although the RAPH1 gene was deleted or amplified in all samples, the Lpd does not seem to play a major role in tumorigenesis of mammary carcinomas and probably other proteins, also involved in the process of cellular motility and metastasis, are acting more effectively for or against the migration of breast tumor cells.
Collapse
|
22
|
Hsu PY, Hsu HK, Lan X, Juan L, Yan PS, Labanowska J, Heerema N, Hsiao TH, Chiu YC, Chen Y, Liu Y, Li L, Li R, Thompson IM, Nephew KP, Sharp ZD, Kirma NB, Jin VX, Huang THM. Amplification of distant estrogen response elements deregulates target genes associated with tamoxifen resistance in breast cancer. Cancer Cell 2013; 24:197-212. [PMID: 23948299 PMCID: PMC3890247 DOI: 10.1016/j.ccr.2013.07.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 01/18/2023]
Abstract
A causal role of gene amplification in tumorigenesis is well known, whereas amplification of DNA regulatory elements as an oncogenic driver remains unclear. In this study, we integrated next-generation sequencing approaches to map distant estrogen response elements (DEREs) that remotely control the transcription of target genes through chromatin proximity. Two densely mapped DERE regions located on chromosomes 17q23 and 20q13 were frequently amplified in estrogen receptor-α-positive luminal breast cancer. These aberrantly amplified DEREs deregulated target gene expression potentially linked to cancer development and tamoxifen resistance. Progressive accumulation of DERE copies was observed in normal breast progenitor cells chronically exposed to estrogenic chemicals. These findings may extend to other DNA regulatory elements, the amplification of which can profoundly alter target transcriptome during tumorigenesis.
Collapse
Affiliation(s)
- Pei-Yin Hsu
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Hang-Kai Hsu
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Xun Lan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Liran Juan
- Center of Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pearlly S. Yan
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Jadwiga Labanowska
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Nyla Heerema
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Hung Hsiao
- Department of Greehey Children’s Cancer Research Institute, Cancer Therapy & Research Center, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Yu-Chiao Chiu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at San Antonio, TX 78245, USA
- Department of Greehey Children’s Cancer Research Institute, Cancer Therapy & Research Center, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Yunlong Liu
- Center of Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lang Li
- Center of Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rong Li
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Ian M. Thompson
- Department of Urology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Zelton D. Sharp
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Nameer B. Kirma
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Victor X. Jin
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Tim H.-M. Huang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, TX 78245, USA
- Correspondence: (T.H.-M.H.)
| |
Collapse
|
23
|
Liu S, Im H, Bairoch A, Cristofanilli M, Chen R, Deutsch EW, Dalton S, Fenyo D, Fanayan S, Gates C, Gaudet P, Hincapie M, Hanash S, Kim H, Jeong SK, Lundberg E, Mias G, Menon R, Mu Z, Nice E, Paik YK, Uhlen M, Wells L, Wu SL, Yan F, Zhang F, Zhang Y, Snyder M, Omenn GS, Beavis RC, Hancock WS. A chromosome-centric human proteome project (C-HPP) to characterize the sets of proteins encoded in chromosome 17. J Proteome Res 2012; 12:45-57. [PMID: 23259914 DOI: 10.1021/pr300985j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the chromosome. Since chromosome 17 is rich in cancer-associated genes, we have focused the clustering of cancer-associated genes in such genomic regions and have used the ERBB2 amplicon as an example of the value of a proteogenomic approach in which one integrates transcriptomic with proteomic information and captures evidence of coexpression through coordinated regulation.
Collapse
Affiliation(s)
- Suli Liu
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Marotta M, Chen X, Inoshita A, Stephens R, Budd GT, Crowe JP, Lyons J, Kondratova A, Tubbs R, Tanaka H. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications. Breast Cancer Res 2012. [PMID: 23181561 PMCID: PMC4053137 DOI: 10.1186/bcr3362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Segmental duplications (low-copy repeats) are the recently duplicated genomic segments in the human genome that display nearly identical (> 90%) sequences and account for about 5% of euchromatic regions. In germline, duplicated segments mediate nonallelic homologous recombination and thus cause both non-disease-causing copy-number variants and genomic disorders. To what extent duplicated segments play a role in somatic DNA rearrangements in cancer remains elusive. Duplicated segments often cluster and form genomic blocks enriched with both direct and inverted repeats (complex genomic regions). Such complex regions could be fragile and play a mechanistic role in the amplification of the ERBB2 gene in breast tumors, because repeated sequences are known to initiate gene amplification in model systems. Methods We conducted polymerase chain reaction (PCR)-based assays for primary breast tumors and analyzed publically available array-comparative genomic hybridization data to map a common copy-number breakpoint in ERBB2-amplified primary breast tumors. We further used molecular, bioinformatics, and population-genetics approaches to define duplication contents, structural variants, and haplotypes within the common breakpoint. Results We found a large (> 300-kb) block of duplicated segments that was colocalized with a common-copy number breakpoint for ERBB2 amplification. The breakpoint that potentially initiated ERBB2 amplification localized in a region 1.5 megabases (Mb) on the telomeric side of ERBB2. The region is very complex, with extensive duplications of KRTAP genes, structural variants, and, as a result, a paucity of single-nucleotide polymorphism (SNP) markers. Duplicated segments are varied in size and degree of sequence homology, indicating that duplications have occurred recurrently during genome evolution. Conclusions Amplification of the ERBB2 gene in breast tumors is potentially initiated by a complex region that has unusual genomic features and thus requires rigorous, labor-intensive investigation. The haplotypes we provide could be useful to identify the potential association between the complex region and ERBB2 amplification.
Collapse
|
25
|
Liu YY, Chen HY, Zhang ML, Tian D, Li S, Lee JY. Loss of fragile histidine triad and amplification of 1p36.22 and 11p15.5 in primary gastric adenocarcinomas. World J Gastroenterol 2012; 18:4522-32. [PMID: 22969225 PMCID: PMC3435777 DOI: 10.3748/wjg.v18.i33.4522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/01/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the genomic copy number alterations that may harbor key driver genes in gastric tumorigenesis.
METHODS: Using high-resolution array comparative genomic hybridization (CGH), we investigated the genomic alterations of 20 advanced primary gastric adenocarcinomas (seventeen tubular and three mucinous) of Chinese patients from the Jilin province. Ten matching adjacent normal regions from the same patients were also studied.
RESULTS: The most frequent imbalances detected in these cancer samples were gains of 3q26.31-q27.2, 5p, 8q, 11p, 18p, 19q and 20q and losses of 3p, 4p, 18q and 21q. The use of high-resolution array CGH increased the resolution and sensitivity of the observed genomic changes and identified focal genetic imbalances, which included 54 gains and 16 losses that were smaller than 1 Mb in size. The most interesting focal imbalances were the intergenic loss/homozygous deletion of the fragile histidine triad gene and the amplicons 11q13, 18q11.2 and 19q12, as well as the novel amplicons 1p36.22 and 11p15.5.
CONCLUSION: These regions, especially the focal amplicons, may harbor key driver genes that will serve as biomarkers for either the diagnosis or the prognosis of gastric cancer, and therefore, a large-scale investigation is recommended.
Collapse
|
26
|
Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:121-8. [PMID: 22498252 PMCID: PMC3842010 DOI: 10.1016/j.bbcan.2012.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs (ncRNAs) are important regulatory molecules involved in various physiological and cellular processes. Alterations of ncRNAs, particularly microRNAs, play crucial roles in tumorigenesis. Accumulating evidence indicates that small nucleolar RNAs (snoRNAs), another large class of small ncRNAs, are gaining prominence and more actively involved in carcinogenesis than previously thought. Some snoRNAs exhibit differential expression patterns in a variety of human cancers and demonstrate capability to affect cell transformation, tumorigenesis, and metastasis. We are beginning to comprehend the functional repercussions of snoRNAs in the development and progression of malignancy. In this review, we will describe current studies that have shed new light on the functions of snoRNAs in carcinogenesis and the potential applications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Kaiissar Mannoor
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| | - Jipei Liao
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| |
Collapse
|
27
|
Lo FY, Chen HT, Cheng HC, Hsu HS, Wang YC. Overexpression of PAFAH1B1 is associated with tumor metastasis and poor survival in non-small cell lung cancer. Lung Cancer 2012; 77:585-92. [PMID: 22749159 DOI: 10.1016/j.lungcan.2012.05.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/11/2012] [Accepted: 05/25/2012] [Indexed: 11/15/2022]
Abstract
Our previous array-comparative genomic hybridization study showed that PAFAH1B1 gene locus was amplified in lung cancer patients, suggesting that PAFAH1B1 is a potential oncogene in lung cancer. Here, we investigate the oncogenic mechanisms of PAFAH1B1 in lung cancer. PAFAH1B1 was characterized in cell and animal models of lung cancer by in vitro migration and invasion assays and in vivo metastasis studies. The mRNA and protein expression levels of PAFAH1B1 were further determined and the prognostic effects of PAFAH1B1 overexpression in lung cancer patients were analyzed. Overexpression of PAFAH1B1 enhanced migration and invasion in lung cancer cells, whereas knockdown of PAFAH1B1 decreased cell migration and invasion, and disrupted cell microtubule organization and pericellular poly-fibronectin assemblies. In vivo tumor metastasis assay confirmed that PAFAH1B1 knockdown in lung cancer cells markedly reduced their metastasis capabilities in animals. The frequencies of overexpressed PAFAH1B1 mRNA and protein were 62.4% (63/101) and 57.4% (58/101) in lung cancer patients, respectively. The clinical correlation results showed that overexpression of PAFAH1B1 was significantly associated with late stage (mRNA: P=0.008, protein: P=0.008) and poor survival in lung adenocarcinoma (P=0.020) and male patients (P=0.049). Our results provide the first evidence that PAFAH1B1 overexpression contributes to lung tumorigenesis and poor prognosis. These effects are partly mediated through disruption of microtubule network and pericellular poly-fibronectin assembly to promote migration and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Fang-Yi Lo
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Yeasmin S, Nakayama K, Rahman MT, Rahman M, Ishikawa M, Katagiri A, Iida K, Nakayama N, Otuski Y, Kobayashi H, Nakayama S, Miyazaki K. Biological and clinical significance of NAC1 expression in cervical carcinomas: a comparative study between squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas. Hum Pathol 2011; 43:506-19. [PMID: 21889186 DOI: 10.1016/j.humpath.2011.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 11/28/2022]
Abstract
This study examined the biological and clinical significance of NAC1 (nucleus accumbens associated 1) expression in both cervical squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas. Using immunohistochemistry, the frequency of positive NAC1 expression in adenocarcinomas/adenosquamous carcinomas (31.0%; 18/58) was significantly higher than that in squamous cell carcinomas (16.2%; 12/74) (P = .043). NAC1 gene amplification was identified by fluorescence in situ hybridization in 5 (7.2%) of 69 squamous cell carcinomas. NAC1 amplification was not identified in the adenocarcinomas (0%; 0/58). Positive NAC1 expression was significantly correlated with shorter overall survival in squamous cell carcinomas (P < .0001). A multivariate analysis showed that positive NAC1 expression in squamous cell carcinomas was an independent prognostic factor for overall survival after standard radiotherapy (P = .0003). In contrast to squamous cell carcinomas, positive NAC1 expression did not correlate with shorter overall survival in adenocarcinomas/adenosquamous carcinomas (P = .317). Profound growth inhibition, increased apoptosis, decreased cell proliferation, and decreased cell migration and invasion were observed in silencing RNA-treated cancer cells with NAC1 overexpression compared with cancer cells without NAC1 expression. NAC1 overexpression stimulated proliferation, migration, and invasion in the cervical cancer cell lines TCS and Hela P3, which normally lack NAC1 expression. These findings indicate that NAC1 overexpression is critical to the growth and survival of cervical carcinomas irrespective of histologic type. Furthermore, they suggest that NAC1 silencing RNA-induced phenotypes depend on the expression status of the targeted cell line. Therefore, cervical carcinoma patients with NAC1 expression may benefit from a targeted therapy irrespective of histologic type.
Collapse
Affiliation(s)
- Shamima Yeasmin
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Shimane 6938501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Iida K, Nakayama K, Rahman MT, Rahman M, Ishikawa M, Katagiri A, Yeasmin S, Otsuki Y, Kobayashi H, Nakayama S, Miyazaki K. EGFR gene amplification is related to adverse clinical outcomes in cervical squamous cell carcinoma, making the EGFR pathway a novel therapeutic target. Br J Cancer 2011; 105:420-7. [PMID: 21730982 PMCID: PMC3172895 DOI: 10.1038/bjc.2011.222] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: The aim of this study was to investigate the patterns of epidermal growth factor receptor (EGFR) overexpression, EGFR gene amplification, and the presence of activating mutations in the tyrosine kinase domain of this gene in squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas of the uterine cervix. Methods: The EGFR expression, amplification, and mutation in cervical carcinomas were assessed by immunohistochemistry, fluorescence in situ hybridisation, and PCR–SSCP, respectively, and correlated with clinical data collected by a retrospective chart review. A functional assessment was performed by inactivating EGFR in cervical cancer cells with the potent inhibitor AG1478. Results: Immunohistochemical analysis revealed that 6 out of 59 (10.2%) cervical squamous cell carcinomas showed significant amplification of the EGFR locus, whereas none of the 52 adeno/adenosquamous cell carcinomas had detectable EGFR amplification (P<0.05). The EGFR amplification significantly correlated with shorter overall survival (P=0.001) in cervical squamous cell carcinomas. Multivariate analysis showed that EGFR gene amplification was an independent prognostic factor for overall survival (P=0.011). None of the squamous cell carcinomas (0%: 0 out of 32) had detectable oncogenic mutations in EGFR exons 18 through 21. The frequencies of KRAS and BRAF mutations were very low in both squamous and adeno/adenosquamous cell carcinomas. Sensitivity of cervical cancer cells to AG1478 depended on the presence of EGFR overexpression. AG1478-induced EGFR inactivation in cell lines with EGFR overexpression significantly suppressed tumour development and progression in a mouse xenograft model. Conclusion: Our data suggest that EGFR signalling is important in a subset of cervical squamous cell carcinomas and that anti-EGFR therapy may benefit patients who carry the 7p11.2 amplicon in their tumours.
Collapse
Affiliation(s)
- K Iida
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Enyacho 89-1, Izumo, Shimane 6938501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tang C, Schafranek L, Watkins DB, Parker WT, Moore S, Prime JA, White DL, Hughes TP. Tyrosine kinase inhibitor resistance in chronic myeloid leukemia cell lines: investigating resistance pathways. Leuk Lymphoma 2011; 52:2139-47. [DOI: 10.3109/10428194.2011.591013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Xavier FCA, Rodini CO, Paiva KBS, Destro MFSS, Severino P, Moyses RA, Tajara EH, Nunes FD. ORAOV1 is amplified in oral squamous cell carcinoma. J Oral Pathol Med 2011; 41:54-60. [PMID: 21623924 DOI: 10.1111/j.1600-0714.2011.01053.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Oral cancer overexpressed 1 (ORAOV1) was found as a candidate oncogene in the 11q13 chromosomal region, based on its amplification and overexpression in oral cancer cell lines. Because gene amplification often leads to increased levels of gene expression, we aimed to verify the relationship between ORAOV1 gene status and mRNA expression primarily in oral squamous cell carcinoma (OSCC) by quantitative assay, correlating with clinical and pathological characteristics in patients. METHODS Levels of ORAOV1 amplification and expression were evaluated by qPCR and RT-qPCR in OSCC cell lines and in tumor and non-tumoral surgical margins from 33 patients with OSCC. All subjects were smokers and habitual alcohol drinkers, mostly men above 40 years of age and with a single primary tumor. RESULTS ORAOV1 exhibited increased gene expression levels as well as higher copy number in three OSCC cell lines with 11q13 amplified chromosomal region when compared with the OSCC cell line without the amplification (one-way ANOVA, P < 0.05). Weak correlation between ORAOV1 mRNA levels and DNA copy number was seen in tumor samples (Spearman, P = 0.07). Although ORAOV1 was amplified in tumor (Wilcoxon, P < 0.01), high levels of transcripts in margin did not reveal differences in comparison with tumor (Wilcoxon, P = 0.85). Aggressiveness and survival rate did not demonstrate statistical difference for both events in OSCC. CONCLUSION The overexpression of ORAOV1 in non-tumoral margin samples can occur in the absence of amplification. The weak correlation between ORAOV1 amplification and expression in OSSC suggests that ORAOV1 expression can be regulated by mechanisms other than gene amplification.
Collapse
Affiliation(s)
- Flávia Caló Aquino Xavier
- Departmento de Patologia Bucal, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Subtelomeric regions in mammalian cells are deficient in DNA double-strand break repair. DNA Repair (Amst) 2011; 10:536-44. [PMID: 21466975 DOI: 10.1016/j.dnarep.2011.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites. We observed no difference in the frequency of small deletions or HRR at interstitial and subtelomeric DSBs. However, the frequency of NHEJ was significantly lower at DSBs near telomeres compared to interstitial sites. The frequency of NHEJ was also lower at DSBs occurring at interstitial sites containing telomeric repeat sequences. We propose that regions near telomeres are deficient in classical NHEJ as a result of the presence of cis-acting telomere-binding proteins that cause DSBs to be processed as though they were telomeres, resulting in excessive resection, telomere loss, and eventual chromosome rearrangements by alternative NHEJ.
Collapse
|
33
|
Berger AH, Pandolfi PP. Haplo-insufficiency: a driving force in cancer. J Pathol 2010; 223:137-46. [PMID: 21125671 DOI: 10.1002/path.2800] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 01/10/2023]
Abstract
It was originally proposed that tumour suppressor genes (TSGs) act in a recessive manner. Instead, numerous TSGs, including p53 and PTEN, exhibit haplo-insufficiency as a consequence of the dose-dependency of TSG function. Due to the challenges of identifying haplo-insufficient TSGs by human genetics analysis alone, mouse models play a pivotal role in firmly establishing the haplo-insufficiency of a gene, as in the recent identification of DOK2 as a haplo-insufficient lung TSG. In many cases, TSGs exhibit conditional or compound haplo-insufficiency, in which loss of one TSG allele is functionally important only in certain settings or after compound loss of other genes. The 5q deletion syndrome (5q(-) ) is a paradigm of compound haplo-insufficiency and demonstrates the importance of combinatorial interactions to elicit specific phenotypes. These concepts must be integrated into basic science studies to avoid delay in the identification of important TSGs. In the clinical realm, the challenges for molecular pathologists are the development of quantitative measures that can accurately and systematically ascertain the status of haplo-insufficient genes in tumour biopsies, and the use of this information to accurately predict prognosis and response to therapy.
Collapse
Affiliation(s)
- Alice H Berger
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
34
|
Santarius T, Bignell GR, Greenman CD, Widaa S, Chen L, Mahoney CL, Butler A, Edkins S, Waris S, Thornalley PJ, Futreal PA, Stratton MR. GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer 2010; 49:711-25. [PMID: 20544845 PMCID: PMC3398139 DOI: 10.1002/gcc.20784] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To identify a novel amplified cancer gene a systematic screen of 975 human cancer DNA samples, 750 cell lines and 225 primary tumors, using the Affymetrix 10K SNP microarray was undertaken. The screen identified 193 amplicons. A previously uncharacterized amplicon located on 6p21.2 whose 1 Mb minimal common amplified region contained eight genes (GLO1, DNAH8, GLP1R, C6orf64, KCNK5, KCNK17, KCNK16, and C6orf102) was further investigated to determine which gene(s) are the biological targets of this amplicon. Real time quantitative PCR (qPCR) analysis of all amplicon 6p21.2 genes in 618 human cancer cell lines identified GLO1, encoding glyoxalase 1, to be the most frequently amplified gene [twofold or greater amplification in 8.4% (49/536) of cancers]. Also the association between amplification and overexpression was greatest for GLO1. RNAi knockdown of GLO1 had the greatest and most consistent impact on cell accumulation and apoptosis. Cell lines with GLO1 amplification were more sensitive to inhibition of GLO1 by bromobenzylglutathione cyclopentyl diester (BBGC). Subsequent qPCR of 520 primary tumor samples identified twofold and greater amplification of GLO1 in 8/37 (22%) of breast, 12/71 (17%) of sarcomas, 6/53 (11.3%) of nonsmall cell lung, 2/23 (8.7%) of bladder, 6/93 (6.5%) of renal and 5/83 (6%) of gastric cancers. Amplification of GLO1 was rare in colon cancer (1/35) and glioma (1/94). Collectively the results indicate that GLO1 is at least one of the targets of gene amplification on 6p21.2 and may represent a useful target for therapy in cancers with GLO1 amplification.
Collapse
Affiliation(s)
- Thomas Santarius
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, Liu Z, Jiang F. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 2010; 9:198. [PMID: 20663213 PMCID: PMC2919450 DOI: 10.1186/1476-4598-9-198] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/27/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC will improve its outcome. The current techniques for NSCLC early detection are either invasive or have low accuracy. Molecular analyses of clinical specimens present promising diagnostic approaches. Non-coding RNAs (ncRNAs) play an important role in tumorigenesis and could be developed as biomarkers for cancer. Here we aimed to develop small nucleolar RNAs (snoRNAs), a common class of ncRNAs, as biomarkers for NSCLC early detection. The study comprised three phases: (1) profiling snoRNA signatures in 22 NSCLC tissues and matched noncancerous lung tissues by GeneChip Array, (2) validating expressions of the signatures by RT-qPCR in the tissues, and (3) evaluating plasma expressions of the snoRNAs in 37 NSCLC patients, 26 patients with chronic obstructive pulmonary disease (COPD), and 22 healthy subjects. RESULTS In the surgical tissues, six snoRNAs were identified, which were overexpressed in all tumour tissues compared with their normal counterparts. The overexpressions of the genes in tumors were confirmed by RT-qPCR. The snoRNAs were stably present and reliably detectable in plasma. Of the six genes, three (SNORD33, SNORD66 and SNORD76) displayed higher plasma expressions in NSCLC patients compared with the cancer-free individuals (All < 0.01). The use of the three genes produced 81.1% sensitivity and 95.8% specificity in distinguishing NSCLC patients from both normal and COPD subjects. The plasma snoRNA expressions were not associated with stages and histological types of NSCLC (All > 0.05). CONCLUSIONS The identified snoRNAs provide potential markers for NSCLC early detection.
Collapse
Affiliation(s)
- Jipei Liao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Roy PG, Pratt N, Purdie CA, Baker L, Ashfield A, Quinlan P, Thompson AM. High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer 2010; 127:355-60. [PMID: 19904758 DOI: 10.1002/ijc.25034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CCND1 encodes for the cyclin D1 protein involved in G1/S cell cycle transition. In breast cancer the mechanism of CCND1 amplification, relationship between cyclin D1 protein expression and the key clinical markers estrogen receptor (ER) and HER2 requires elucidation. Tissue microarrays of primary invasive breast cancer from 93 women were evaluated for CCND1 amplification by fluorescent in-situ hybridization and cyclin D1 protein overexpression by immunohistochemistry. CCND1 amplification was identified in 27/93 (30%) cancers and 59/93 (63%) cancers had overexpression of cyclin D1. CCND1 amplification was significantly associated with cyclin D1 protein overexpression (p < 0.001; Fisher's exact test) and both CCND1 amplification and cyclin D1 protein expression with oestrogen receptor (ER) expression (p = 0.003 and p < 0.001; Fishers exact test). Neither CCND1 amplification nor cyclinD1 expression was associated with tumor size, pathological node status or HER2 amplification, but high CCND1 amplification (Copy Number Gain (CNG) > or = 8) was associated with high tumor grade (p = 0.005; chi square 7.915, 2 df) and worse prognosis by Nottingham Prognostic Index (p = 0.001; 2 sample t-test). High CCND1 amplification (CNG > or = 8) may identify a subset of patients with poor prognosis ER-positive breast cancers who should be considered for additional therapy.
Collapse
Affiliation(s)
- Pankaj G Roy
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Šárová I, Březinová J, Zemanová Z, Izáková S, Lizcová L, Malinová E, Berková A, Čermák J, Maaloufová J, Nováková L, Michalová K. Cytogenetic manifestation of chromosome 11 duplication/amplification in acute myeloid leukemia. ACTA ACUST UNITED AC 2010; 199:121-7. [DOI: 10.1016/j.cancergencyto.2010.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/12/2010] [Accepted: 02/08/2010] [Indexed: 01/19/2023]
|
38
|
Yeasmin S, Nakayama K, Rahman MT, Rahman M, Ishikawa M, Iida K, Otsuki Y, Kobayashi H, Nakayama S, Miyazaki K. Expression of nuclear Notch3 in cervical squamous cell carcinomas and its association with adverse clinical outcomes. Gynecol Oncol 2010; 117:409-16. [PMID: 20359736 DOI: 10.1016/j.ygyno.2010.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/04/2010] [Accepted: 03/06/2010] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The aim of this study was to clarify the functional role of Notch3 in human cervical carcinomas. METHODS Notch3 expression in cervical cancer was assessed by immunohistochemistry, and data on clinical variables were collected by retrospective chart review. We used dual-color fluorescence in situ hybridization (FISH) to analyze DNA copy number alterations in cervical cancer. Inactivation of Notch3 and knocking down Notch3 gene were done using gamma-secretase inhibitor and Notch 3 specific SiRNA to asses Notch3 function in cervical cancer either in vivo or in vitro. RESULTS Immunohistochemical analysis revealed that Notch3 was significantly overexpressed in cervical squamous cell carcinomas compared with adenocarcinomas. In contrast to normal cervical tissue and cervical intraepithelial neoplasms [CINs], squamous cell carcinomas demonstrated higher nuclear Notch3 immunoreactivity. Notch3 amplification was not found in any cervical carcinomas using FISH analysis. Notch3 nuclear expression was significantly correlated with Jagged-1, a putative Notch3 ligand, and Pbx1b, a potential Notch3 downstream target (P<0.05).Patients with cervical carcinomas positive for nuclear Notch3 expression had significantly shorter overall survival than their peers whose tumors did not express nuclear Notch3. Inactivation of Notch3 decreased cell proliferation and induced apoptosis in ME180 and SKGIIIb cell lines that overexpressed Notch3. Injection of a gamma-secretase inhibitor into ME180 cell tumors established on mice, demonstrated a reduction in tumor growth. CONCLUSION Our findings suggest that Notch3 might play important role for the proliferation and survival of Notch3 overexpressing tumors and that inactivation of Notch3 may represent a new therapeutic avenue for cervical squamous cell carcinomas.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adult
- Aged
- Aged, 80 and over
- Animals
- Calcium-Binding Proteins/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- DNA Copy Number Variations
- DNA-Binding Proteins/metabolism
- Female
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence/methods
- Intercellular Signaling Peptides and Proteins/metabolism
- Jagged-1 Protein
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Pre-B-Cell Leukemia Transcription Factor 1
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Receptor, Notch3
- Receptors, Notch/biosynthesis
- Receptors, Notch/genetics
- Retrospective Studies
- Serrate-Jagged Proteins
- Treatment Outcome
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/metabolism
Collapse
Affiliation(s)
- Shamima Yeasmin
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Shimane, 6938501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lopez-Gines C, Gil-Benso R, Ferrer-Luna R, Benito R, Serna E, Gonzalez-Darder J, Quilis V, Monleon D, Celda B, Cerdá-Nicolas M. New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Mod Pathol 2010; 23:856-65. [PMID: 20305620 DOI: 10.1038/modpathol.2010.62] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene amplification is a process that is characterized by an increase in the copy number of a restricted region in a chromosome arm, and is frequently associated with an overexpression of the corresponding amplified gene. Amplified DNA can be organized either as extrachromosomal elements, repeated units at a single locus or scattered throughout the genome. The amplification of the gene for epidermal growth factor receptor (EGFR) is a common finding in glioblastomas and the amplified gene copies appears as double minutes. The aim of this study was to investigate the different patterns of EGFR amplification in 40 cases of glioblastoma using FISH analysis in metaphases and paraffin sections, and to investigate the relationship of gene copy number with gene expression profile. The analysis of copy number alterations of EGFR was validated by quantitative PCR and SNP microarrays. We observed that in 42% of the cases, the type of amplification of EGFR was as double minute chromosomes. In addition, we detected another type of amplification, with extra copies of EGFR inserted in different loci of chromosome 7, present in 28% of cases. In this form of amplification, the number of copies is small, and the percentage of cells with EGFR amplification is rarely more than 15%. This model of amplification could correspond to a variant of the insertion mechanism, or a consequence of a process of duplication. Our results suggest that this mechanism could represent an early stage of amplification in glioblastomas. Overall, we found a close correlation between EGFR gene copy-number alterations and the level of EGFR protein expression. However, all cases with a high level of mRNA exhibited strong expression for the EGFR protein, and most cases with a low level of mRNA showed no overexpression of EGFR protein.
Collapse
|
40
|
Jeison M, Ash S, Halevy-Berko G, Mardoukh J, Luria D, Avigad S, Feinberg-Gorenshtein G, Goshen Y, Hertzel G, Kapelushnik J, Ben Barak A, Attias D, Steinberg R, Stein J, Stark B, Yaniv I. 2p24 Gain region harboring MYCN gene compared with MYCN amplified and nonamplified neuroblastoma: biological and clinical characteristics. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2616-25. [PMID: 20395439 DOI: 10.2353/ajpath.2010.090624] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although the role of MYCN amplification in neuroblastoma is well established, the biological and clinical characteristics of the 2p gain region harboring the MYCN gene remain unclear. The aim of this study was to compare the biological and clinical characteristics of these tumors with MYCN amplified and nonamplified neuroblastoma and to determine their impact on disease outcome. Samples from 177 patients were analyzed by fluorescence in situ hybridization, including MYCN, 1p, 17q, and 11q regions; 2p gain was identified in 25 patients, MYCN amplification in 31, and no amplification in 121 patients. Patients with 2p gain had a significantly worse 5-year event-free survival rate than patients with no MYCN amplified (P < 0.001), and an intermediate 5-year overall survival rate difference existed between the MYCN amplified tumors (P = 0.025) and nonamplified (P = 0.003) groups. All of the 2p gain samples were associated with segmental and/or numerical alterations in the other tested regions. The presence of segmental alterations with or without MYCN amplification was recently found to be the strongest predictor of relapse in a multivariate analysis. The results of the present study suggest that the determination of MYCN gene copy number relative to chromosome 2, when evaluating MYCN status at diagnosis, may help to reveal the underlying genetic pattern of these tumors and better understand their clinical behavior.
Collapse
Affiliation(s)
- Marta Jeison
- Ca-Cytogenetic Lab, Schneider Children's Medical Center of Israel, Kaplan St. 14, 49202 Petah Tikva, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
da Silva FE, Cordeiro AB, Nagamachi CY, Pieczarka JC, Rens W, Weise A, Liehr T, Mkrtchyan H, Anselmo NP, de Oliveira EHC. A case of aggressive medulloblastoma with multiple recurrent chromosomal alterations. CANCER GENETICS AND CYTOGENETICS 2010; 196:198-200. [PMID: 20082860 DOI: 10.1016/j.cancergencyto.2009.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 05/28/2023]
|
42
|
Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS. A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 2010; 10:59-64. [PMID: 20029424 DOI: 10.1038/nrc2771] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrated genome-wide screens of DNA copy number and gene expression in human cancers have accelerated the rate of discovery of amplified and overexpressed genes. However, the biological importance of most of the genes identified in such studies remains unclear. In this Analysis, we propose a weight-of-evidence based classification system for identifying individual genes in amplified regions that are selected for during tumour development. In a census of the published literature we have identified 77 genes for which there is good evidence of involvement in the development of human cancer.
Collapse
Affiliation(s)
- Thomas Santarius
- The Wellcome Trust Sanger Centre, Wellcome Trust Genome Campus Hinxton, Cambridge, UK
| | | | | | | | | |
Collapse
|
43
|
Prochazka P, Hrabeta J, Vícha A, Eckschlager T. Expulsion of amplified MYCN from homogenously staining chromosomal regions in neuroblastoma cell lines after cultivation with cisplatin, doxorubicin, hydroxyurea, and vincristine. ACTA ACUST UNITED AC 2009; 196:96-104. [PMID: 19963143 DOI: 10.1016/j.cancergencyto.2009.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/25/2009] [Accepted: 08/02/2009] [Indexed: 11/28/2022]
Abstract
Amplified MYCN, common in neuroblastomas, can be detected as double minutes (dmin) or homogenously staining chromosomal regions (hsr). Expulsion of amplified MYCN has only been described in dmin. We used hydroxyurea (HU), which accelerates the expulsion of amplified genes and cytostatics (used in neuroblastoma therapy), to describe MYCN amplification changes after chemotherapy. We used IMR-32, SK-N-AS, UKF-NB-2, UKF-NB-3, UKF-NB-4, and derived sublines resistant to doxorubicin, cisplatin, and vincristine. The loss of amplified MYCN copies was investigated using comparative genomic hybridization and by fluorescent in situ hybridization. We found expulsion of amplified MYCN from hsr in UKF-NB-4 and IMR-32 cell lines, and determined the exact number of amplified MYCN copies. After the first cultivation with HU, some amplified MYCN was lost. UKF-NB-4 lost 20 copies on average, and IMR-32 lost 15 copies (P<0.001). After the second cultivation, cells without MYCN amplification were found. In comparison to sensitive cell lines, drug-resistant cell lines lost 17 copies on average. Our data show that expulsion of amplified MYCN genes is also possible from hsr and may be induced, not only by HU, but by other cytostatics as well.
Collapse
Affiliation(s)
- Pavel Prochazka
- Department of Pediatric Hematology and Oncology, Charles University in Prague - 2nd Medical School, V Uvalu 84, Prague 15006, Czech Republic.
| | | | | | | |
Collapse
|
44
|
Sheu JJC, Lee CH, Ko JY, Tsao GS, Wu CC, Fang CY, Tsai FJ, Hua CH, Chen CL, Chen JY. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 Are Genomic Markers for Prognosis of Advanced Nasopharyngeal Carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18:2709-16. [DOI: 10.1158/1055-9965.epi-09-0349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Begum A, Imoto I, Kozaki KI, Tsuda H, Suzuki E, Amagasa T, Inazawa J. Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 in oral squamous-cell carcinoma. Cancer Sci 2009; 100:1908-16. [PMID: 19594544 PMCID: PMC11158222 DOI: 10.1111/j.1349-7006.2009.01252.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Amplification of chromosomal DNA is thought to be one of the mechanisms activating cancer-related genes in tumors. To identify the most likely target for amplification in the region 19q13.12-q13.2, detected previously in SKN-3 cells by a genome-wide screening of DNA copy-number aberrations in a panel of oral squamous-cell carcinoma (OSCC) cell lines, we determined the extent of the amplicon, analyzed a panel of cell lines for the expression of candidate genes within the amplicon, and then evaluated growth-suppressive effects by knocking down genes of interest. Reported information about the function and/or expression of each gene, remarkable overexpression in SKN-3 cells and relatively frequent overexpression in additional OSCC lines compared with an immortalized normal oral epithelial cell line, and expression level-dependent proliferation-promoting activity led us to conclude that the p21-activated kinase 4 (PAK4) gene was the most likely target. An immunohistochemical analysis of primary tumors from 105 cases of head and neck SCC including 50 cases of OSCC demonstrated the overexpression of PAK4 to be significantly associated with a poorer prognosis. These findings reveal that the PAK4 overexpression through amplification or other mechanisms promotes the proliferation and/or survival of OSCC cells, and that PAK4 might be a good diagnostic and/or therapeutic target.
Collapse
Affiliation(s)
- Asma Begum
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Zschenker O, Kulkarni A, Miller D, Reynolds GE, Granger-Locatelli M, Pottier G, Sabatier L, Murnane JP. Increased sensitivity of subtelomeric regions to DNA double-strand breaks in a human cancer cell line. DNA Repair (Amst) 2009; 8:886-900. [PMID: 19540174 PMCID: PMC2901176 DOI: 10.1016/j.dnarep.2009.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 12/25/2022]
Abstract
We previously reported that a single DNA double-strand break (DSB) near a telomere in mouse embryonic stem cells can result in chromosome instability. We have observed this same type of instability as a result of spontaneous telomere loss in human tumor cell lines, suggesting that a deficiency in the repair of DSBs near telomeres has a role in chromosome instability in human cancer. We have now investigated the frequency of the chromosome instability resulting from DSBs near telomeres in the EJ-30 human bladder carcinoma cell line to determine whether subtelomeric regions are sensitive to DSBs, as previously reported in yeast. These studies involved determining the frequency of large deletions, chromosome rearrangements, and chromosome instability resulting from I-SceI endonuclease-induced DSBs at interstitial and telomeric sites. As an internal control, we also analyzed the frequency of small deletions, which have been shown to be the most common type of mutation resulting from I-SceI-induced DSBs at interstitial sites. The results demonstrate that although the frequency of small deletions is similar at interstitial and telomeric DSBs, the frequency of large deletions and chromosome rearrangements is much greater at telomeric DSBs. DSB-induced chromosome rearrangements at telomeric sites also resulted in prolonged periods of chromosome instability. Telomeric regions in mammalian cells are therefore highly sensitive to DSBs, suggesting that spontaneous or ionizing radiation-induced DSBs at these locations may be responsible for many of the chromosome rearrangements that are associated with human cancer.
Collapse
Affiliation(s)
- Oliver Zschenker
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Avanti Kulkarni
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Douglas Miller
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Gloria. E. Reynolds
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| | - Marine Granger-Locatelli
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux Roses, France
| | - Géraldine Pottier
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux Roses, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux Roses, France
| | - John. P. Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94103, United States
| |
Collapse
|
47
|
Lin M, Morrison CD, Jones S, Mohamed N, Bacher J, Plass C. Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. Int J Cancer 2009; 125:603-11. [PMID: 19405126 DOI: 10.1002/ijc.24346] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene amplification, a common mechanism for oncogene activation in cancers, has been used in the discovery of novel oncogenes. Low-level copy number gains are frequently observed in head and neck squamous cell carcinomas (HNSCCs) where numerous amplification events and potential oncogenes have already been reported. Recently, we applied restriction landmark genome scanning to study gene amplifications in HNSCC and located novel and uncharacterized regions in primary tumor samples. Gain on chromosome 8q22.3, the location of YWHAZ (14-3-3zeta), is found in 30-40% HNSCC cases. Data obtained from fluorescence in situ hybridization and immunohistochemistry on HNSCC tissue microarrays confirmed frequent low-level YWHAZ copy number gain and protein overexpression. YWHAZ mRNA was frequently upregulated in patients' tumor tissues. Furthermore, YWHAZ RNAi significantly suppressed the growth rate of HNSCC cell lines, and overexpression of YWHAZ in HaCaT immortalized human skin keratinocytes promotes overgrowth, as well as morphological changes. Reduced YWHAZ levels increased the G1/G0-phase proportion, decreased the S-phase proportion and the rate of DNA synthesis. Based on this evidence, we suggest that YWHAZ is a candidate proto-oncogene and deserves further investigation into its role in HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Mauting Lin
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
48
|
Bae SY, Kim JS, Han EA, Lim CS, Ryeu BJ, Lee KN, Yoon SY, Cho Y, Kim YK, Lee CK. ConcurrentMYCandMLLamplification on dmin and hsr in acute myeloid leukemia. Leuk Lymphoma 2009; 49:1823-5. [DOI: 10.1080/10428190802216715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation? J Mol Evol 2009; 68:576-83. [PMID: 19407921 DOI: 10.1007/s00239-009-9235-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/13/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
In Drosophila, there is a consistent deficit of male-biased genes on the X chromosome. It has been suggested that male-biased genes may evolve from initially unbiased genes as a result of increased expression levels in males. If transcription rates are limited, a large increase in expression in the testis may be harder to achieve for single-copy X-linked genes than for autosomal genes, because they are already hypertranscribed due to dosage compensation. This hypothesis predicts that the larger the increase in expression required to make a male-biased gene, the lower the chance of this being achievable if it is located on the X chromosome. Consequently, highly expressed male-biased genes should be located on the X chromosome less often than lowly expressed male-biased genes. This pattern is observed in our analysis of publicly available data, where microarray data or EST data are used to detect male-biased genes in D. melanogaster and to measure their expression levels. This is consistent with the idea that limitations in transcription rates may prevent male-biased genes from accumulating on the X chromosome.
Collapse
|
50
|
Cancer gene discovery in mouse and man. Biochim Biophys Acta Rev Cancer 2009; 1796:140-61. [PMID: 19285540 PMCID: PMC2756404 DOI: 10.1016/j.bbcan.2009.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 12/31/2022]
Abstract
The elucidation of the human and mouse genome sequence and developments in high-throughput genome analysis, and in computational tools, have made it possible to profile entire cancer genomes. In parallel with these advances mouse models of cancer have evolved into a powerful tool for cancer gene discovery. Here we discuss the approaches that may be used for cancer gene identification in both human and mouse and discuss how a cross-species 'oncogenomics' approach to cancer gene discovery represents a powerful strategy for finding genes that drive tumourigenesis.
Collapse
|