1
|
Wang Z, Wang W, Zhao D, Song Y, Lin X, Shen M, Chi C, Xu B, Zhao J, Deng XW, Wang J. Light-induced remodeling of phytochrome B enables signal transduction by phytochrome-interacting factor. Cell 2024; 187:6235-6250.e19. [PMID: 39317197 DOI: 10.1016/j.cell.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Phytochrome B (phyB) and phytochrome-interacting factors (PIFs) constitute a well-established signaling module critical for plants adapting to ambient light. However, mechanisms underlying phyB photoactivation and PIF binding for signal transduction remain elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of the photoactivated phyB or the constitutively active phyBY276H mutant in complex with PIF6, revealing a similar trimer. The light-induced configuration switch of the chromophore drives a conformational transition of the nearby tongue signature within the phytochrome-specific (PHY) domain of phyB. The resulting α-helical PHY tongue further disrupts the head-to-tail dimer of phyB in the dark-adapted state. These structural remodelings of phyB facilitate the induced-fit recognition of PIF6, consequently stabilizing the N-terminal extension domain and a head-to-head dimer of activated phyB. Interestingly, the phyB dimer exhibits slight asymmetry, resulting in the binding of only one PIF6 molecule. Overall, our findings solve a key question with respect to how light-induced remodeling of phyB enables PIF signaling in phytochrome research.
Collapse
Affiliation(s)
- Zhengdong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Didi Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Yanping Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoli Lin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Meng Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Chi
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Bin Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Jun Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China.
| | - Jizong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Klose C, Nagy F, Schäfer E. Thermal Reversion of Plant Phytochromes. MOLECULAR PLANT 2020; 13:386-397. [PMID: 31812690 DOI: 10.1016/j.molp.2019.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
Phytochromes are red/far-red reversible photoreceptors essential for plant growth and development. Phytochrome signaling is mediated by the physiologically active far-red-absorbing Pfr form that can be inactivated to the red-absorbing Pr ground state by light-dependent photoconversion or by light-independent thermal reversion, also termed dark reversion. Although the term "dark reversion" is justified by historical reasons and frequently used in the literature, "thermal reversion" more appropriately describes the process of light-independent but temperature-regulated Pfr relaxation that not only occurs in darkness but also in light and is used throughout the review. Thermal reversion is a critical parameter for the light sensitivity of phytochrome-mediated responses and has been studied for decades, often resulting in contradictory findings. Thermal reversion is an intrinsic property of the phytochrome molecules but can be modulated by intra- and intermolecular interactions, as well as biochemical modifications, such as phosphorylation. In this review, we outline the research history of phytochrome thermal reversion, highlighting important predictions that have been made before knowing the molecular basis. We further summarize and discuss recent findings about the molecular mechanisms regulating phytochrome thermal reversion and its functional roles in light and temperature sensing in plants.
Collapse
Affiliation(s)
- Cornelia Klose
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany.
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Eberhard Schäfer
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Hinge region of Arabidopsis phyA plays an important role in regulating phyA function. Proc Natl Acad Sci U S A 2018; 115:E11864-E11873. [PMID: 30478060 DOI: 10.1073/pnas.1813162115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phytochrome A (phyA) is the only plant photoreceptor that perceives far-red light and then mediates various responses to this signal. Phosphorylation and dephosphorylation of oat phyA have been extensively studied, and it was shown that phosphorylation of a serine residue in the hinge region of oat phyA could regulate the interaction of phyA with its signal transducers. However, little is known about the role of the hinge region of Arabidopsis phyA. Here, we report that three sites in the hinge region of Arabidopsis phyA (i.e., S590, T593, and S602) are essential in regulating phyA function. Mutating all three of these sites to either alanines or aspartic acids impaired phyA function, changed the interactions of mutant phyA with FHY1 and FHL, and delayed the degradation of mutant phyA upon light exposure. Moreover, the in vivo formation of a phosphorylated phyA form was greatly affected by these mutations, while our data indicated that the abundance of this phosphorylated phyA form correlated well with the extent of phyA function, thus suggesting a pivotal role of the phosphorylated phyA in inducing the far-red light response. Taking these data together, our study reveals the important role of the hinge region of Arabidopsis phyA in regulating phyA phosphorylation and function, thus linking specific residues in the hinge region to the regulatory mechanisms of phyA phosphorylation.
Collapse
|
4
|
Volotovski ID. Role of calcium ions in photosignaling processes in a plant cell. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911050253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Wang X, Roig-Villanova I, Khan S, Shanahan H, Quail PH, Martinez-Garcia JF, Devlin PF. A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2973-87. [PMID: 21398429 PMCID: PMC3202935 DOI: 10.1093/jxb/err062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species.
Collapse
Affiliation(s)
- Xuewen Wang
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Irma Roig-Villanova
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, 08034 Barcelona, Spain
| | - Safina Khan
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Hugh Shanahan
- Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Peter H. Quail
- Department of Plant and Microbial Biology, UC Berkeley, Albany, CA 94710, USA
| | - Jaime F. Martinez-Garcia
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Ps. Lluís Companys 23, 08010 Barcelona, Spain
| | - Paul F. Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
7
|
Palágyi A, Terecskei K, Ádám É, Kevei É, Kircher S, Mérai Z, Schäfer E, Nagy F, Kozma-Bognár L. Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. PLANT PHYSIOLOGY 2010; 153:1834-45. [PMID: 20530216 PMCID: PMC2923874 DOI: 10.1104/pp.110.153031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/06/2010] [Indexed: 05/18/2023]
Abstract
At the core of the circadian network in Arabidopsis (Arabidopsis thaliana), clock genes/proteins form multiple transcriptional/translational negative feedback loops and generate a basic approximately 24-h oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of plants only if it corresponds to the natural day/night cycles. Light, absorbed by photoreceptors, is the most effective signal in synchronizing the oscillator to environmental cycles. Phytochrome B (PHYB) is the major red/far-red light-absorbing phytochrome receptor in light-grown plants. Besides modulating the pace and phase of the circadian clock, PHYB controls photomorphogenesis and delays flowering. It has been demonstrated that the nuclear-localized amino-terminal domain of PHYB is capable of controlling photomorphogenesis and, partly, flowering. Here, we show (1) that PHYB derivatives containing 651 or 450 amino acid residues of the amino-terminal domains are functional in mediating red light signaling to the clock, (2) that circadian entrainment is a nuclear function of PHYB, and (3) that a 410-amino acid amino-terminal fragment does not possess any functions of PHYB due to impaired chromophore binding. However, we provide evidence that the carboxyl-terminal domain is required to mediate entrainment in white light, suggesting a role for this domain in integrating red and blue light signaling to the clock. Moreover, careful analysis of the circadian phenotype of phyB-9 indicates that PHYB provides light signaling for different regulatory loops of the circadian oscillator in a different manner, which results in an apparent decoupling of the loops in the absence of PHYB under specific light conditions.
Collapse
|
8
|
Han YJ, Kim HS, Song PS, Kim JI. Autophosphorylation desensitizes phytochrome signal transduction. PLANT SIGNALING & BEHAVIOR 2010; 5:868-71. [PMID: 20495342 PMCID: PMC3014540 DOI: 10.4161/psb.5.7.11898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 05/24/2023]
Abstract
Plant red/far-red photoreceptor phytochromes are known as autophosphorylating serine/threonine kinases. However, the functional roles of autophosphorylation and kinase activity of phytochromes are largely unknown. We recently reported that the autophosphorylation of phytochrome A (phyA) plays an important role in regulating plant phytochrome signaling by controlling phyA protein stability. Two serine residues in the N-terminal extension (NTE) region were identified as autophosphorylation sites, and phyA mutant proteins with serine-to-alanine mutations were degraded in plants at a significantly slower rate than the wild-type under light conditions, resulting in transgenic plants with hypersensitive light responses. In addition, the autophosphorylation site phyA mutants had normal protein kinase activities. Collectively, our results suggest that phytochrome autophosphorylation provides a mechanism for signal desensitization in phytochrome-mediated light signaling by accelerating the degradation of phytochrome A.
Collapse
Affiliation(s)
- Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory; Chonnam National University; Gwangju, Korea
| | - Hwan-Sik Kim
- Department of Biotechnology and Kumho Life Science Laboratory; Chonnam National University; Gwangju, Korea
| | - Pill-Soon Song
- Faculty of Biotechnology and Subtropical Horticulture Research Institute; Cheju National University; Jeju, Korea
- Environmental Biotechnology National Core Research Center; Gyeongsang National University; Jinju, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory; Chonnam National University; Gwangju, Korea
- Environmental Biotechnology National Core Research Center; Gyeongsang National University; Jinju, Korea
| |
Collapse
|
9
|
Abdurakhmonov IY, Buriev ZT, Logan-Young CJ, Abdukarimov A, Pepper AE. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.). BMC PLANT BIOLOGY 2010; 10:119. [PMID: 20565911 PMCID: PMC3095280 DOI: 10.1186/1471-2229-10-119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 06/20/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. RESULTS We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. CONCLUSIONS Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via modern marker-assisted selection strategies.
Collapse
Affiliation(s)
- Ibrokhim Y Abdurakhmonov
- Center of Genomic Technologies, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent, 111226 Uzbekistan
| | - Zabardast T Buriev
- Center of Genomic Technologies, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent, 111226 Uzbekistan
| | | | - Abdusattor Abdukarimov
- Center of Genomic Technologies, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent, 111226 Uzbekistan
| | - Alan E Pepper
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
10
|
Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LACJ, Spillane C, Pikaard CS, Fransz P, Peeters AJM. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000638. [PMID: 19730687 PMCID: PMC2728481 DOI: 10.1371/journal.pgen.1000638] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 08/08/2009] [Indexed: 11/18/2022] Open
Abstract
Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL) mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE-6 (HDA6) as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs). The accession Cape Verde Islands-0 (Cvi-0), which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process. The habitat of the plant model species Arabidopsis thaliana can be found throughout the Northern hemisphere. As a consequence, individual populations have acclimated to a great diversity of environmental conditions. This is reflected by a wealth of natural genetic variation in many phenotypic traits. We utilized this natural variation via a novel approach, combining microscopic examination, quantitative genetics, and analysis of environmental parameters, to understand the regulation of nuclear chromatin compaction in leaf mesophyll cells. We show that the level of chromatin compaction among natural Arabidopsis thaliana accessions correlates with latitude of origin and depends on local light intensity. Our study provides evidence that the photoreceptor PHYTOCHROME-B (PHYB) and the histone modifier HISTONE DEACETYLASE 6 (HDA6) are positive regulators of global chromatin organization in a light-dependent manner. In addition, HDA6 specifically controls light-mediated chromatin compaction of the Nucleolar Organizing Regions (NORs). We propose that the observed light-controlled plasticity of chromatin plays a role in acclimation and survival of plants in their natural environment.
Collapse
Affiliation(s)
- Federico Tessadori
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Penka Pavlova
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Genetics, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Rachel Clifton
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Frédéric Pontvianne
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - L. Basten Snoek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Frank F. Millenaar
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Roeland Kees Schulkes
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel van Driel
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Charles Spillane
- Genetics & Biotechnology Laboratory, Department of Biochemistry & Biosciences Institute, University College Cork, Cork, Republic of Ireland
| | - Craig S. Pikaard
- Biology Department, Washington University, St. Louis, Missouri, United States of America
| | - Paul Fransz
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (PF); (AJMP)
| | - Anton J. M. Peeters
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail: (PF); (AJMP)
| |
Collapse
|
11
|
Nieder JB, Brecht M, Bittl R. Dynamic intracomplex heterogeneity of phytochrome. J Am Chem Soc 2009; 131:69-71. [PMID: 19128172 DOI: 10.1021/ja8058292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low temperature single-molecule fluorescence emission spectroscopy on individual phytochromes from Agrobacterium tumefaciens corroborates findings from ensemble spectroscopy concerning intercomplex heterogeneity. Furthermore, time-dependent intracomplex heterogeneity has been observed.
Collapse
Affiliation(s)
- Jana B Nieder
- Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | |
Collapse
|
12
|
Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. Proc Natl Acad Sci U S A 2008; 105:14715-20. [PMID: 18799746 DOI: 10.1073/pnas.0806718105] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 A resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an "arm" structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common and may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.
Collapse
|
13
|
Natori C, Kim JI, Bhoo SH, Han YJ, Hanzawa H, Furuya M, Song PS. Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique. Photochem Photobiol Sci 2006; 6:83-9. [PMID: 17200742 DOI: 10.1039/b611077k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytochromes are red- and far-red light-reversible photoreceptors for photomorphogenesis in plants. Phytochrome A is a dimeric chromopeptide that mediates very low fluence and high irradiance responses. To analyze the surface properties of phytochrome A (phyA), the epitopes of 21 anti-phyA monoclonal antibodies were determined by variously engineered recombinant phyA proteins and the dissociation constants of seven anti-phyA monoclonal antibodies with phyA were measured using a surface plasmon resonance (SPR)-based resonant mirror biosensor (IAsys). Purified oat phyA was immobilized on the sensor surface using a carboxymethyl dextran cuvette in advance, and the interactions of each chosen monoclonal antibody against phyA in either red light absorbing form (Pr) or far-red light absorbing form (Pfr) at different concentrations were monitored. The binding profiles were analyzed using the FAST Fit program of IAsys. The resultant values of dissociation constants clearly demonstrated the differential affinities between the phyA epitopes and the monoclonal antibodies dependent upon Pr vs. Pfr conformations. Monoclonal antibody mAP20 preferentially recognized the epitope at amino acids 653-731 in the Pr form, whereas mAA02, mAP21 and mAR07/mAR08 displayed preferential affinities for the Pfr's surfaces at epitopes 494-601 (the hinge region between the N- and C-terminal domains), 601-653 (hinge in PASI domain), and 772-1128 (C-terminal domain), respectively. The N-terminal extension (1-74) was not recognized by mAP09 and mAP15, suggesting that the N-terminal extreme is not exposed in the native conformation of phyA. On the other hand, the C-terminal domain becomes apparently exposed on Pr-to-Pfr phototransformation, suggesting an inter-domain cross-talk. The use of surface plasmon resonance spectroscopy offers a new approach to study the surface properties of phytochromes associated with the photoreversible structural changes, as well as for the study of protein-protein interactions of phytochromes with their interacting proteins involved in light signaling events in plants.
Collapse
Affiliation(s)
- Chihoko Natori
- Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-0395, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Partch CL, Sancar A. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 2006; 81:1291-304. [PMID: 16164372 DOI: 10.1562/2005-07-08-ir-607] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptochromes are flavoproteins that exhibit high sequence and structural similarity to the light-dependent DNA-repair enzyme, photolyase. Cryptochromes have lost the ability to repair DNA; instead, they use the energy from near-UV/blue light to regulate a variety of growth and adaptive processes in organisms ranging from bacteria to humans. The photocycle of cryptochrome is not yet known, although it is hypothesized that it may share some similarity to that of photolyase, which utilizes light-driven electron transfer from the catalytic flavin chromophore. In this review, we present genetic evidence for the photoreceptive role of cryptochromes and discuss recent biochemical studies that have furthered our understanding of the cryptochrome photocycle. In particular, the role of the unique C-terminal domain in cryptochrome phototransduction is discussed.
Collapse
Affiliation(s)
- Carrie L Partch
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
15
|
Kim JI, Bhoo SH, Han YJ, Zarate X, Furuya M, Song PS. The PAS2 domain is required for dimerization of phytochrome A. J Photochem Photobiol A Chem 2006. [DOI: 10.1016/j.jphotochem.2005.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Abstract
Phytochromes are a widespread family of red/far-red responsive photoreceptors first discovered in plants, where they constitute one of the three main classes of photomorphogenesis regulators. All phytochromes utilize covalently attached bilin chromophores that enable photoconversion between red-absorbing (P(r)) and far-red-absorbing (P(fr)) forms. Phytochromes are thus photoswitchable photosensors; canonical phytochromes have a conserved N-terminal photosensory core and a C-terminal regulatory region, which typically includes a histidine-kinase-related domain. The discovery of new bacterial and cyanobacterial members of the phytochrome family within the last decade has greatly aided biochemical and structural characterization of this family, with the first crystal structure of a bacteriophytochrome photosensory core appearing in 2005. This structure and other recent biochemical studies have provided exciting new insights into the structure of phytochrome, the photoconversion process that is central to light sensing, and the mechanism of signal transfer by this important family of photoreceptors.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Yi-Shin Su
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J. Clark Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
17
|
Chen M, Tao Y, Lim J, Shaw A, Chory J. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Curr Biol 2005; 15:637-42. [PMID: 15823535 DOI: 10.1016/j.cub.2005.02.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/13/2005] [Accepted: 02/03/2005] [Indexed: 11/17/2022]
Abstract
Phytochromes are red and far-red photoreceptors that regulate plant growth and development in response to environmental light cues. Phytochromes exist in two photo-interconvertible conformational states: an inactive Pr form and an active Pfr form. The alteration of phytochromes' subcellular location functions as a major regulatory mechanism of their biological activities. Whereas phytochromes in the Pr form localize in the cytoplasm, phytochromes in the Pfr form accumulate in the nucleus, where they interact with transcription factors to regulate gene expression. The molecular details of the regulation of phytochrome translocation by light are poorly understood. Using Arabidopsis phyB as a model, we demonstrate that the C-terminal PAS-related domain (PRD) is both necessary and sufficient for phyB nuclear import and that the entire C terminus is required for nuclear-body (NB) localization. We also show that phyB's N-terminal bilin lyase domain (BLD) and PHY domain interact directly with the PRD in a light-dependent manner. In vivo localization studies indicate that BLD-PHY is sufficient to regulate phyB's nuclear accumulation. For phyB nuclear localization, our results suggest a molecular mechanism in which the nuclear-localization signal in the PRD is masked by interactions with phyB's chromophore-attachment domains and unmasked by light-dependent conformational changes.
Collapse
Affiliation(s)
- Meng Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
18
|
Kim JI, Park JE, Zarate X, Song PS. Phytochrome phosphorylation in plant light signaling. Photochem Photobiol Sci 2005; 4:681-7. [PMID: 16121277 DOI: 10.1039/b417912a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible protein phosphorylation is a switching mechanism used in eukaryotes to regulate various cellular signalings. In plant light signaling, sophisticated photosensory receptor systems operate to modulate growth and development. The photoreceptors include phytochromes, cryptochromes and phototropins. Despite considerable progresses in defining the photosensory roles of these photoreceptors, the primary biochemical mechanisms by which the photoreceptor molecules transduce the perceived light signals into cellular responses remain to be elucidated. The signal-transducing photoreceptors in plants are all phosphoproteins and/or protein kinases, suggesting that light-dependent protein phosphorylation and dephosphorylation play important roles in the function of the photoreceptors. This review focuses on the role of phytochromes' reversible phosphorylation involved in the light signal transduction in plants.
Collapse
Affiliation(s)
- Jeong-Il Kim
- Kumho Life & Environmental Science Laboratory, 1 Oryong-Dong, Gwangju, 500-712 South Korea.
| | | | | | | |
Collapse
|
19
|
Abstract
Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.
Collapse
Affiliation(s)
- Meng Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
20
|
Nakasako M, Iwata T, Inoue K, Tokutomi S. Light-induced global structural changes in phytochrome A regulating photomorphogenesis in plants. FEBS J 2005; 272:603-12. [PMID: 15654897 DOI: 10.1111/j.1742-4658.2004.04508.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytochromes are photoreceptor proteins that monitor the light environment and regulate a variety of photomorphogenic responses to optimize the growth and development of plants. Phytochromes comprise N-terminal photosensory and C-terminal regulatory domains. They are mutually photoconvertible between a red-light-absorbing (Pr) and a far-red-light-absorbing (Pfr) form. Their interconversion by light stimuli initiates downstream signaling cascades. Here we report the molecular structures of pea phytochrome A lacking the N-terminal 52 amino-acid residues in the Pr and Pfr forms studied by small-angle X-ray scattering. A new purification protocol yielded monodispersive sample solutions. The molecular mass and the maximum dimension of Pr determined from scattering data indicated its dimeric association. The molecular structure of Pr predicted by applying the ab initio simulation method to the scattering profile was approximated as a stack of two flat bodies, comprising two lobes assignable to the functional regions. Scattering profiles recorded under red-light irradiation showed small but definite changes from those of Pr. The molecular dimensions and predicted molecular structure of Pfr suggest global structural changes such as movement of the C-terminal domains in the Pr-to-Pfr phototransformation. Red-light-induced structural changes in Pfr were reversible, mostly due to thermal relaxation processes.
Collapse
Affiliation(s)
- Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan.
| | | | | | | |
Collapse
|
21
|
Abstract
Higher plants monitor changes in the ambient light environment using three major classes of photoreceptors: the red/far-red-absorbing phytochromes, the blue/UV-A-absorbing cryptochromes, and phototropins. These photoreceptors mediate various photoresponses, ranging from seed germination, to seedling de-etiolation, stem elongation, leaf expansion, floral initiation, phototropic bending of organs, intracellular movement of chloroplast, and stomata opening. Here I briefly review the distinct and overlapping physiological functions of these photoreceptors and highlight recent progress that provided significant insights into their signaling mechanisms, particularly from a structure-function perspective. This review focuses on the early photochemical and biochemical events that lead to photoreceptor activation and signaling initiation.
Collapse
Affiliation(s)
- Haiyang Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
22
|
Abstract
Directed evolution of a cyanobacterial phytochrome was undertaken to elucidate the structural basis of its light sensory activity by remodeling the chemical environment of its linear tetrapyrrole prosthetic group. In addition to identifying a small region of the apoprotein critical for maintaining phytochrome's native spectroscopic properties, our studies revealed a tyrosine-to-histidine mutation that transformed phytochrome into an intensely red fluorescent biliprotein. This tyrosine is conserved in all members of the phytochrome superfamily, implicating direct participation in the primary photoprocess of phytochromes. Fluorescent phytochrome mutants also hold great promise to expand the present repertoire of genetically encoded fluorescent proteins into the near infrared.
Collapse
Affiliation(s)
- Amanda J Fischer
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
23
|
Im YJ, Kim JI, Shen Y, Na Y, Han YJ, Kim SH, Song PS, Eom SH. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling. J Mol Biol 2004; 343:659-70. [PMID: 15465053 DOI: 10.1016/j.jmb.2004.08.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/17/2004] [Accepted: 08/18/2004] [Indexed: 12/14/2022]
Abstract
In plants, nucleoside diphosphate kinases (NDPKs) play a key role in the signaling of both stress and light. However, little is known about the structural elements involved in their function. Of the three NDPKs (NDPK1-NDPK3) expressed in Arabidopsis thaliana, NDPK2 is involved in phytochrome-mediated signal transduction. In this study, we found that the binding of dNDP or NTP to NDPK2 strengthens the interaction significantly between activated phytochrome and NDPK2. To better understand the structural basis of the phytochrome-NDPK2 interaction, we determined the X-ray structures of NDPK1, NDPK2, and dGTP-bound NDPK2 from A.thaliana at 1.8A, 2.6A, and 2.4A, respectively. The structures showed that nucleotide binding caused a slight conformational change in NDPK2 that was confined to helices alphaA and alpha2. This suggests that the presence of nucleotide in the active site and/or the evoked conformational change contributes to the recognition of NDPK2 by activated phytochrome. In vitro binding assays showed that only NDPK2 interacted specifically with the phytochrome and the C-terminal regulatory domain of phytochrome is involved in the interaction. A domain swap experiment between NDPK1 and NDPK2 showed that the variable C-terminal region of NDPK2 is important for the activation by phytochrome. The structure of Arabidopsis NDPK1 and NDPK2 showed that the isoforms share common electrostatic surfaces at the nucleotide-binding site, but the variable C-terminal regions have distinct electrostatic charge distributions. These findings suggest that the binding of nucleotide to NDPK2 plays a regulatory role in phytochrome signaling and that the C-terminal extension of NDPK2 provides a potential binding surface for the specific interaction with phytochromes.
Collapse
Affiliation(s)
- Young Jun Im
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shen Y, Kim JI, Song PS. NDPK2 as a signal transducer in the phytochrome-mediated light signaling. J Biol Chem 2004; 280:5740-9. [PMID: 15561724 DOI: 10.1074/jbc.m408965200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside-diphosphate kinase (NDPK) 2 in Arabidopsis has been identified as a phytochrome-interacting protein by using the C-terminal domain of phytochrome A (PhyA) as the bait in yeast two-hybrid screening. The far-red light-absorbing form of phytochrome (Pfr) A stimulates NDPK2 gamma-phosphate exchange activity in vitro. To better understand the multiple functions of NDPK and its role in phytochrome-mediated signaling, we characterized the interaction between phytochrome and NDPK2. Domain studies revealed that PER-ARNT-SIM domain A in the C-terminal domain of phytochrome is the binding site for NDPK2. Additionally, phytochrome recognizes both the NDPK2 C-terminal fragment and the NDPK2 hexameric structure to fulfill its binding. To illustrate the mechanism of how the Pfr form of phytochrome stimulates NDPK2, His-197-surrounding residue mutants were made and tested. Results suggested that the H-bonding with His-197 inside the nucleotide-binding pocket is critical for NDPK2 functioning. The pH dependence profiles of NDPK2 indicated that mutants with different activities from the wild type have different pK(a) values of His-197 and that NDPK2 hyperactive mutants possess lower pK(a) values. Because a lower pK(a) value of His-197 accelerates NDPK2 autophosphorylation and the phospho-transfer between the phosphorylated NDPK2 and its kinase substrate, we concluded that the Pfr form of phytochrome stimulates NDPK2 by lowering the pK(a) value of His-197.
Collapse
Affiliation(s)
- Yu Shen
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
25
|
Kim JI, Shen Y, Han YJ, Park JE, Kirchenbauer D, Soh MS, Nagy F, Schäfer E, Song PS. Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. THE PLANT CELL 2004; 16:2629-40. [PMID: 15377754 PMCID: PMC520960 DOI: 10.1105/tpc.104.023879] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 07/06/2004] [Indexed: 05/20/2023]
Abstract
Plant photoreceptor phytochromes are phosphoproteins, but the question as to the functional role of phytochrome phosphorylation has remained to be elucidated. We investigated the functional role of phytochrome phosphorylation in plant light signaling using a Pfr-specific phosphorylation site mutant, Ser598Ala of oat (Avena sativa) phytochrome A (phyA). The transgenic Arabidopsis thaliana (phyA-201 background) plants with this mutant phyA showed hypersensitivity to light, suggesting that phytochrome phosphorylation at Serine-598 (Ser598) in the hinge region is involved in an inhibitory mechanism. The phosphorylation at Ser598 prevented its interaction with putative signal transducers, Nucleoside Diphosphate Kinase-2 and Phytochrome-Interacting Factor-3. These results suggest that phosphorylation in the hinge region of phytochromes serves as a signal-modulating site through the protein-protein interaction between phytochrome and its putative signal transducer proteins.
Collapse
Affiliation(s)
- Jeong-Il Kim
- Kumho Life and Environmental Science Laboratory, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schepens I, Duek P, Fankhauser C. Phytochrome-mediated light signalling in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:564-569. [PMID: 15337099 DOI: 10.1016/j.pbi.2004.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The phytochrome photoreceptors regulate all major transitions during the life cycle of plants. The role of each member of the phytochrome family in Arabidopsis is starting to be understood, and a molecular description of phytochrome-regulated flowering time and shade avoidance is emerging. Recent publications have challenged some areas of well-accepted models concerning phytochrome signalling. Moreover, the importance of proteolysis during phytochrome signalling is becoming very apparent.
Collapse
Affiliation(s)
- Isabelle Schepens
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Haiyang Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| |
Collapse
|
28
|
Seo HS, Watanabe E, Tokutomi S, Nagatani A, Chua NH. Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 2004; 18:617-22. [PMID: 15031264 PMCID: PMC387237 DOI: 10.1101/gad.1187804] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 02/11/2004] [Indexed: 11/25/2022]
Abstract
Desensitization of activated receptors is an important mechanism for terminating signal transduction. Here we show that phytochrome (phy) A, a predominant photoreceptor for seedling deetiolation, colocalizes in nuclear bodies with CONSTITUTIVELY PHOTOMORPHOGENIC (COP) 1, a RING motif-containing E3 ligase. The phyA PAS domain interacts with the COP1 WD40 domain. Both the Pr and the Pfr forms of phyA, as well as the PHYA apoprotein, are ubiquitinated by COP1 in vitro. The phyA destruction rate is decreased in cop1 mutants and by expression of a COP1 RING motif mutant. Our results indicate that COP1 acts as an E3 ligase to regulate phyA signaling by targeting elimination of the phyA photoreceptor itself.
Collapse
Affiliation(s)
- Hak Soo Seo
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
29
|
Matsushita T, Mochizuki N, Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 2003; 424:571-4. [PMID: 12891362 DOI: 10.1038/nature01837] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 05/19/2003] [Indexed: 11/09/2022]
Abstract
A plant modulates its developmental processes in response to light by several informational photoreceptors such as phytochrome. Phytochrome is a dimeric chromoprotein which regulates various aspects of plant development from seed germination to flowering. Upon absorption of red light, phytochrome translocates from the cytoplasm to the nucleus, and regulates gene expression through interaction with transcription factors such as PIF3 (refs 5-7). The phytochrome polypeptide has two domains: the amino-terminal photosensory domain with a chromophore and the carboxy-terminal domain which contains signalling motifs such as a kinase domain. The latter is widely believed to transduce the signal to downstream components. Here we show that the C-terminal domain of Arabidopsis phytochrome B (phyB), which is known as the most important member of the phytochrome family, is not directly involved in signal transduction. The N-terminal domain isolated from phyB, when dimerized and localized in the nucleus, triggered full phyB responses with much higher photosensitivity than the full-length phyB. These findings indicate that the C-terminal domain attenuates the activity of phyB rather than positively transducing the signal.
Collapse
Affiliation(s)
- Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
30
|
Wang H, Deng XW. Dissecting the phytochrome A-dependent signaling network in higher plants. TRENDS IN PLANT SCIENCE 2003; 8:172-8. [PMID: 12711229 DOI: 10.1016/s1360-1385(03)00049-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants monitor their ambient light environment using a network of photoreceptors. In Arabidopsis, phytochrome A (phyA) is the primary photoreceptor responsible for perceiving and mediating various responses to far-red light. Several breakthroughs in understanding the signaling network mediating phyA-activated responses have been made in recent years. Here, we highlight several key advances: the demonstration that light regulates nuclear translocation of phyA and its associated kinase activity; the revelation of a transcriptional cascade controlling phyA-regulated gene expression; the detection of a direct interaction between phyA and a transcription factor; and the identification and characterization of many phyA-specific signaling intermediates, some of them suggesting the involvement of the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Haiyang Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
31
|
Kim JI, Kozhukh GV, Song PS. Phytochrome-mediated signal transduction pathways in plants. Biochem Biophys Res Commun 2002; 298:457-63. [PMID: 12408973 DOI: 10.1016/s0006-291x(02)02494-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phytochromes are photoreceptors that regulate plant growth and development in response to the solar radiation environment. Recent studies reveal how phytochrome-mediated light signals can be transduced to the cells for their responses. The possible signal transduction pathways of phytochromes include: (a) direct regulation of gene transcription and (b) typical kinase-involved signaling pathways and its regulation by phosphorylation, dephosphorylation, and proteolytic degradation. This review highlights some of the recent findings.
Collapse
Affiliation(s)
- Jeong-Il Kim
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
32
|
Fry RC, Habashi J, Okamoto H, Deng XW. Characterization of a strong dominant phytochrome A mutation unique to phytochrome A signal propagation. PLANT PHYSIOLOGY 2002; 130:457-465. [PMID: 12226524 PMCID: PMC166577 DOI: 10.1104/pp.005264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 04/18/2002] [Accepted: 05/09/2002] [Indexed: 05/23/2023]
Abstract
Here, we report the isolation and characterization of a strong dominant-negative phytochrome A (phyA) mutation (phyA-300D) in Arabidopsis. This mutation carries a single amino acid substitution at residue 631, from valine to methionine (V631M), in the core region within the C-terminal half of PHYA. This PHYA core region contains two protein-interactive motifs, PAS1 and PAS2. Val-631 is located within the PAS1 motif. The phyA-V631M mutant protein is photochemically active and accumulates to a level similar to wild type in dark-grown seedlings. Overexpression of PHYA-V631M in a wild-type background results in a dominant-negative interference with endogenous wild-type phyA, whereas PHYA-V631M in a phyA null mutant background is inactive. To investigate the specificity of this mutation within the phytochrome family, the corresponding amino acid substitution (V664M) was created in the PHYTOCHROME B (PHYB) polypeptide. We found that the phyB-V664M mutant protein is physiologically active in phyB mutant and causes no interfering effect in a wild-type background. Together, our results reveal a unique feature in phyA signal propagation through the C-terminal core region.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511-8104, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Phytochromes were long thought to have evolved in non-motile photosynthetic eukaryotes for adaptation to unfavorable light environments, but recent studies suggest that phytochromes evolved billions of years earlier from a tetrapyrrole sensor protein progenitor. These investigations have identified phytochromes and phytochrome-related proteins in photosynthetic bacteria (cyanobacteria and purple bacteria), nonphotosynthetic eubacteria and fungi - an observation that has opened new avenues for investigating the origins, molecular evolution and biochemical functions of this ecologically important family of plant photoreceptors.
Collapse
|
34
|
Møller SG, Ingles PJ, Whitelam GC. The cell biology of phytochrome signalling. THE NEW PHYTOLOGIST 2002; 154:553-590. [PMID: 33873456 DOI: 10.1046/j.1469-8137.2002.00419.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytochrome signal transduction has in the past often been viewed as being a nonspatially separated linear chain of events. However, through a combination of molecular, genetic and cell biological approaches, it is becoming increasingly evident that phytochrome signalling constitutes a highly ordered multidimensional network of events. The discovery that some phytochromes and signalling intermediates show light-dependent nucleo-cytoplasmic partitioning has not only led to the suggestion that early signalling events take place in the nucleus, but also that subcellular localization patterns most probably represent an important signalling control point. Moreover, detailed characterization of signalling intermediates has demonstrated that various branches of the signalling network are spatially separated and take place in different cellular compartments including the nucleus, cytosol, and chloroplasts. In addition, proteasome-mediated degradation of signalling intermediates most probably act in concert with subcellular partitioning events as an integrated checkpoint. An emerging view from this is that phytochrome signalling is separated into several subcellular organelles and that these are interconnected in order to execute accurate responses to changes in the light environment. By integrating the available data, both at the cellular and subcellular level, we should be able to construct a solid foundation for further dissection of phytochrome signal transduction in plants. Contents Summary 553 I. Introduction 554 II. Nucleus vs cytoplasm 556 III. The nucleus 562 IV. The cytoplasm 571 V. Interactions with other signalling pathways 577 VI. Conclusions and the future 582 Acknowledgements 583 References 583.
Collapse
Affiliation(s)
- Simon G Møller
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Patricia J Ingles
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Garry C Whitelam
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
35
|
Hanzawa H, Shinomura T, Inomata K, Kakiuchi T, Kinoshita H, Wada K, Furuya M. Structural requirement of bilin chromophore for the photosensory specificity of phytochromes A and B. Proc Natl Acad Sci U S A 2002; 99:4725-9. [PMID: 11930018 PMCID: PMC123715 DOI: 10.1073/pnas.062713399] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are an important class of chromoproteins that regulate many cellular and developmental responses to light in plants. The model plant species Arabidopsis thaliana possesses five phytochromes, which mediate distinct and overlapping responses to light. Photobiological analyses have established that, under continuous irradiation, phytochrome A is primarily responsible for plant's sensitivity to far-red light, whereas the other phytochromes respond mainly to red light. The present study reports that the far-red light sensitivity of phytochrome A depends on the structure of the linear tetrapyrrole (bilin) prosthetic group. By reconstitution of holophytochrome in vivo through feeding various synthetic bilins to chromophore-deficient mutants of Arabidopsis, the requirement for a double bond on the bilin D-ring for rescuing phytochrome A function has been established. In contrast, we show that phytochrome B function can be rescued with various bilin analogs with saturated D-ring substituents.
Collapse
Affiliation(s)
- Hiroko Hanzawa
- Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-0395, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Fankhauser C. Light perception in plants: cytokinins and red light join forces to keep phytochrome B active. TRENDS IN PLANT SCIENCE 2002; 7:143-5. [PMID: 11950603 DOI: 10.1016/s1360-1385(02)02228-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant growth and development is modulated by internal cues such as rhe hormonal balance and external factors. Plants are particularly sensitive to their light environment, which they scrutinize with at least three classes of photoreceptors. In recent years, it has become increasingly clear that light and hormonal signaling interact at several levels. A cytokinin receptor was recently identified together with several elements acting in this signaling pathway. ARR4, a response regulator working downstream of a cytokinin receptor, has been shown to regulate phytochrome B-mediated light signaling.
Collapse
|
37
|
Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Bäurle I, Kudla J, Nagy F, Schafer E, Harter K. Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 2001; 294:1108-11. [PMID: 11691995 DOI: 10.1126/science.1065022] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis thaliana response regulator 4, expressed in response to phytochrome B action, specifically interacts with the extreme amino-terminus of the photoreceptor. The response regulator 4 stabilizes the active Pfr form of phytochrome B in yeast and in planta, thus elevates the level of the active photoreceptor in vivo. Accordingly, transgenic Arabidopsis plants overexpressing the response regulator 4 display hypersensitivity to red light but not to light of other wavelengths. We propose that the response regulator 4 acts as an output element of a two-component system that modulates red light signaling on the level of the phytochrome B photoreceptor.
Collapse
Affiliation(s)
- U Sweere
- Institut für Biologie II / Botanik, Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|