1
|
Luo M, Luan X, Yang C, Chen X, Yuan S, Cao Y, Zhang J, Xie J, Luo Q, Chen L, Li S, Xiang W, Zhou J. Revisiting the potential of regulated cell death in glioma treatment: a focus on autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis, immunogenic cell death, and the crosstalk between them. Front Oncol 2024; 14:1397863. [PMID: 39184045 PMCID: PMC11341384 DOI: 10.3389/fonc.2024.1397863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas are primary tumors that originate in the central nervous system. The conventional treatment options for gliomas typically encompass surgical resection and temozolomide (TMZ) chemotherapy. However, despite aggressive interventions, the median survival for glioma patients is merely about 14.6 months. Consequently, there is an urgent necessity to explore innovative therapeutic strategies for treating glioma. The foundational study of regulated cell death (RCD) can be traced back to Karl Vogt's seminal observations of cellular demise in toads, which were documented in 1842. In the past decade, the Nomenclature Committee on Cell Death (NCCD) has systematically classified and delineated various forms and mechanisms of cell death, synthesizing morphological, biochemical, and functional characteristics. Cell death primarily manifests in two forms: accidental cell death (ACD), which is caused by external factors such as physical, chemical, or mechanical disruptions; and RCD, a gene-directed intrinsic process that coordinates an orderly cellular demise in response to both physiological and pathological cues. Advancements in our understanding of RCD have shed light on the manipulation of cell death modulation - either through induction or suppression - as a potentially groundbreaking approach in oncology, holding significant promise. However, obstacles persist at the interface of research and clinical application, with significant impediments encountered in translating to therapeutic modalities. It is increasingly apparent that an integrative examination of the molecular underpinnings of cell death is imperative for advancing the field, particularly within the framework of inter-pathway functional synergy. In this review, we provide an overview of various forms of RCD, including autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis and immunogenic cell death. We summarize the latest advancements in understanding the molecular mechanisms that regulate RCD in glioma and explore the interconnections between different cell death processes. By comprehending these connections and developing targeted strategies, we have the potential to enhance glioma therapy through manipulation of RCD.
Collapse
Affiliation(s)
- Maowen Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiaofan Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Suxin Yuan
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Youlin Cao
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jing Zhang
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jiaying Xie
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinglian Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Yang X, Zhang P, Jiang J, Almoallim HS, Alharbi SA, Li Y. Myricetin Attenuates Ethylene Glycol-Induced Nephrolithiasis in Rats via Mitigating Oxidative Stress and Inflammatory Markers. Appl Biochem Biotechnol 2024; 196:5419-5434. [PMID: 38158485 DOI: 10.1007/s12010-023-04831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Urolithiasis or nephrolithiasis is a condition of kidney stone formation and is considered a painful disease of the urinary tract system. In this work, we planned to discover the therapeutic roles of myricetin on the ethylene glycol (EG)-induced nephrolithiasis in rats. The experimental rats were treated with 0.75% of EG through drinking water for 4 weeks to initiate the nephrolithiasis and subsequently treated with 25 and 50 mg/kg of myricetin. The body weight and urine volume were measured regularly. After the sacrification of rats, the samples were collected, and serum and urinary biomarkers such as creatinine, urea, Ca2 + ion, and BUN, OPN, oxalate, and citrate levels were determined using assay kits. These biomarkers, the MDA level and CAT, SOD, and GPx activities, were assessed in the kidney tissue homogenates. The IL-6, IL-1β, and TNF-α levels were also quantified using respective kits. The histopathological analysis was done on the kidney tissues. Myricetin treatment did not show major changes in the body weight and kidney weight in the EG-induced rats. The treatment with 25 and 50 mg/kg of myricetin considerably reduced the urea, creatinine, BUN, Ca2 + ion, and oxalate and increased the citrate content in serum and urine samples of EG-induced rats. Further, myricetin depleted the inflammatory cytokines and MDA levels and elevated the CAT, SOD, and GPx activities in the renal tissues. The activities of ALT, AST, ALP, GGT, and LDH were also reduced by the myricetin. Furthermore, the myricetin upheld the histoarchitecture of the kidneys. The outcomes of this investigation propose that myricetin is effective in EG-induced urolithiasis probably because of its antioxidant, anti-inflammatory, and renoprotective activities. In addition, further studies are still required to verify the precise therapeutic mechanism of myricetin.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of Urology Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Pei Zhang
- Department of Urology Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Jiang
- Department of Urology Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box 60169, Riyadh, 11545, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Youfang Li
- Department of Urology Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
3
|
Application of the nanostructured R-AgLAFE electrode to study the electroreduction process of Bi(III) ions in the presence of N-acetylcysteine. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AbstractBi(III) ions electroreduction in the presence of N-acetylcysteine (ACYS)at the nanostructured R-AgLAFE electrode has been studied by the voltammetric and impedance measurements. The experimental data indicates the multistage character of the electrode process and the catalytic influence of N-acetylcysteine on the Bi(III) ions electroreduction rate. It was found that this process is controlled by the chemical reaction of the Bi(III)–Hg(SR)2 activecomplexes formation on the electrode surface, which mediates electron transfer. Active complexes are a substrate in the process of electroreduction, and their different structure and properties are the reason for the diverse catalytic activity of N-acetylcysteine.
Collapse
|
4
|
Jiang H, Hong Y, Fan G. Bismuth Reduces Cisplatin-Induced Nephrotoxicity Via Enhancing Glutathione Conjugation and Vesicular Transport. Front Pharmacol 2022; 13:887876. [PMID: 35784696 PMCID: PMC9243339 DOI: 10.3389/fphar.2022.887876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Bismuth drugs have long been used against gastrointestinal diseases, especially the gastric infection of Helicobacter pylori. Cisplatin is a widely used anticancer drug that tends to accumulate at renal proximal tubules and causes severe nephrotoxicity. It was found that bismuth pretreatment reduces cisplatin-induced nephrotoxicity, but the mechanism of action remains unclear. To understand bismuth’s effect on renal tubules, we profiled the proteomic changes in human proximal tubular cells (HK-2) upon bismuth treatment. We found that bismuth induced massive glutathione biosynthesis, glutathione S-transferase activity, and vesicular transportation, which compartmentalizes bismuth to the vesicles and forms bismuth–sulfur nanoparticles. The timing of glutathione induction concurs that of bismuth-induced cisplatin toxicity mitigation in HK-2, and bismuth enhanced cisplatin sequestration to vesicles and incorporation into bismuth–sulfur nanoparticles. Finally, we found that bismuth mitigates the toxicity of general soft metal compounds but not hard metal compounds or oxidants. It suggests that instead of through oxidative stress reduction, bismuth reduces cisplatin-induced toxicity by direct sequestration.
Collapse
Affiliation(s)
- Hui Jiang
- Tongji University School of Medicine, Shanghai, China
| | - Yifan Hong
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Yifan Hong, ; Guorong Fan,
| | - Guorong Fan
- Tongji University School of Medicine, Shanghai, China
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yifan Hong, ; Guorong Fan,
| |
Collapse
|
5
|
Carbonic Anhydrase IX-Targeted α-Radionuclide Therapy with 225Ac Inhibits Tumor Growth in a Renal Cell Carcinoma Model. Pharmaceuticals (Basel) 2022; 15:ph15050570. [PMID: 35631396 PMCID: PMC9142961 DOI: 10.3390/ph15050570] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we compared the tumor-targeting properties, therapeutic efficacy, and tolerability of the humanized anti-CAIX antibody (hG250) labeled with either the α-emitter actinium-225 (225Ac) or the β--emitter lutetium-177 (177Lu) in mice. BALB/c nude mice were grafted with human renal cell carcinoma SK-RC-52 cells and intravenously injected with 30 µg [225Ac] Ac-DOTA-hG250 (225Ac-hG250) or 30 µg [177Lu] Lu-DOTA-hG250 (177Lu-hG250), followed by ex vivo biodistribution studies. Therapeutic efficacy was evaluated in mice receiving 5, 15, and 25 kBq of 225Ac-hG250; 13 MBq of 177Lu-hG250; or no treatment. Tolerability was evaluated in non-tumor-bearing animals. High tumor uptake of both radioimmunoconjugates was observed and increased up to day 7 (212.8 ± 50.2 %IA/g vs. 101.0 ± 18.4 %IA/g for 225Ac-hG250 and 177Lu-hG250, respectively). Survival was significantly prolonged in mice treated with 15 kBq 225Ac-hG250, 25 kBq 225Ac-hG250, and 13 MBq 177Lu-hG250 compared to untreated control (p < 0.05). Non-tumor-bearing mice that received single-dose treatment with 15 or 25 kBq 225Ac-hG250 showed weight loss at the end of the experiment (day 126), and immunohistochemical analysis suggested radiation-induced nephrotoxicity. These results demonstrate the therapeutic potential of CAIX-targeted α-therapy in renal cell carcinoma. Future studies are required to find an optimal balance between therapeutic efficacy and toxicity.
Collapse
|
6
|
Anticancer effect of X-Ray triggered methotrexate conjugated albumin coated bismuth sulfide nanoparticles on SW480 colon cancer cell line. Int J Pharm 2020; 582:119320. [PMID: 32278720 DOI: 10.1016/j.ijpharm.2020.119320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
The application of nanoparticles (NPs) as radio-sensitizers and carriers has opened up a new horizon to overcome the limitations of chemo and radiotherapy. In this study, bovine serum albumin-coated Bi2S3 NPs (Bi2S3@BSA NPs) were synthesized and evaluated in terms of their ability to be used as a radio-sensitizer and carrier for methotrexate (MTX). Physicochemical properties of MTX conjugated Bi2S3@BSA NPs (Bi2S3@BSA-MTX NPs) were characterized by DLS, TEM, FTIR, UV/Vis, and XRD analyses. After the evaluation of cellular uptake and intracellular localization, the cytotoxicity of the combination of Bi2S3@BSA-MTX NPs and X-Ray radiation was analyzed against the SW480 cell line. The synthesized NPs exhibited spherical-like shapes and homogenous morphology, possessing a hydrodynamic diameter of 140.2 ± 5.71 nm (mean ± SD) and zeta potential of -25 mV. Also, the release study showed that the release of MTX is faster and higher in the presence of the proteinase K enzyme than the absence of the enzyme. The results of in-vitro chemo-radiation therapy indicated that the viability of treated cells with Bi2S3@BSA-MTX NPs is significantly lower than the cells treated with Bi2S3@BSA NPs. Furthermore, cells treated with Bi2S3@BSA-MTX NPs showed a lower degree of viability when combined with X-Ray radiation in comparison with the absence of irradiation, which confirmed the ability of the Bi2S3@BSA-MTX NPs as radio-sensitizer.
Collapse
|
7
|
Zheng S, Ma J. A Systematic Review of Gastrointestinal Manifestations in Diabetic Nephropathy. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2019; 000:1-10. [DOI: 10.14218/erhm.2019.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Shakibaie M, Forootanfar H, Ameri A, Adeli-Sardou M, Jafari M, Rahimi HR. Cytotoxicity of biologically synthesised bismuth nanoparticles against HT-29 cell line. IET Nanobiotechnol 2018; 12:653-657. [PMID: 30095428 PMCID: PMC8676642 DOI: 10.1049/iet-nbt.2017.0295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
This study was purposed to examine the cytotoxicity and functions of biologically synthesised bismuth nanoparticles (Bi NPs) produced by Delftia sp. SFG on human colon adenocarcinoma cell line of HT-29. The structural properties of Bi NPs were investigated using transmission electron microscopy, energy dispersive X-ray, and X-ray diffraction techniques. The cytotoxic effects of Bi NPs were analysed using flow cytometry cell apoptosis while western blot analyses were applied to analyse the cleaved caspase-3 expression. Oxidative stress (OS) damage was determined using the measurement of the glutathione (GSH) and malondialdehyde (MDA) levels and antioxidant activity of superoxide dismutase (SOD) and catalase (CAT) levels. The half maximal inhibitory concentration (IC50) value of Bi NPs was measured to be 28.7 ± 1.4 µg/ml on HT-29 cell line. The viability of HT-29 represented a concentration-dependent pattern (5-80 µg/ml). The mode of Bi NPs induced apoptosis was found to be mainly related to late apoptosis or necrosis at IC50 concentration, without the effect on caspase-3 activities. Furthermore, Bi NPs reduced the GSH and increased the MDA levels and decreased the SOD and CAT activities. Taken together, biogenic Bi NPs induced cytotoxicity on HT-29 cell line through the activation of late apoptosis independent of caspase pathway and may enhance the OS biomarkers.
Collapse
Affiliation(s)
- Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Jafari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Rahimi
- Sudent Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Liu Y, Shen C, Zhang X, Yu H, Wang F, Wang Y, Zhang LW. Exposure and nephrotoxicity concern of bismuth with the occurrence of autophagy. Toxicol Ind Health 2018; 34:188-199. [PMID: 29506455 DOI: 10.1177/0748233717746810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal nanoparticles or metal-based compounds have drawn attention in various fields ranging from industry to medicine because of their unique physicochemical properties. Bismuth (Bi) compounds and nanomaterials have been commonly used in alloys, electronic industry, batteries, and as flame retardants as well as for anti- Helicobacter pylori therapy, while the nanomaterial form has great potential for computed tomography imaging and thermotherapy, both of which will be introduced in this review. Although Bi was used for several decades, there is a lack of detailed information concerning their toxicity and mechanisms on human health. We described the toxicity of Bi on the kidney that seemed to be relatively known by researchers, while the mechanisms remain unclear. Recently, our group has found that Bi compounds, including bismuth nitrate (BN) and Bi nanomaterials, can induce autophagy in kidney cells. We also extended our findings by selecting five Bi compounds, and the results showed that BN, bismuth oxychloride, bismuth citrate, colloidal bismuth subcitrate, and Bi nanomaterials all induced slight cytotoxicity accompanied with autophagy. Although the role of autophagy in Bi-induced cytotoxicity and kidney injury is under investigation by us, autophagy may help with the exploration of the mechanisms of nephrotoxicity by Bi.
Collapse
Affiliation(s)
- Yongming Liu
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Chen Shen
- 2 Department of Oncology, No.100 Hospital of PLA, Suzhou, Jiangsu, China
| | - Xihui Zhang
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Huan Yu
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Fujun Wang
- 3 Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yangyun Wang
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Leshuai W Zhang
- 1 School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Abudayyak M, Öztaş E, Arici M, Özhan G. Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. CHEMOSPHERE 2017; 169:117-123. [PMID: 27870932 DOI: 10.1016/j.chemosphere.2016.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/11/2016] [Accepted: 11/05/2016] [Indexed: 05/25/2023]
Abstract
Nanoparticles have been drawn attention in various fields ranging from medicine to industry because of their physicochemical properties and functions, which lead to extensive human exposure to nanoparticles. Bismuth (Bi)-based compounds have been commonly used in the industrial, cosmetic and medical applications. Although the toxicity of Bi-based compounds was studied for years, there is a serious lack of information concerning their toxicity and effects in the nanoscale on human health and environment. Therefore, we aimed to investigate the toxic effects of Bi (III) oxide (Bi2O3) nanoparticles in liver (HepG2 hepatocarcinoma cell), kidney (NRK-52E kidney epithelial cell), intestine (Caco-2 colorectal adenocarcinoma cell), and lung (A549 lung carcinoma cell) cell cultures. Bi2O3 nanoparticles (∼149.1 nm) were easily taken by all cells and showed cyto- and genotoxic effects. It was observed that the main cell death pathways were apoptosis in HepG2 and NRK-52E cells and necrosis in A549 and Caco-2 cells exposed to Bi2O3 nanoparticles. Also, the glutathione (GSH), malondialdehyde (MDA), and 8-hydroxy deoxyguanine (8-OHdG) levels were significantly changed in HepG2, NRK-52E, and Caco-2 cells, except A549 cell. The present study is the first to evaluate the toxicity of Bi2O3 nanoparticles in mammalian cells. Bi2O3 nanoparticles should be thoroughly assessed for their potential hazardous effects to human health and the results should be supported with in vivo studies to fully understand the mechanism of their toxicity.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey
| | - Ezgi Öztaş
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey
| | - Merve Arici
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazit, 34116, Istanbul, Turkey.
| |
Collapse
|
11
|
Protective effects of boron and vitamin E on ethylene glycol-induced renal crystal calcium deposition in rat. Endocr Regul 2016; 50:194-206. [DOI: 10.1515/enr-2016-0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Objectives. Kidney stone disease is a common form of renal disease. Antioxidants, such as vitamin E (Vit E) and boron, are substances that reduce the damage caused by oxidation.
Methods. Adult male rats were divided into 5 groups (n=6). In group 1, rats received standard food and water for 28 days (control group); in group 2, standard rodent food and water with 0.75% ethylene glycol/d (dissolved in drinking water) (EG Group); in group 3, similar to group 2, with 3 mg of boron/d (dissolved in water) (EG+B Group); in group 4, similar to group 2, with 200 IU of vitamin E injected intraperitoneally on the first day and the 14th day, (EG+Vit E Group); in group 5, mix of groups 3 and 4, respectively (EG+B+Vit E Group).
Results. Kidney sections showed that crystals in the EG group increased significantly in comparison with the control group. Crystal calcium deposition score in groups of EG+B (160), EG+Vit E, and EG+B+Vit E showed a significant decrease compared to EG group. Measurement of the renal tubules area and renal tubular epithelial histological score showed the highest significant dilation in the EG group. Tubular dilation in the EG+B+Vit E group decreased compared to the EG+B and EG+Vit E groups.
Conclusions. Efficient effect of boron and Vit E supplements, separately and in combination, has a complimentary effect in protection against the formation of kidney stones, probably by decreasing oxidative stress.
Collapse
|
12
|
Abudayyak M, Guzel EE, Özhan G. Copper (II) Oxide Nanoparticles Induced Nephrotoxicity In Vitro Conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2016.0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - E. Elif Guzel
- Department of Histology and Embryology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Leussink BT, Baelde HJ, Broekhuizen-van den Berg TM, de Heer E, van der Voet GB, Slikkerveer A, Bruijn JA, de Wolff FA. Renal epithelial gene expression profile and bismuth-induced resistance against cisplatin nephrotoxicity. Hum Exp Toxicol 2016; 22:535-40. [PMID: 14655719 DOI: 10.1191/0960327103ht393oa] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nephrotoxicity is the most important dose-limiting factor in cisplatin based anti-neoplastic treatment. Pretreatment with bismuth salts, used as pharmaceuticals to treat gastric disorders, has been demonstrated to reduce cisplatin-induced renal cell death in clinical settings and during in vivo and in vitro animal experiments. To investigate the genomic basis of this renoprotective effect, we exposed NRK-52E cells, a cell line of rat proximal tubular epithelial origin, to 33 mM Bi3for 12 hours, which made them resistant to cisplatin-induced apoptosis. Differentially expressed genes in treated and untreated NRK-52E cells were detected by subtraction PCR and microarray techniques. Genes found to be down regulated (0.17/0.31-times) were cytochrome c oxidase subunit I, BAR (an apoptosis regulator), heat-shock protein 70-like protein, and three proteins belonging to the translation machinery (ribosomal proteins S7 and L17, and S1, a member of the elongation factor 1-alpha family). The only up-regulated gene was glutathione Stransferase subunit 3A (1.89-times). Guided by the expression levels of these genes, it may be possible to improve renoprotective treatments during anti-neoplastic therapies.
Collapse
Affiliation(s)
- Berend T Leussink
- Toxicology Laboratory, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Porcine proximal tubular cells (LLC-PK1) are able to tolerate high levels of lithium chloride in vitro: assessment of the influence of 1-20 mM LiCl on cell death and alterations in cell biology and biochemistry. Cell Biol Int 2010; 34:225-33. [PMID: 19947924 DOI: 10.1042/cbi20090042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lithium, a prophylactic drug for the treatment of bipolar disorder, is prescribed with caution due to its side effects, including renal damage. In this study porcine LLC-PK1 renal tubular cells were used to establish the direct toxicity of lithium on proximal cells and gain insights into the molecular mechanisms involved. In the presence of LiCl, cell proliferation exhibited insignificant decreases in a concentration-dependent manner, but once confluent, constant cell numbers were observed. Cell cycle studies indicated a small dose-dependent accumulation of cells in the G2/M stage after 24 h, as well as an increase in cells in the G0/G1 phase after treatment with 1-10 mM LiCl, but not at 20 mM LiCl. No evidence of apoptosis was observed based on cell morphology or DNA fragmentation studies, or evidence of protein expression changes for Bax, Bcl-2, and p53 proteins using immunocytochemistry. In addition caspases 3, 8 and 9 activity remained unaltered between control and lithium-treated cultures. To conclude, exposure to high concentrations of lithium did not result in overt toxic effects to LLC-PK1 renal cells, although LiCl did alter some aspects of cell behaviour, which could potentially influence function over time.
Collapse
|
16
|
Rached E, Hoffmann D, Blumbach K, Weber K, Dekant W, Mally A. Evaluation of putative biomarkers of nephrotoxicity after exposure to ochratoxin a in vivo and in vitro. Toxicol Sci 2008; 103:371-81. [PMID: 18308701 DOI: 10.1093/toxsci/kfn040] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The kidney is one of the main targets of xenobiotic-induced toxicity, but early detection of renal damage is difficult. Recently, several novel biomarkers of nephrotoxicity have been identified by transcription profiling, including kidney injury molecule-1 (Kim-1), lipocalin-2, tissue inhibitor of metalloproteinases-1 (Timp-1), clusterin, osteopontin (OPN), and vimentin, and suggested as sensitive endpoints for acute kidney injury in vivo. However, it is not known if these cellular marker molecules may also be useful to predict chronic nephrotoxicity or to detect nephrotoxic effects in vitro. In this study, a panel of new biomarkers of renal toxicity was assessed via quantitative real-time PCR, immunohistochemistry, and immunoblotting in rats treated with the nephrotoxin ochratoxin A (OTA) for up to 90 days and in rat proximal tubule cells (NRK-52E) treated with OTA in vitro. Repeated administration of OTA to male F344/N rats for 14, 28, or 90 days resulted in a dose- and time-dependent increase in the expression of Kim-1, Timp-1, lipocalin-2, OPN, clusterin, and vimentin. Changes in gene expression were found to correlate with the progressive histopathological alterations and preceded effects on traditional clinical parameters indicative of impaired kidney function. Induction of Kim-1 messenger RNA expression was the earliest and most prominent response observed, supporting the use of this marker as sensitive indicator of chronic kidney injury. In contrast, no significant increase in the expression of putative marker genes and proteins were evident in NRK-52E cells after exposure to OTA for up to 48 h, suggesting that they may not be suitable endpoints for sensitive detection of nephrotoxic effects in vitro.
Collapse
Affiliation(s)
- Eva Rached
- Department of Toxicology, University of Würzburg, Würzburg D-97078, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Beck R, Seidl C, Pfost B, Morgenstern A, Bruchertseifer F, Baum H, Schwaiger M, Senekowitsch-Schmidtke R. 213Bi-radioimmunotherapy defeats early-stage disseminated gastric cancer in nude mice. Cancer Sci 2007; 98:1215-22. [PMID: 17561973 PMCID: PMC11160030 DOI: 10.1111/j.1349-7006.2007.00525.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The alpha-emitter 213Bi is characterized by a high relative biological effectiveness. 213Bi-immunoconjugates targeting tumor-specific d9-E-cadherin have been proven to effectively kill tumor cells in a murine peritoneal carcinomatosis model. The aim of the present study was to optimize the efficacy of 213Bi-radioimmunotherapy for disseminated gastric cancer in a mouse model of early- and advanced-stage disease and to evaluate the long-term toxicity of 213Bi-immunoconjugates. For that purpose, nude mice were treated with different activities of 213Bi-d9 monoclonal antibody (MAb) targeting d9-E-cadherin or unspecific 213Bi-d8MAb at days 1 or 8 after inoculation of HSC45-M2 gastric cancer cells expressing mutant d9-E-cadherin. Therapeutic efficacy was evaluated by monitoring survival for up to 300 days. Long-term toxicity was evaluated by the survival of tumor-free mice injected with 213Bi-immunoconjugates, kidney function parameters and histopathological examination of kidneys. We showed that survival was significantly prolonged following treatment of mice with 213Bi-immunoconjugates (0.37-22.2 MBq) at day 1 after tumor cell inoculation (P < 0.002). Therapy with 1.85 MBq of 213Bi-d9MAb was most successful, defeating early-stage disease in 87% of all cases. Treatment at day 8 after tumor cell inoculation was less efficient. Long-term nephrotoxicity could only be observed following application of 22.2 MBq of 213Bi-d9MAb, the highest activity applied in the therapy trials. As treatment with 1.85 MBq 213Bi-d9MAb showed excellent therapeutic efficacy without any signs of acute or chronic toxicity, radioimmunotherapy with the alpha-emitter 213Bi is a promising concept for treatment of early peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Roswitha Beck
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang HS, Chen J, Chen CF, Ma MC. Vitamin E attenuates crystal formation in rat kidneys: Roles of renal tubular cell death and crystallization inhibitors. Kidney Int 2006; 70:699-710. [PMID: 16807540 DOI: 10.1038/sj.ki.5001651] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that oxidative stress and renal tubular damage occur in chronic hyperoxaluric rats. However, the in vivo responses of renal epithelial cells after vitamin E administration and their correlations with calcium oxalate (CaOx) crystal formation have not been evaluated. Male Wistar rats received 0.75% ethylene glycol (EG) for 7, 21, or 42 days to induce CaOx deposition (EG group). Another group of EG-treated rats received 200 mg kg(-1) of vitamin E intraperitoneally (EG+E group) to evaluate its effect on hyperoxaluria. Urinary electrolytes and biochemistry and levels of lipid peroxides and enzymes were examined, together with serum vitamin E levels. Levels of the tubular markers, alpha and mu glutathione S-transferase, proliferating cell nuclear antigen (PCNA), osteopontinin (OPN), and Tamm-Horsfall protein (THP) were also measured, and TUNEL staining was performed to examine the viability of the tubular epithelium. There were no significant differences between the two age-matched controls either untreated or given vitamin E. Compared to untreated controls, tubular cell death was increased at all time points in EG rats with a gradual increase in CaOx crystals, whereas the number of PCNA-positive cells was only significantly increased on day 21. In EG+E rats, tubular cell death was decreased compared to the EG group, and cell proliferation was seen at all time points, while CaOx crystal deposition was decreased, but hyperoxaluria, urinary lipid peroxides, and enzymuria were unaffected. Vitamin E supplement prevented the loss of OPN and THP in renal tissues by EG and the reduction in their levels in the urine. The beneficial effect of vitamin E in reducing CaOx accumulation is due to attenuation of tubular cell death and enhancement of the defensive roles of OPN and THP.
Collapse
Affiliation(s)
- H-S Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
19
|
Mally A, Decker M, Bekteshi M, Dekant W. Ochratoxin A alters cell adhesion and gap junction intercellular communication in MDCK cells. Toxicology 2006; 223:15-25. [PMID: 16621214 DOI: 10.1016/j.tox.2006.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Ochratoxin A (OTA) is one of the most potent renal carcinogens studied to date, but the mechanism of tumor formation by ochratoxin A remains largely unknown. Cell adhesion and cell-cell communication participate in the regulation of signaling pathways involved in cell proliferation and growth control and it is therefore not surprising that modulation of cell-cell signaling has been implicated in cancer development. Several nephrotoxicants and renal carcinogens have been shown to alter cell-cell signaling by interference with gap junction intercell communication (GJIC) and/or cell adhesion, and the aim of this study was to determine if disruption of cell-cell interactions occurs in kidney epithelial cells in response to OTA treatment. MDCK cells were treated with OTA (0-50 microM) for up to 24h and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, expression and intracellular localization of C x 43, E-cadherin and beta-catenin were determined by immunoblot and immunofluorescence analysis. A clear decrease in the distance of dye transfer was evident following treatment with OTA at concentrations/incubation times which did not affect cell viability. Consistent with the functional inhibition of GJIC, treatment with OTA resulted in a dose-dependent decrease in C x 43 expression. In contrast to C x 43, OTA did not alter total amount of the adherens junction proteins E-cadherin and beta-catenin. Moreover, Western blot analysis of Triton X-100 soluble and insoluble protein fractions did not indicate translocation of cell adhesion molecules from the membrane to the cytoplasm. However, a approximately 78 kDa fragment of beta-catenin was detected in the detergent soluble fraction, indicating proteolytic cleavage of beta-catenin. Immunofluorescence analysis also revealed changes in the pattern of both beta-catenin and E-cadherin labeling, suggesting that OTA may alter cell-adhesion. Taken together, these data support the hypothesis that disruption of cell-cell signaling may contribute to OTA toxicity and carcinogenicity.
Collapse
Affiliation(s)
- Angela Mally
- Department of Toxicology, University of Würzburg, Germany.
| | | | | | | |
Collapse
|
20
|
Cengiz N, Uslu Y, Gök F, Anarat A. Acute renal failure after overdose of colloidal bismuth subcitrate. Pediatr Nephrol 2005; 20:1355-8. [PMID: 15947979 DOI: 10.1007/s00467-005-1993-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/21/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
Bismuth salts are widely used to treat peptic ulcers. Acute toxicity with colloidal bismuth subcitrate overdose causes nephrotoxicity. There have been numerous reports of encephalopathy after long-term consumption of bismuth salts, but only a few cases of nephrotoxicity (adult and pediatric) have been documented to date. This report presents a case of acute renal failure due to colloidal bismuth subcitrate overdose in adolescent. A 16-year-old girl presented with complaints of nausea, vomiting, and facial paresthesia. Ten days earlier she had tried to commit suicide by taking 60 tablets of De-nol (colloidal bismuth subcitrate 18 g). The physical examination findings on admission indicated minimal fluid overload but no signs of encephalopathy. Laboratory tests on admission showed blood urea nitrogen 102 mg/dl, serum creatinine 19.9 mg/dl, and serum bismuth level 495 microg/l. The patient was started on appropriate fluid therapy and penicillamine as a chelating agent and then began hemodialysis on alternate days. The patient's renal function gradually returned to normal over 9 weeks and by 64 days after the overdose her serum bismuth level had fallen to almost half the level detected 2 days after admission. The patient made a complete recovery. The case demonstrates that acute renal failure can develop as a manifestation of acute toxicity from colloidal bismuth ingestion, and that the prognosis may be favorable if the patient receives appropriate supportive treatment and dialysis.
Collapse
Affiliation(s)
- Nurcan Cengiz
- Department of Pediatric Nephrology, Faculty of Medicine, Adana Teaching and Medical Research Center, Baskent University, 01140 Adana, Turkey.
| | | | | | | |
Collapse
|
21
|
Magnusson NE, Larsen A, Rungby J, Kruhøffer M, Orntoft TF, Stoltenberg M. Gene expression changes induced by bismuth in a macrophage cell line. Cell Tissue Res 2005; 321:195-210. [PMID: 15912405 DOI: 10.1007/s00441-005-1103-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 02/14/2005] [Indexed: 12/20/2022]
Abstract
We have investigated the effect of bismuth by autometallography, cell viability, TUNEL assay and microarray analysis of a macrophage cell line. The cells accumulate bismuth in their lysosomes in a time- and dose-dependent manner. Cell viability assays show a significant decrease in the number of viable cells related to both bismuth concentrations and exposure time. TUNEL assays after 12 h and 24 h at a bismuth-citrate concentration of 50 microM revealed the presence of 30% and 70% TUNEL-positive cells, respectively, compared with 8% in the controls. We have analysed gene expression profiles for cells exposed to 50 microM bismuth-citrate and for untreated controls at 12 h and 24 h by microarray analysis, which confirmed that bismuth is a powerful metallothionein inducer. A number of glycolytic enzymes are induced by bismuth, suggesting that bismuth is able to induce "hypoxia-like" stress. BCL2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) has been suggested as a regulator of hypoxia-induced cell death independent of caspase-3 activation and cytochrome c release. Bnip3 is up-regulated indicating the involvement of Bnip3 as a possible mechanism for bismuth-induced cell death. Differences have been noticed in cell viability and in the modification of the mRNA expression levels at 12 and 24 h. Only 13 genes are modified at both these times, suggesting a time-dependent molecular cascade in which bismuth-exposed cells enter a dormant stage with mRNA down-regulation being followed by cell death of susceptible cells.
Collapse
Affiliation(s)
- Nils E Magnusson
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
Hutson JC. Effects of bismuth citrate on the viability and function of Leydig cells and testicular macrophages. J Appl Toxicol 2005; 25:234-8. [PMID: 15856528 DOI: 10.1002/jat.1060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bismuth is present in several popular over-the-counter drugs for nausea and diarrhea and is occasionally abused by patients with chronic gastrointestinal disorders. The most common consequence of bismuth overdose is neurological dysfunction. In experimental animals, bismuth overdose results in lowered serum testosterone levels, suggesting that reproductive dysfunction may be an additional component of bismuth toxicity. Although the precise mechanisms responsible for the lowered testosterone levels are unknown, it has been shown that bismuth accumulates within testicular macrophages. This may be important because these cells, which are commonly found in direct contact with Leydig cells, are known to exert paracrine influences on the Leydig cells for local control of testosterone production. However, bismuth may also exert direct effects on Leydig cells because it passes by these cells on its way to the phagocytic macrophages. The purpose of the present studies was to isolate both testicular macrophages and Leydig cells from rat testis and study the direct effects of bismuth on these cells with regard to their viability and function. We found that when Leydig cells were treated for 24 h with bismuth (1-100 microM) no change in viability or secretion of testosterone was observed. However, when testicular macrophages were similarly treated with bismuth a significant effect on viability was observed with as little as 6.25 microM bismuth, with near-complete cell death at 50 microM after 24 h. However, bismuth had no effect on the viability on testicular macrophages at 50 microM up to 8 h, therefore, we studied the secretion of tumor necrosis factor alpha (TNF-alpha) after 4 h of exposure to 50 microM bismuth and found no influence on the production of TNF-alpha. Taken together, it seems likely that bismuth has no direct effects on Leydig cells but, rather, lowers testosterone levels by killing testicular macrophages, thereby interrupting their local paracrine influence on Leydig cells through factors other than TNF-alpha.
Collapse
Affiliation(s)
- James C Hutson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
23
|
Kondo Y, Himeno S, Satoh M, Naganuma A, Nishimura T, Imura N. Citrate enhances the protective effect of orally administered bismuth subnitrate against the nephrotoxicity ofcis-diamminedichloroplatinum. Cancer Chemother Pharmacol 2004. [DOI: 10.1007/bf02665350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Le traitement de la diarrhée. Paediatr Child Health 2003. [DOI: 10.1093/pch/8.7.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|