1
|
Niranjan R, Thakur AK. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol 2017; 8:763. [PMID: 28713383 PMCID: PMC5492873 DOI: 10.3389/fimmu.2017.00763] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The environmental soot and carbon blacks (CBs) cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
2
|
Pawlak EA, Noah TL, Zhou H, Chehrazi C, Robinette C, Diaz-Sanchez D, Müller L, Jaspers I. Diesel exposure suppresses natural killer cell function and resolution of eosinophil inflammation: a randomized controlled trial of exposure in allergic rhinitics. Part Fibre Toxicol 2016; 13:24. [PMID: 27154411 PMCID: PMC4859992 DOI: 10.1186/s12989-016-0135-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Exposure to diesel exhaust (DE) is known to exacerbate allergic inflammation, including virus-induced eosinophil activation in laboratory animals. We have previously shown that in human volunteers with allergic rhinitis a short-term exposure to DE prior to infection with the live attenuated influenza virus (LAIV) increases markers of allergic inflammation in the nasal mucosa. Specifically, levels of eosinophilic cationic protein (ECP) were significantly enhanced in individuals exposed to DE prior to inoculation with LAIV and this effect was maintained for at least seven days. However, this previous study was limited in its scope of nasal immune endpoints and did not explore potential mechanisms mediating the prolonged exacerbation of allergic inflammation caused by exposure to DE prior to inoculation with LAIV. In this follow-up study, the methods were modified to expand experimental endpoints and explore the potential role of NK cells. The data presented here suggest DE prolongs viral-induced eosinophil activation, which was accompanied by decreased markers of NK cell recruitment and activation. Separate in vitro studies showed that exposure to DE particles decreases the ability of NK cells to kill eosinophils. Taken together, these follow-up studies suggest that DE-induced exacerbation of allergic inflammation in the context of viral infections may be mediated by decreased activity of NK cells and their ability to clear eosinophils.
Collapse
Affiliation(s)
- Erica A Pawlak
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claire Chehrazi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carole Robinette
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA
| | | | - Loretta Müller
- University Children's Hospital Basel, Basel, Switzerland
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, 104 Mason Farm Rd, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA. .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Nakamura R, Inoue KI, Fujitani Y, Kiyono M, Hirano S, Takano H. In vitro study of the effect of nanoparticle-rich diesel exhaust particles on IL-18 production in splenocytes. J Toxicol Sci 2012; 36:823-7. [PMID: 22129746 DOI: 10.2131/jts.36.823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It has been shown that pulmonary exposure to diesel exhaust particles (DEP) disrupts the immune system, presenting as exacerbating effects on allergic manifestations (e.g., allergic asthma). However, since a model inhalation system has not been developed, the impact of nano-level DEP on health has not been satisfactorily investigated. Our institute (the National Institute for Environmental Studies) established an "environmental nanoparticle exposure system applied in animals" in 2005 and since then, we have explored the health effects of exposure to these types of agent. The present study was conducted to investigate the in vitro effects of nanoparticle-rich DEP (NRDEP) on primary splenocytes from atopy-prone hosts. NC/Nga mouse-derived splenic mononuclear cells were co-cultured with NRDEP (0-50 µg/ml); thereafter, the production/release of interleukin (IL)-18 in the culture supernatants was evaluated by means of ELISA. NRDEP increased IL-18 production/release by splenocytes in a dose-dependent manner with an overall trend (with significance vs. 10 µg/ml of NRDEP). In contrast, 50 µg/ml of NRDEP inhibited production/release. These results suggest that NRDEP can activate naïve splenic mononuclear cells from atopy-prone animals in terms of IL-18 induction.
Collapse
|
4
|
Abstract
The incidence of allergic diseases in most industrialized countries has increased. Although the exact mechanisms behind this rapid increase in prevalence remain uncertain, a variety of air pollutants have been attracting attention as one causative factor. Epidemiological and toxicological research suggests a causative relationship between air pollution and the increased incidence of asthma, allergic rhinitis, and other allergic disorders. These include ozone, nitrogen dioxide and, especially particulate matter, produced by traffic-related and industrial activities. Strong epidemiological evidence supports a relationship between air pollution and the exacerbation of asthma and other respiratory diseases. Recent studies have suggested that air pollutants play a role in the development of asthma and allergies. Researchers have elucidated the mechanisms whereby these pollutants induce adverse effects; they appear to affect the balance between antioxidant pathways and airway inflammation. Gene polymorphisms involved in antioxidant pathways can modify responses to air pollution exposure. While the characterization and monitoring of pollutant components currently dictates pollution control policies, it will be necessary to identify susceptible subpopulations to target therapy/prevention of pollution-induced respiratory diseases.
Collapse
Affiliation(s)
- Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Maes T, Provoost S, Lanckacker EA, Cataldo DD, Vanoirbeek JAJ, Nemery B, Tournoy KG, Joos GF. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation. Respir Res 2010; 11:7. [PMID: 20092634 PMCID: PMC2831838 DOI: 10.1186/1465-9921-11-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/21/2010] [Indexed: 02/06/2023] Open
Abstract
Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed.
Collapse
Affiliation(s)
- Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 2008; 44:1689-99. [PMID: 18313407 PMCID: PMC2387181 DOI: 10.1016/j.freeradbiomed.2008.01.028] [Citation(s) in RCA: 554] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 01/17/2023]
Abstract
Ambient particulate matter (PM) is an environmental factor that has been associated with increased respiratory morbidity and mortality. The major effect of ambient PM on the pulmonary system is the exacerbation of inflammation, especially in susceptible people. One of the mechanisms by which ambient PM exerts its proinflammatory effects is the generation of oxidative stress by its chemical compounds and metals. Cellular responses to PM-induced oxidative stress include activation of antioxidant defense, inflammation, and toxicity. The proinflammatory effect of PM in the lung is characterized by increased cytokine/chemokine production and adhesion molecule expression. Moreover, there is evidence that ambient PM can act as an adjuvant for allergic sensitization, which raises the possibility that long-term PM exposure may lead to increased prevalence of asthma. In addition to ambient PM, rapid expansion of nanotechnology has introduced the potential that engineered nanoparticles (NP) may also become airborne and may contribute to pulmonary diseases by novel mechanisms that could include oxidant injury. Currently, little is known about the potential adverse health effects of these particles. In this communication, the mechanisms by which particulate pollutants, including ambient PM and engineered NP, exert their adverse effects through the generation of oxidative stress and the impacts of oxidant injury in the respiratory tract will be reviewed. The importance of cellular antioxidant and detoxification pathways in protecting against particle-induced lung damage will also be discussed.
Collapse
Affiliation(s)
- Ning Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
- Asthma and Allergic Diseases Cooperative Research Centers, University of California, Los Angeles, CA 90095
- The Southern California Particle Center, University of California, Los Angeles, CA 90095
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
- Asthma and Allergic Diseases Cooperative Research Centers, University of California, Los Angeles, CA 90095
- The Southern California Particle Center, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Corresponding Author: Andre Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680., Tel: (310) 825-6620, Fax: (310) 206-8107, E-mail:
| |
Collapse
|
7
|
Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice. J Physiol 2007; 580:301-14. [PMID: 17204498 PMCID: PMC2075436 DOI: 10.1113/jphysiol.2006.123653] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Submucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas. Thus, they offer the possibility of studying whether, and if so how, abnormal submucosal gland function contributes to CF airway disease. We used optical methods to study fluid secretion by individual glands in tracheas from normal, wild-type (WT) mice and from cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice (Cftr(m1UNC)/Cftr(m1UNC); CF mice). Glands from WT mice qualitatively resembled those in humans by responding to carbachol and vasoactive intestinal peptide (VIP), although the relative rates of VIP- and forskolin-stimulated secretion were much lower in mice than in large mammals. The pharmacology of mouse gland secretion was also similar to that in humans; adding bumetanide or replacement of HCO(3)(-) by Hepes reduced the carbachol response by approximately 50%, and this inhibition increased to 80% when both manoeuvres were performed simultaneously. It is important to note that glands from CFTR knockout mice responded to carbachol but did not secrete when exposed to VIP or forskolin, as has been shown previously for glands from CF patients. Tracheal glands from WT and CF mice both had robust secretory responses to electrical field stimulation that were blocked by tetrodotoxin. It is interesting that local irritation of the mucosa using chili pepper oil elicited secretion from WT glands but did not stimulate glands from CF mice. These results clarify the mechanisms of murine submucosal gland secretion and reveal a novel defect in local regulation of glands lacking CFTR which may also compromise airway defence in CF patients.
Collapse
Affiliation(s)
- Juan P Ianowski
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6.
| | | | | | | |
Collapse
|
8
|
Inoue KI, Takano H, Yanagisawa R, Sakurai M, Ueki N, Yoshikawa T. Effects of Diesel Exhaust on Lung Inflammation Related to Bacterial Endotoxin in Mice. Basic Clin Pharmacol Toxicol 2006; 99:346-52. [PMID: 17076685 DOI: 10.1111/j.1742-7843.2006.pto_498.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that intratracheal instillation of diesel exhaust particles enhances lung inflammation and lung expression of proinflammatory cytokines and chemokines related to bacterial endotoxin (lipopolysaccharide) in mice. The present study was designed to elucidate the effects of inhalation of diesel exhaust on lung inflammation related to lipopolysaccharide. ICR mice were exposed for 12 hr to clean air or diesel exhaust at a soot concentration of 0.3, 1.0, or 3.0 mg/m(3) after intratracheal challenge with 125 microg/kg of lipopolysaccharide. Lung inflammation and lung expression of proinflammatory chemokines such as macrophage chemoattractant protein-1 and keratinocyte chemoattractant were evaluated 24 hr after intratracheal administration. Diesel exhaust inhalation decreased lipopolysaccharide-elicited inflammatory cell recruitment into the bronchoalveolar lavage fluid as compared with clean air inhalation. Histological study demonstrated that exposure to diesel exhaust did not affect lipopolysaccharide-enhanced neutrophil recruitment into the lung parenchyma. Lipopolysaccharide instillation elevated lung expression of macrophage chemoattractant protein-1 and keratinocyte chemoattractant under clean air or diesel exhaust inhalation. However, diesel exhaust exposure did not influence but rather did suppress these levels in the presence of lipopolysaccharide. These results suggest that short-term exposure to diesel exhaust did not exacerbate lung inflammation related to bacterial endotoxin.
Collapse
Affiliation(s)
- Ken-Ichiro Inoue
- Environmental Health Sciences Division, National Institute for Environmental Studies, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Hiyoshi K, Takano H, Inoue KI, Ichinose T, Yanagisawa R, Tomura S, Kumagai Y. Effects of phenanthraquinone on allergic airway inflammation in mice. Clin Exp Allergy 2006; 35:1243-8. [PMID: 16164454 DOI: 10.1111/j.1365-2222.2005.02297.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEP) enhance allergic airway inflammation in mice (Takano et al., Am J Respir Crit Care Med 1997; 156: 36-42). DEP consist of carbonaceous nuclei and a vast number of organic chemical compounds. However, it remains to be identified which component(s) from DEP are responsible for the enhancing effects. 9,10-Phenanthraquinone (PQ) is a quinone compound involved in DEP. OBJECTIVE To investigate the effects of PQ inoculated intratracheally on allergic airway inflammation related to ovalbumin (OVA) challenge. MATERIALS AND METHODS We evaluated effects of PQ on airway inflammation, local expression of cytokine proteins, and allergen-specific immunoglobulin production in mice in the presence or absence of OVA. Results In the presence of OVA, PQ (2.1 ng/animal) significantly increased the numbers of eosinophils and mononuclear cells in bronchoalveolar lavage fluid as compared with OVA alone. In contrast, the numbers of these cells around the airways were not significantly different between OVA challenge and OVA plus PQ challenge in lung histology. PQ exhibited adjuvant activity for the allergen-specific production of IgG1 and IgE. OVA challenge induced significant increases in the lung expression of IL-4, IL-5, eotaxin, macrophage chemoattractant protein-1, and keratinocyte chemoattractant as compared with vehicle challenge. However, the combination of PQ with OVA did not alter the expression levels of these proteins as compared with OVA alone. CONCLUSION These results indicate that PQ can enhance the immunoglobulin production and the infiltration of inflammatory cells into alveolar spaces that are related to OVA, whereas PQ seems to be partially responsible for the DEP toxicity on the allergic airway inflammation.
Collapse
Affiliation(s)
- K Hiyoshi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Inoue KI, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res 2005; 6:106. [PMID: 16164761 PMCID: PMC1242256 DOI: 10.1186/1465-9921-6-106] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 09/16/2005] [Indexed: 11/10/2022] Open
Abstract
Background Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation. Methods ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and immunoglobulin production were studied. Results Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG1 and IgE. Conclusion Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6.
Collapse
Affiliation(s)
- Ken-ichiro Inoue
- Inhalation Toxicology and Pathophysiology Research Team, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hirohisa Takano
- Inhalation Toxicology and Pathophysiology Research Team, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rie Yanagisawa
- Inhalation Toxicology and Pathophysiology Research Team, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Miho Sakurai
- Inhalation Toxicology and Pathophysiology Research Team, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Takamichi Ichinose
- Department of Health Science, Oita University of Nursing and Health Science, Oita, Japan
| | - Kaori Sadakane
- Department of Health Science, Oita University of Nursing and Health Science, Oita, Japan
| | - Toshikazu Yoshikawa
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Tsukue N, Yoshida S, Sugawara I, Takeda K. Effect of Diesel Exhaust on Development of Fetal Reproductive Function in ICR Female Mice. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Naomi Tsukue
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| | - Seiichi Yoshida
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
- Department of Health Sciences, Oita University of Nursing and Health Sciences
| | - Isamu Sugawara
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
- Mycobacterial Reference Center, The Research Institute of Tuberculosis
| | - Ken Takeda
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| |
Collapse
|