1
|
Bourgeois G, Coureux PD, Lazennec-Schurdevin C, Madru C, Gaillard T, Duchateau M, Chamot-Rooke J, Bourcier S, Mechulam Y, Schmitt E. Structures of Saccharolobus solfataricus initiation complexes with leaderless mRNAs highlight archaeal features and eukaryotic proximity. Nat Commun 2025; 16:348. [PMID: 39753558 PMCID: PMC11698992 DOI: 10.1038/s41467-024-55718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
The archaeal ribosome is of the eukaryotic type. TACK and Asgard superphyla, the closest relatives of eukaryotes, have ribosomes containing eukaryotic ribosomal proteins not found in other archaea, eS25, eS26 and eS30. Here, we investigate the case of Saccharolobus solfataricus, a TACK crenarchaeon, using mainly leaderless mRNAs. We characterize the small ribosomal subunit of S. solfataricus bound to SD-leadered or leaderless mRNAs. Cryo-EM structures show eS25, eS26 and eS30 bound to the small subunit. We identify two ribosomal proteins, aS33 and aS34, and an additional domain of eS6. Leaderless mRNAs are bound to the small subunit with contribution of their 5'-triphosphate group. Archaeal eS26 binds to the mRNA exit channel wrapped around the 3' end of rRNA, as in eukaryotes. Its position is not compatible with an SD:antiSD duplex. Our results suggest a positive role of eS26 in leaderless mRNAs translation and possible evolutionary routes from archaeal to eukaryotic translation.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
- Retroviruses and Structural Biochemistry Team, Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-Lyon 1, CNRS, Université de Lyon, Lyon, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Clément Madru
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Thomas Gaillard
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
| |
Collapse
|
2
|
Li Y, Wang J, Li E, Yang X, Yang J. Shifts in Microbial Community Structure and Co-occurrence Network along a Wide Soil Salinity Gradient. Microorganisms 2024; 12:1268. [PMID: 39065037 PMCID: PMC11278679 DOI: 10.3390/microorganisms12071268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The response of microbiomes to salinity has been clarified in different geographic scales or ecosystems. However, how soil microbial community structure and interaction respond to salinity across wide salinity range and climatic region is still unclearly resolved. To address this issue, we examined the microbial community's composition in saline soils from two climatic regions (coastal wetland and arid desert). Our research confirms that soil salinity had a negative effect on soil nutrient content. Salinity decreased the relative abundance of bacteria, but increased archaea abundance, leading to the shifts from bacteria dominant community to archaea dominant community. Low-water medium-salinity soil (LWMS) had the most complex archaeal community network, whereas for bacteria, the most complex bacterial community network was observed in low-water high-salinity soils (LWHS). Key microbial taxa differed in three salinity gradients. Salinity, soil water content, pH, total nitrogen (TN), and soil organic carbon (SOC) were the main driving factors for the composition of archaeal and bacterial community. Salinity directly affected archaeal community, but indirectly influenced bacteria community through SOC; pH affected archaeal community indirectly through TN, but directly affected bacterial community. Our study suggests that soil salinity dramatically influences diversity, composition, and interactions within the microbial community.
Collapse
Affiliation(s)
- Yan Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
| | - Juan Wang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Chengdu Institute of Biology, Chinese Academy Sciences, Chengdu 610042, China
| | - Eryang Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
| | - Xiaodong Yang
- Department of Geography & Spatial Information Technology, Ningbo University, Ningbo 315211, China
| | - Jianjun Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
3
|
Cena JAD, Belmok A, Kyaw CM, Dame-Teixeira N. The Archaea domain: Exploring historical and contemporary perspectives with in silico primer coverage analysis for future research in Dentistry. Arch Oral Biol 2024; 161:105936. [PMID: 38422909 DOI: 10.1016/j.archoralbio.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The complete picture of how the human microbiome interacts with its host is still largely unknown, particularly concerning microorganisms beyond bacteria. Although existing in very low abundance and not directly linked to causing diseases, archaea have been detected in various sites of the human body, including the gastrointestinal tract, oral cavity, skin, eyes, respiratory and urinary systems. But what exactly are these microorganisms? In the early 1990 s, archaea were classified as a distinct domain of life, sharing a more recent common ancestor with eukaryotes than with bacteria. While archaea's presence and potential significance in Dentistry remain under-recognized, there are concerns that they may contribute to oral dysbiosis. However, detecting archaea in oral samples presents challenges, including difficulties in culturing, the selection of DNA extraction methods, primer design, bioinformatic analysis, and databases. DESIGN This is a comprehensive review on the oral archaeome, presenting an in-depth in silico analysis of various primers commonly used for detecting archaea in human body sites. RESULTS Among several primer pairs used for detecting archaea in human samples across the literature, only one specifically designed for detecting methanogenic archaea in stool samples, exhibited exceptional coverage levels for the domain and various archaea phyla. CONCLUSIONS Our in silico analysis underscores the need for designing new primers targeting not only methanogenic archaea but also nanoarchaeal and thaumarchaeota groups to gain a comprehensive understanding of the archaeal oral community. By doing so, researchers can pave the way for further advancements in the field of oral archaeome research.
Collapse
Affiliation(s)
| | - Aline Belmok
- Institute of Biology, University of Brasilia, Brazil
| | | | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, UK.
| |
Collapse
|
4
|
Cena JA, Vasques Castro JAD, Belmok A, Sales LP, Alves de Oliveira L, Stefani CM, Dame-Teixeira N. Unraveling the Endodontic Archaeome: A Systematic Review with Meta-Analysis. J Endod 2023; 49:1432-1444.e4. [PMID: 37544428 DOI: 10.1016/j.joen.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION The controversial issue of whether the Archaea domain plays a role in endodontic infections is the focus of this systematic review with meta-analysis. The aim is to emphasize the significance of minority microbial domains in oral dysbiosis by evaluating the prevalence of archaea in root canals and its association with clinical parameters such as symptomatology and type of endodontic infection. METHODS The search strategy involved researching 6 databases and the gray literature. Publications were accepted in any year or language that identified archaea in samples from endodontic canals. A 2-step selection process narrowed the final choice to 16 articles. The methodological quality of the studies was evaluated using tools from the Joanna Briggs Institute, and the certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. RESULTS The results showed that archaea were present in 20% (95% [confidence interval] CI = 8%-32%) of individuals with endodontic samples analyzed. The samples were about twice as likely to be archaeal-positive if collected from individuals with primary vs. persistent/secondary infection (odds ratio = 2.33; 95% CI = 1.31-4.14; I2 = 0%), or individuals with self-reported vs. symptom-free infections (odds ratio = 2.67; 95% CI = 1.47-4.85; I2 = 0%). Methanogenic archaea were reported in 66% of the included studies. Representative members of phyla Thaumarchaeota and Crenarchaeota were also identified. CONCLUSIONS Archaea are present in about one-fifth of the infected root canals. Recognized biases in experimental approaches for researching archaea must be addressed to understand the prevalence and roles of archaea in endodontic infections, and to determine whether the decontamination process should include the elimination or neutralization of archaea from root canals (International Prospective Register of Systematic Reviews protocol = CRD42021264308).
Collapse
Affiliation(s)
- Jessica Alves Cena
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Aline Belmok
- Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Loise Pedrosa Sales
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Cristine Miron Stefani
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil; Oral Biology Division, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
5
|
McKie SJ, Desai P, Seol Y, Allen AM, Maxwell A, Neuman KC. Topoisomerase VI is a chirally-selective, preferential DNA decatenase. eLife 2022; 11:67021. [PMID: 35076393 PMCID: PMC8837201 DOI: 10.7554/elife.67021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase; however, robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a significant increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.
Collapse
Affiliation(s)
- Shannon J McKie
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Parth Desai
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Adam Mb Allen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
6
|
Gandhi A, Shah A, Jones MP, Koloski N, Talley NJ, Morrison M, Holtmann G. Methane positive small intestinal bacterial overgrowth in inflammatory bowel disease and irritable bowel syndrome: A systematic review and meta-analysis. Gut Microbes 2022; 13:1933313. [PMID: 34190027 PMCID: PMC8253120 DOI: 10.1080/19490976.2021.1933313] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several studies reported a potential role of methane producing archaea in the pathophysiology of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). We conducted a systematic review and meta-analysis to assess the prevalence of methane positive small intestinal bacterial overgrowth (SIBO) in IBS and IBD compared with controls. MEDLINE (PubMed) and Embase electronic databases were searched from inception until March 2021 for case-control and prevalence studies reporting SIBO in IBS and IBD. We extracted data from published studies and calculated pooled prevalence of SIBO in IBS or IBD, odds ratios (OR), and 95% CIs, utilizing a random effects model. The final dataset included 17 independent studies assessing the prevalence of methane positive SIBO in 1,653 IBS-patients and 713 controls, and 7 studies assessing the prevalence of methane positive SIBO in 626 IBD-patients and 497 controls, all utilizing breath test for SIBO diagnosis. Prevalence of methane positive SIBO in IBS and IBD was 25.0% (95% CI 18.8-32.4) and 5.6% (95% CI 2.6-11.8), respectively. Methane positive SIBO in IBS was not increased compared to controls (OR = 1.2, 95% CI 0.8-1.7, P = .37) but was significantly more prevalent in IBS-C as compared to IBS-D (OR = 3.1, 95% CI 1.7-5.6, P = .0001). The prevalence of methane-positive SIBO in patients with IBD was 3-fold lower at 7.4% (95% CI 5.4-9.8) compared to 23.5% (95% CI 19.8-27.5) in controls. The prevalence of methane positive SIBO was significantly lower in Crohn's disease as compared to ulcerative colitis, (5.3%, 95% CI 3.0-8.5 vs. 20.2%, 95% CI 12.8-29.4). This systematic review and meta-analysis suggests methane positivity on breath testing is positively associated with IBS-C and inversely with IBD. However, the quality of evidence is low largely due to clinical heterogeneity of the studies. Thus, causality is uncertain and further studies are required.
Collapse
Affiliation(s)
- Arjun Gandhi
- Faculty of Medicine, The University of Queensland, Queensland, Australia,Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ayesha Shah
- Faculty of Medicine, The University of Queensland, Queensland, Australia,Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia,Translational Research Institute, Brisbane, Queensland, Australia
| | - Michael P. Jones
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Natasha Koloski
- Faculty of Medicine, The University of Queensland, Queensland, Australia,Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia,Translational Research Institute, Brisbane, Queensland, Australia
| | - Nicholas J. Talley
- Faculty of Health and Medicine, The University of Newcastle, Newcastle, Australia
| | - Mark Morrison
- Faculty of Medicine, The University of Queensland, Queensland, Australia,Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia,University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| | - Gerald Holtmann
- Faculty of Medicine, The University of Queensland, Queensland, Australia,Department of Gastroenterology & Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia,Translational Research Institute, Brisbane, Queensland, Australia,CONTACT Gerald Holtmann Brisbane Department of Gastroenterology and Hepatology & University of Queensland Ipswich Road, Woolloongabba, Queensland, Australia
| |
Collapse
|
7
|
Blanquart S, Groussin M, Le Roy A, Szöllosi GJ, Girard E, Franzetti B, Gouy M, Madern D. Resurrection of Ancestral Malate Dehydrogenases Reveals the Evolutionary History of Halobacterial Proteins : Deciphering Gene Trajectories and Changes in Biochemical Properties. Mol Biol Evol 2021; 38:3754-3774. [PMID: 33974066 PMCID: PMC8382911 DOI: 10.1093/molbev/msab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extreme halophilic Archaea thrive in high salt, where, through proteomic adaptation, they cope with the strong osmolarity and extreme ionic conditions of their environment. In spite of wide fundamental interest, however, studies providing insights into this adaptation are scarce, because of practical difficulties inherent to the purification and characterization of halophilic enzymes. In this work, we describe the evolutionary history of malate dehydrogenases (MalDH) within Halobacteria (a class of the Euryarchaeota phylum). We resurrected nine ancestors along the inferred halobacterial MalDH phylogeny, including the Last Common Ancestral MalDH of Halobacteria (LCAHa) and compared their biochemical properties with those of five modern halobacterial MalDHs. We monitored the stability of these various MalDHs, their oligomeric states and enzymatic properties, as a function of concentration for different salts in the solvent. We found that a variety of evolutionary processes such as amino acid replacement, gene duplication, loss of MalDH gene and replacement owing to horizontal transfer resulted in significant differences in solubility, stability and catalytic properties between these enzymes in the three Halobacteriales, Haloferacales and Natrialbales orders since the LCAHa MalDH.We also showed how a stability trade-off might favor the emergence of new properties during adaptation to diverse environmental conditions. Altogether, our results suggest a new view of halophilic protein adaptation in Archaea.
Collapse
Affiliation(s)
| | - Mathieu Groussin
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Aline Le Roy
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Gergely J Szöllosi
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France.,MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Budapest, H-1117, Hungary
| | - Eric Girard
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Bruno Franzetti
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Manolo Gouy
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France
| | | |
Collapse
|
8
|
Shakir NA, Aslam M, Bibi T, Rashid N. ADP-dependent glucose/glucosamine kinase from Thermococcus kodakarensis: cloning and characterization. Int J Biol Macromol 2021; 173:168-179. [PMID: 33444657 DOI: 10.1016/j.ijbiomac.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
The genome sequence of Thermococcus kodakarensis contains an open reading frame, TK1110, annotated as ADP-dependent glucokinase. The encoding gene was expressed in Escherichia coli and the gene product, TK-GLK, was produced in soluble and active form. The recombinant enzyme was extremely thermostable. Thermostability was increased significantly in the presence of ammonium sulfate. ADP was the preferred co-factor for TK-GLK, which could be replaced with CDP but with a 60% activity. TK-GLK was a metal ion-dependent enzyme which exhibited glucokinase, glucosamine kinase and glucose 6-phosphatase activities. It catalyzed the phosphorylation of both glucose and glucosamine with nearly the same rate and affinity. The apparent Km values for glucose and glucosamine were 0.48 ± 0.03 and 0.47 ± 0.09 mM, respectively. The catalytic efficiency (kcat/Km) values against these two substrates were 6.2 × 105 ± 0.25 and 5.8 × 105 ± 0.75 M-1 s-1. The apparent Km value for dephosphorylation of glucose 6-phosphate was ~14-fold higher than that of glucose phosphorylation. Similarly, catalytic efficiency (kcat/Km) for phosphatase reaction was ~19-fold lower than that for the kinase reaction. To the best of our knowledge, this is the first report that describes the reversible nature of a euryarchaeal ADP-dependent glucokinase.
Collapse
Affiliation(s)
- Nisar Ahmed Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Tahira Bibi
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
9
|
The ambiguity of the basic terms related to eukaryotes and the more consistent etymology based on eukaryotic signatures in Asgard archaea. Biosystems 2020; 197:104178. [DOI: 10.1016/j.biosystems.2020.104178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022]
|
10
|
Martijn J, Schön ME, Lind AE, Vosseberg J, Williams TA, Spang A, Ettema TJG. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat Commun 2020; 11:5490. [PMID: 33127909 PMCID: PMC7599335 DOI: 10.1038/s41467-020-19200-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023] Open
Abstract
Halobacteria (henceforth: Haloarchaea) are predominantly aerobic halophiles that are thought to have evolved from anaerobic methanogens. This remarkable transformation most likely involved an extensive influx of bacterial genes. Whether it entailed a single massive transfer event or a gradual stream of transfers remains a matter of debate. To address this, genomes that descend from methanogen-to-halophile intermediates are necessary. Here, we present five such near-complete genomes of Marine Group IV archaea (Hikarchaeia), the closest known relatives of Haloarchaea. Their inclusion in gene tree-aware ancestral reconstructions reveals an intermediate stage that had already lost a large number of genes, including nearly all of those involved in methanogenesis and the Wood-Ljungdahl pathway. In contrast, the last Haloarchaea common ancestor gained a large number of genes and expanded its aerobic respiration and salt/UV resistance gene repertoire. Our results suggest that complex and gradual patterns of gain and loss shaped the methanogen-to-halophile transition.
Collapse
Affiliation(s)
- Joran Martijn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Max E Schön
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anders E Lind
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Julian Vosseberg
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Anja Spang
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Thijs J G Ettema
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Presence of Archaea in dental caries biofilms. Arch Oral Biol 2020; 110:104606. [DOI: 10.1016/j.archoralbio.2019.104606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
12
|
Species Widely Distributed in Halophilic Archaea Exhibit Opsin-Mediated Inhibition of Bacterioruberin Biosynthesis. J Bacteriol 2018; 201:JB.00576-18. [PMID: 30373756 DOI: 10.1128/jb.00576-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022] Open
Abstract
Halophilic Archaea are a distinctive pink color due to a carotenoid pigment called bacterioruberin. To sense or utilize light, many halophilic Archaea also produce rhodopsins, complexes of opsin proteins with a retinal prosthetic group. Both bacterioruberin and retinal are synthesized from isoprenoid precursors, with lycopene as the last shared intermediate. We previously described a regulatory mechanism by which Halobacterium salinarum bacterioopsin and Haloarcula vallismortis cruxopsin inhibit bacterioruberin synthesis catalyzed by lycopene elongase. In this work, we found that opsins in all three major Halobacteria clades inhibit bacterioruberin synthesis, suggesting that this regulatory mechanism existed in the common Halobacteria ancestor. Halophilic Archaea, which are generally heterotrophic and aerobic, likely evolved from an autotrophic, anaerobic methanogenic ancestor by acquiring many genes from Bacteria via lateral gene transfer. These bacterial "imports" include genes encoding opsins and lycopene elongases. To determine if opsins from Bacteria inhibit bacterioruberin synthesis, we tested bacterial opsins and found that an opsin from Curtobacterium, in the Actinobacteria phylum, inhibits bacterioruberin synthesis catalyzed by its own lycopene elongase, as well as that catalyzed by several archaeal enzymes. We also determined that the lycopene elongase from Halococcus salifodinae, a species from a family of Halobacteria lacking opsin homologs, retained the capacity to be inhibited by opsins. Together, our results indicate that opsin-mediated inhibition of bacterioruberin biosynthesis is a widely distributed mechanism found in both Archaea and Bacteria, possibly predating the divergence of the two domains. Further analysis may provide insight into the acquisition and evolution of the genes and their host species.IMPORTANCE All organisms use a variety of mechanisms to allocate limited resources to match their needs in their current environment. Here, we explore how halophilic microbes use a novel mechanism to allow efficient production of rhodopsin, a complex of an opsin protein and a retinal prosthetic group. We previously demonstrated that Halobacterium salinarum bacterioopsin directs available resources toward retinal by inhibiting synthesis of bacterioruberin, a molecule that shares precursors with retinal. In this work, we show that this mechanism can be carried out by proteins from halophilic Archaea that are not closely related to H. salinarum and those in at least one species of Bacteria Therefore, opsin-mediated inhibition of bacterioruberin synthesis may be a highly conserved, ancient regulatory mechanism.
Collapse
|
13
|
Aouad M, Taib N, Oudart A, Lecocq M, Gouy M, Brochier-Armanet C. Extreme halophilic archaea derive from two distinct methanogen Class II lineages. Mol Phylogenet Evol 2018; 127:46-54. [DOI: 10.1016/j.ympev.2018.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
14
|
Affiliation(s)
- Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, SE-75123, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, SE-75123, Uppsala, Sweden
| |
Collapse
|
15
|
|
16
|
Blais-Lecours P, Perrott P, Duchaine C. Non-culturable bioaerosols in indoor settings: Impact on health and molecular approaches for detection. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 110:45-53. [PMID: 32288547 PMCID: PMC7108366 DOI: 10.1016/j.atmosenv.2015.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Despite their significant impact on respiratory health, bioaerosols in indoor settings remain understudied and misunderstood. Culture techniques, predominantly used for bioaerosol characterisation in the past, allow for the recovery of only a small fraction of the real airborne microbial burden in indoor settings, given the inability of several microorganisms to grow on agar plates. However, with the development of new tools to detect non-culturable environmental microorganisms, the study of bioaerosols has advanced significantly. Most importantly, these techniques have revealed a more complex bioaerosol burden that also includes non-culturable microorganisms, such as archaea and viruses. Nevertheless, air quality specialists and consultants remain reluctant to adopt these new research-developed techniques, given that there are relatively few studies found in the literature, making it difficult to find a point of comparison. Furthermore, it is unclear as to how this new non-culturable data can be used to assess the impact of bioaerosol exposure on human health. This article reviews the literature that describes the non-culturable fraction of bioaerosols, focussing on bacteria, archaea and viruses, and examines its impact on bioaerosol-related diseases. It also outlines available molecular tools for the detection and quantification of these microorganisms and states various research needs in this field.
Collapse
Affiliation(s)
- Pascale Blais-Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Phillipa Perrott
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Caroline Duchaine
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Département de biochimie, de microbiologie et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| |
Collapse
|
17
|
Camacho-Córdova DI, Camacho-Ruíz RM, Córdova-López JA, Cervantes-Martínez J. Estimation of bacterioruberin by Raman spectroscopy during the growth of halophilic archaeon Haloarcula marismortui. APPLIED OPTICS 2014; 53:7470-7475. [PMID: 25402913 DOI: 10.1364/ao.53.007470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Halophilic archaea are interesting microorganisms that produce low biomass and metabolites, complicating their quantification. Raman spectroscopy (RS) is a powerful technique, which requires small samples, attractive for using in archaeal research. The objective of this work was the estimation of bacterioruberin content along with Haloarcula marismortui growth and their correlation with biomass concentration. RS was used to detect characteristic bands of bacterioruberin (vibrational modes C═CH, C─C, and C═C) in H. marismortui culture samples. The intensity of Raman spectra in bacterioruberin and the biomass concentration were adequately correlated. The highest production of bacterioruberin occurred at 60 h. RS is revealed as a reliable technique for the estimation of bacterioruberin in the biomass of H. marismortui, which could be considered as a promising qualitative and quantitative technique to assay metabolites in cell cultures.
Collapse
|
18
|
Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J. N-linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 2014; 78:304-41. [PMID: 24847024 PMCID: PMC4054257 DOI: 10.1128/mmbr.00052-13] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Benjamin H Meyer
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lina Kaminski
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel
| |
Collapse
|
19
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Molecular Characterization of the Archaeal Diversity in Vlasa Hot Spring, Bulgaria, by using 16S rRNA and Glycoside Hydrolase Family 4 Genes. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-010-0065-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Triantafyllou K, Chang C, Pimentel M. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil 2013; 20:31-40. [PMID: 24466443 PMCID: PMC3895606 DOI: 10.5056/jnm.2014.20.1.31] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/16/2022] Open
Abstract
Anaerobic fermentation of the undigested polysaccharide fraction of carbohydrates produces hydrogen in the intestine which is the substrate for methane production by intestinal methanogens. Hydrogen and methane are excreted in the flatus and in breath giving the opportunity to indirectly measure their production using breath testing. Although methane is detected in 30%-50% of the healthy adult population worldwide, its production has been epidemiologically and clinically associated with constipation related diseases, like constipation predominant irritable bowel syndrome and chronic constipation. While a causative relation is not proven yet, there is strong evidence from animal studies that methane delays intestinal transit, possibly acting as a neuromuscular transmitter. This evidence is further supported by the universal finding that methane production (measured by breath test) is associated with delayed transit time in clinical studies. There is also preliminary evidence that antibiotic reduction of methanogens (as evidenced by reduced methane production) predicts the clinical response in terms of symptomatic improvement in patients with constipation predominant irritable bowel syndrome. However, we have not identified yet the mechanism of action of methane on intestinal motility, and since methane production does not account for all constipation associated cases, there is need for high quality clinical trials to examine methane as a biomarker for the diagnosis or as a biomarker that predicts antibiotic treatment response in patients with constipation related disorders.
Collapse
Affiliation(s)
- Konstantinos Triantafyllou
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. ; Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School, Athens University, Athens, Greece
| | - Christopher Chang
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- GI Motility Program, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
Eme L, Reigstad LJ, Spang A, Lanzén A, Weinmaier T, Rattei T, Schleper C, Brochier-Armanet C. Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota. Res Microbiol 2013; 164:425-38. [DOI: 10.1016/j.resmic.2013.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
|
23
|
Jaeschke A, Jørgensen SL, Bernasconi SM, Pedersen RB, Thorseth IH, Früh-Green GL. Microbial diversity of Loki's Castle black smokers at the Arctic Mid-Ocean Ridge. GEOBIOLOGY 2012; 10:548-561. [PMID: 23006788 DOI: 10.1111/gbi.12009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
Hydrothermal vent systems harbor rich microbial communities ranging from aerobic mesophiles to anaerobic hyperthermophiles. Among these, members of the archaeal domain are prevalent in microbial communities in the most extreme environments, partly because of their temperature-resistant and robust membrane lipids. In this study, we use geochemical and molecular microbiological methods to investigate the microbial diversity in black smoker chimneys from the newly discovered Loki's Castle hydrothermal vent field on the Arctic Mid-Ocean Ridge (AMOR) with vent fluid temperatures of 310-320 °C and pH of 5.5. Archaeal glycerol dialkyl glycerol tetraether lipids (GDGTs) and H-shaped GDGTs with 0-4 cyclopentane moieties were dominant in all sulfide samples and are most likely derived from both (hyper)thermophilic Euryarchaeota and Crenarchaeota. Crenarchaeol has been detected in low abundances in samples derived from the chimney exterior indicating the presence of Thaumarchaeota at lower ambient temperatures. Aquificales and members of the Epsilonproteobacteria were the dominant bacterial groups detected. Our observations based on the analysis of 16S rRNA genes and biomarker lipid analysis provide insight into microbial communities thriving within the porous sulfide structures of active and inactive deep-sea hydrothermal vents. Microbial cycling of sulfur, hydrogen, and methane by archaea in the chimney interior and bacteria in the chimney exterior may be the prevailing biogeochemical processes in this system.
Collapse
MESH Headings
- Arctic Regions
- Atlantic Ocean
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Temperature
- Hydrogen-Ion Concentration
- Hydrothermal Vents/microbiology
- Lipids/analysis
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- A Jaeschke
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
24
|
Nikolic N, Smole Z, Krisko A. Proteomic properties reveal phyloecological clusters of Archaea. PLoS One 2012; 7:e48231. [PMID: 23133575 PMCID: PMC3485053 DOI: 10.1371/journal.pone.0048231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we propose a novel way to describe the variety of environmental adaptations of Archaea. We have clustered 57 Archaea by using a non-redundant set of proteomic features, and verified that the clusters correspond to environmental adaptations to the archaeal habitats. The first cluster consists dominantly of hyperthermophiles and hyperthermoacidophilic aerobes. The second cluster joins together halophilic and extremely halophilic Archaea, while the third cluster contains mesophilic (mostly methanogenic) Archaea together with thermoacidophiles. The non-redundant subset of proteomic features was found to consist of five features: the ratio of charged residues to uncharged, average protein size, normalized frequency of beta-sheet, normalized frequency of extended structure and number of hydrogen bond donors. We propose this clustering to be termed phyloecological clustering. This approach could give additional insights into relationships among archaeal species that may be hidden by sole phylogenetic analysis.
Collapse
Affiliation(s)
- Nela Nikolic
- Mediterranean Institute for Life Sciences, Split, Croatia
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Zlatko Smole
- Mediterranean Institute for Life Sciences, Split, Croatia
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
| | - Anita Krisko
- Mediterranean Institute for Life Sciences, Split, Croatia
- * E-mail:
| |
Collapse
|
25
|
Matarazzo F, Ribeiro AC, Faveri M, Taddei C, Martinez MB, Mayer MPA. The domain Archaea in human mucosal surfaces. Clin Microbiol Infect 2012; 18:834-40. [PMID: 22827611 DOI: 10.1111/j.1469-0691.2012.03958.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Archaea present distinct features from bacteria and eukaryotes, and thus constitute one of the branches of the phylogenetic tree of life. Members of this domain colonize distinct niches in the human body, arranged in complex communities, especially in the intestines and the oral cavity. The diversity of archaea within these niches is limited to a few phylotypes, constituted in particular by methane-producing archaeal organisms. Although they are possibly symbionts, methanogens may play a role in the establishment of mucosal diseases by favouring the growth of certain bacterial groups.
Collapse
Affiliation(s)
- F Matarazzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles 2012; 16:645-57. [PMID: 22714283 DOI: 10.1007/s00792-012-0466-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/03/2012] [Indexed: 02/01/2023]
Abstract
The Carnoulès mine is an extreme environment located in the South of France. It is an unusual ecosystem due to its acidic pH (2-3), high concentration of heavy metals, iron, and sulfate, but mainly due to its very high concentration of arsenic (up to 10 g L⁻¹ in the tailing stock pore water, and 100-350 mg L⁻¹ in Reigous Creek, which collects the acid mine drainage). Here, we present a survey of the archaeal community in the sediment and its temporal variation using a culture-independent approach by cloning of 16S rRNA encoding genes. The taxonomic affiliation of Archaea showed a low degree of biodiversity with two different phyla: Euryarchaeota and Thaumarchaeota. The archaeal community varied in composition and richness throughout the sampling campaigns. Many sequences were phylogenetically related to the order Thermoplasmatales represented by aerobic or facultatively anaerobic, thermoacidophilic autotrophic or heterotrophic organisms like the organotrophic genus Thermogymnomonas. Some members of Thermoplasmatales can also derive energy from sulfur/iron oxidation or reduction. We also found microorganisms affiliated with methanogenic Archaea (Methanomassiliicoccus luminyensis), which are involved in the carbon cycle. Some sequences affiliated with ammonia oxidizers, involved in the first and rate-limiting step in nitrification, a key process in the nitrogen cycle were also observed, including Candidatus Nitrososphaera viennensis and Candidatus nitrosopumilus sp. These results suggest that Archaea may be important players in the Reigous sediments through their participation in the biochemical cycles of elements, including those of carbon and nitrogen.
Collapse
|
27
|
Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS One 2012; 7:e36972. [PMID: 22615861 PMCID: PMC3353972 DOI: 10.1371/journal.pone.0036972] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/16/2012] [Indexed: 11/29/2022] Open
Abstract
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pere Puigbò
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Since their discovery in the early 1980s, viruses that infect the third domain of life, the Archaea, have captivated our attention because of their virions' unusual morphologies and proteins, which lack homologues in extant databases. Moreover, the life cycles of these viruses have unusual features, as revealed by the recent discovery of a novel virus egress mechanism that involves the formation of specific pyramidal structures on the host cell surface. The available data elucidate the particular nature of the archaeal virosphere and shed light on questions concerning the origin and evolution of viruses and cells. In this review, we summarize the current knowledge of archeoviruses, their interaction with hosts and plasmids and their role in the evolution of life.
Collapse
Affiliation(s)
- Mery Pina
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | | | | | | |
Collapse
|
29
|
Ivanova I, Atanassov I, Lyutskanova D, Stoilova-Disheva M, Dimitrova D, Tomova I, Derekova A, Radeva G, Buchvarova V, Kambourova M. High Archaea diversity in Varvara hot spring, Bulgaria. J Basic Microbiol 2010; 51:163-72. [PMID: 21077120 DOI: 10.1002/jobm.201000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/18/2010] [Indexed: 11/08/2022]
Abstract
The phylogeny of the latest recognized domain, Archaea, is still complicated and it is largely based on environmental sequences. A culture independent molecular phylogenetic analysis revealed high Archaea diversity in a terrestrial hot spring, village Varvara, Bulgaria. A total of 35 archaeal operational taxonomic units (OTUs) belonging to three of the classified five Archaea phyla were identified. Most of the sequences were affiliated with the phylum Crenarchaeota (23), grouped in four branches. The rest of the sequences showed highest similarity to the unidentified archaeal clones (9), Euryarchaeota (2), and "Korarchaeota " (1). Eight (23%) of the sequenced 16S rDNAs didn't have known close relatives and represented new and diverse OTUs, four of them forming a new archaeal subgroup without close described sequences or culturable relatives. A sequence affiliated with "Korarchaeota " showed low similarity (90%) to the closest neighbor and both sequences formed unique branch in this phylum. Consequently, the constructed archaeal libraries are characterized by (1) high proportion of OTUs representing uncultivated archaeal phylogroups, (2) the abundance of novel phylotype sequences, (3) the presence of high proportions of Crenarchaeota phylotypes unrelated to cultivated organisms and (4) the presence of a sequence only distantly related to "Korarchaeota " phylum.
Collapse
Affiliation(s)
- Iva Ivanova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsumi R, Atomi H, Driessen AJM, van der Oost J. Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications. Res Microbiol 2010; 162:39-52. [PMID: 21034816 DOI: 10.1016/j.resmic.2010.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea, isoprenoid compounds constitute the hydrophobic moiety of the typical ether-linked membrane lipids. With respect to stereochemistry and composition, these archaeal lipids are very different from the ester-linked, fatty acid-based phospholipids in bacterial and eukaryotic membranes. This review provides an update on isoprenoid biosynthesis pathways, with a focus on the archaeal enzymes. The black-and-white distribution of fundamentally distinct membrane lipids in Archaea on the one hand, and Bacteria and Eucarya on the other, has previously been used as a basis for hypothetical evolutionary scenarios, a selection of which will be discussed here.
Collapse
Affiliation(s)
- Rie Matsumi
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Abstract
Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism—the virus—producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition.
Collapse
Affiliation(s)
- Patrick Forterre
- CNRS UMR 8621 Institut de Génétique et Microbiologie, Univ Paris-Sud, 91405 Orsay Cedex, France.
| |
Collapse
|
32
|
Maheen G, Tian G, Wang Y, He C, Shi Z, Yuan H, Feng S. Resolving the enigma of prebiotic COP bond formation: Prebiotic hydrothermal synthesis of important biological phosphate esters. HETEROATOM CHEMISTRY 2010. [DOI: 10.1002/hc.20591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Orange F, Westall F, Disnar JR, Prieur D, Bienvenu N, Le Romancer M, Défarge C. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. GEOBIOLOGY 2009; 7:403-18. [PMID: 19656214 DOI: 10.1111/j.1472-4669.2009.00212.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5-3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.
Collapse
Affiliation(s)
- F Orange
- Centre de Biophysique Moléculaire, CNRS, Orléans cedex, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Blank CE. Phylogenomic dating--the relative antiquity of archaeal metabolic and physiological traits. ASTROBIOLOGY 2009; 9:193-219. [PMID: 19371161 DOI: 10.1089/ast.2008.0248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ancestral trait reconstruction was used to identify the relative ancestry of metabolic and physiological traits in the archaeal domain of life. First, well-resolved phylogenetic trees were inferred with multiple gene sequences obtained from whole genome sequences. Next, metabolic and physiological traits were coded into characters, and ancestral state reconstruction was used to identify ancient and derived traits. Traits inferred to be ancient included sulfur reduction, methanogenesis, and hydrogen oxidation. By using the articulation of the "oxygen age constraint," several other traits were inferred to have arisen at or after 2.32 Ga: aerobic respiration, nitrate reduction, sulfate reduction, thiosulfate reduction, sulfur oxidation, and sulfide oxidation. Complex organic metabolism appeared to be nearly as ancient as autotrophy. Hyperthermophily was ancestral, while hyperacidophily and extreme halophily likely arose after 2.32 Ga. The ancestral euryarchaeote was inferred to have been a hyperthermophilic marine methanogen that lived in a deep-sea hydrothermal vent. In contrast, the ancestral crenarchaeote was most likely a hyperthermophilic sulfur reducer that lived in a slightly acidic terrestrial environment, perhaps a fumarole. Cross-colonization of these habitats may not have occurred until after 2.32 Ga, which suggests that both archaeal lineages exhibited niche specialization on early Earth for a protracted period of time.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, Missoula, Montana 59808-1296, USA.
| |
Collapse
|
35
|
Barnwal RP, Jobby M, Devi KM, Sharma Y, Chary KV. Solution Structure and Calcium-Binding Properties of M-Crystallin, A Primordial βγ-Crystallin from Archaea. J Mol Biol 2009; 386:675-89. [PMID: 19138688 DOI: 10.1016/j.jmb.2008.12.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/15/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
|
36
|
Nam YD, Chang HW, Kim KH, Roh SW, Kim MS, Jung MJ, Lee SW, Kim JY, Yoon JH, Bae JW. Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people. J Microbiol 2008; 46:491-501. [PMID: 18974948 DOI: 10.1007/s12275-008-0199-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
The bacterial, archaeal, and eukaryal diversity in fecal samples from ten Koreans were analyzed and compared by using the PCR-fingerprinting method, denaturing gradient gel electrophoresis (DGGE). The bacteria all belonged to the Firmicutes and Bacteroidetes phyla, which were known to be the dominant bacterial species in the human intestine. Most of the archaeal sequences belonged to the methane-producing archaea but several halophilic archarea-related sequences were also detected unexpectedly. While a small number of eukaryal sequences were also detected upon DGGE analysis, these sequences were related to fungi and stramenopiles (Blastocystis hominis). With regard to the bacterial and archaeal DGGE analysis, all ten samples had one and two prominent bands, respectively, but many individual-specific bands were also observed. However, only five of the ten samples had small eukaryal DGGE bands and none of these bands was observed in all five samples. Unweighted pair group method and arithmetic averages clustering algorithm (UPGMA) clustering analysis revealed that the archaeal and bacterial communities in the ten samples had relatively higher relatedness (the average Dice coefficient values were 68.9 and 59.2% for archaea and bacteria, respectively) but the eukaryal community showed low relatedness (39.6%).
Collapse
Affiliation(s)
- Young-Do Nam
- Biological Resources Center, KRIBB, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
38
|
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008; 6:245-52. [PMID: 18274537 DOI: 10.1038/nrmicro1852] [Citation(s) in RCA: 632] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).
Collapse
|
39
|
Brochier-Armanet C, Forterre P. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2007; 2:83-93. [PMID: 17350929 PMCID: PMC2686386 DOI: 10.1155/2006/582916] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reverse gyrase, an enzyme of uncertain funtion, is present in all hyperthermophilic archaea and bacteria. Previous phylogenetic studies have suggested that the gene for reverse gyrase has an archaeal origin and was transferred laterally (LGT) to the ancestors of the two bacterial hyperthermophilic phyla, Thermotogales and Aquificales. Here, we performed an in-depth analysis of the evolutionary history of reverse gyrase in light of genomic progress. We found genes coding for reverse gyrase in the genomes of several thermophilic bacteria that belong to phyla other than Aquificales and Thermotogales. Several of these bacteria are not, strictly speaking, hyperthermophiles because their reported optimal growth temperatures are below 80 degrees C. Furthermore, we detected a reverse gyrase gene in the sequence of the large plasmid of Thermus thermophilus strain HB8, suggesting a possible mechanism of transfer to the T. thermophilus strain HB8 involving plasmids and transposases. The archaeal part of the reverse gyrase tree is congruent with recent phylogenies of the archaeal domain based on ribosomal proteins or RNA polymerase subunits. Although poorly resolved, the complete reverse gyrase phylogeny suggests an ancient acquisition of the gene by bacteria via one or two LGT events, followed by its secondary distribution by LGT within bacteria. Finally, several genes of archaeal origin located in proximity to the reverse gyrase gene in bacterial genomes have bacterial homologues mostly in thermophiles or hyperthermophiles, raising the possibility that they were co-transferred with the reverse gyrase gene. Our new analysis of the reverse gyrase history strengthens the hypothesis that the acquisition of reverse gyrase may have been a crucial evolutionary step in the adaptation of bacteria to high-temperature environments. However, it also questions the role of this enzyme in thermophilic bacteria and the selective advantage its presence could provide.
Collapse
Affiliation(s)
- Céline Brochier-Armanet
- EA 3781 EGEE (Evolution Génome Environnement), Université de Provence Aix-Marseille I, Centre Saint-Charles, 3 Place Victor Hugo 13331, Marseille Cedex 3, France.
| | | |
Collapse
|
40
|
Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhophadhyay B, Blankenship RE. Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. J Bacteriol 2007; 189:7392-8. [PMID: 17660283 PMCID: PMC2168459 DOI: 10.1128/jb.00876-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using genomic analysis, researchers previously identified genes coding for proteins homologous to the structural proteins of nitrogenase (J. Raymond, J. L. Siefert, C. R. Staples, and R. E. Blankenship, Mol. Biol. Evol. 21:541-554, 2004). The expression and association of NifD and NifH nitrogenase homologs (named NflD and NflH for "Nif-like" D and H, respectively) have been detected in a non-nitrogen-fixing hyperthermophilic methanogen, Methanocaldococcus jannaschii. These homologs are expressed constitutively and do not appear to be directly involved with nitrogen metabolism or detoxification of compounds such as cyanide or azide. The NflH and NflD proteins were found to interact with each other, as determined by bacterial two-hybrid studies. Upon immunoisolation, NflD and NflH copurified, along with three other proteins whose functions are as yet uncharacterized. The apparent presence of genes coding for NflH and NflD in all known methanogens, their constitutive expression, and their high sequence similarity to the NifH and NifD proteins or the BchL and BchN/BchB proteins suggest that NflH and NflD participate in an indispensable and fundamental function(s) in methanogens.
Collapse
|
41
|
Abstract
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea.
Collapse
Affiliation(s)
- J Filée
- Laboratoire de Microbiologie et Génétique Moléculaires (UMR5100 CNRS), Campus Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | |
Collapse
|
42
|
Akita F, Chong KT, Tanaka H, Yamashita E, Miyazaki N, Nakaishi Y, Suzuki M, Namba K, Ono Y, Tsukihara T, Nakagawa A. The Crystal Structure of a Virus-like Particle from the Hyperthermophilic Archaeon Pyrococcus furiosus Provides Insight into the Evolution of Viruses. J Mol Biol 2007; 368:1469-83. [PMID: 17397865 DOI: 10.1016/j.jmb.2007.02.075] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/10/2007] [Accepted: 02/15/2007] [Indexed: 11/28/2022]
Abstract
Pyrococcus furiosus is a hyperthermophilic archaeal microorganism found near deep-sea thermal vents and its optimal growth temperature of 100 degrees C. Recently, a 38.8-kDa protein from P. furiosus DSM 3638 was isolated and characterized. Electron microscopy revealed that this protein aggregated as spheres of approximately 30 nm in diameter, which we designated P. furiosus virus-like particles (PfVs). X-ray crystallographic analysis at 3.6-A resolution revealed that each PfV consisted of 180 copies of the 38.8-kDa protein and retained T=3 icosahedral symmetry, as is often the case in spherical viruses. The total molecular mass of each particle was approximately 7 MDa. An examination of capsid structures suggested strong evolutionary links among PfV, tailed double-stranded DNA bacteriophages, and herpes viruses. The similar three-dimensional structures of the various coat proteins indicate that these viral capsids might have originated and evolved from a common ancestor. The structure of PfV provides a previously undescribed example of viral relationships across the three domains of life (Eukarya, Bacteria, and Archaea).
Collapse
Affiliation(s)
- Fusamichi Akita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Numerous scenarios explain the origin of the eukaryote cell by fusion or endosymbiosis between an archaeon and a bacterium (and sometimes a third partner). We evaluate these hypotheses using the following three criteria. Can the data be explained by the null hypothesis that new features arise sequentially along a stem lineage? Second, hypotheses involving an archaeon and a bacterium should undergo standard phylogenetic tests of gene distribution. Third, accounting for past events by processes observed in modern cells is preferable to postulating unknown processes that have never been observed. For example, there are many eukaryote examples of bacteria as endosymbionts or endoparasites, but none known in archaea. Strictly post-hoc hypotheses that ignore this third criterion should be avoided. Applying these three criteria significantly narrows the number of plausible hypotheses. Given current knowledge, our conclusion is that the eukaryote lineage must have diverged from an ancestor of archaea well prior to the origin of the mitochondrion. Significantly, the absence of ancestrally amitochondriate eukaryotes (archezoa) among extant eukaryotes is neither evidence for an archaeal host for the ancestor of mitochondria, nor evidence against a eukaryotic host.
Collapse
Affiliation(s)
- Anthony M Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Sweden.
| | | |
Collapse
|
44
|
Poplawski AB, Mårtensson L, Wartiainen I, Rasmussen U. Archaeal diversity and community structure in a Swedish barley field: Specificity of the EK510R/(EURY498) 16S rDNA primer. J Microbiol Methods 2006; 69:161-73. [PMID: 17289189 DOI: 10.1016/j.mimet.2006.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/15/2006] [Accepted: 12/15/2006] [Indexed: 11/27/2022]
Abstract
The aim of this study was to analyze a total euryarchaeal community at DNA and RNA levels in a Swedish barley field with relation to soil depth (0-10 and 20-30 cm layers), soil fraction (bulk soil and rhizosphere) and time (August and November sample collection). Amplification of 16S rRNA gene using the archaeal universal A2F and Euryarchaea specific EK510R/(EURY498) primer pair, combined with denaturing gradient gel electrophoresis (DGGE), revealed distinct differences between rDNA and rRNA DGGE profiles. The soil depth, time, or rhizosphere effects did not significantly influence Archaeal community structure. Surprisingly, sequence analysis of DGGE-derived amplicons revealed the presence of Euryarchaea as well as uncultured soil Crenarchaea affiliated with group 1. In agreement, sequence comparison analyses showed that the majority of uncultured Crenarchaea group 1 had almost 100% sequence complementarity to the 3' end of the EK510R/(EURY498) primer. Therefore, we propose that EK510R/(EURY498R) is a universal archaeal primer rather than a Euryarchaea specific SSUrRNA primer. Hence, considerable care should be taken during application of this primer in studies of euryarchaeal biodiversity in soil environments.
Collapse
|
45
|
Ashby MK. Distribution, structure and diversity of "bacterial" genes encoding two-component proteins in the Euryarchaeota. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2006; 2:11-30. [PMID: 16877318 PMCID: PMC2685588 DOI: 10.1155/2006/562404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.
Collapse
Affiliation(s)
- Mark K Ashby
- Department of Basic Medical Sciences, Biochemistry Section, University of the West Indies, Mona Campus, Kingston 7, Jamaica.
| |
Collapse
|
46
|
Zhang CL, Pearson A, Li YL, Mills G, Wiegel J. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol 2006; 72:4419-22. [PMID: 16751559 PMCID: PMC1489640 DOI: 10.1128/aem.00191-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isoprenoid lipid crenarchaeol is widespread in hot springs of California and Nevada. Terrestrial and marine data together suggest a maximum relative abundance of crenarchaeol at approximately 40 degrees C. This warm temperature optimum may have facilitated colonization of the ocean by (hyper)thermophilic Archaea and the major marine radiation of Crenarchaeota.
Collapse
Affiliation(s)
- Chuanlun L Zhang
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA.
| | | | | | | | | |
Collapse
|
47
|
Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T. The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 2006; 8:514-25. [PMID: 16478457 DOI: 10.1111/j.1462-2920.2005.00921.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phylogenetic diversity of prokaryotic communities exposed to arid conditions in the hot desert of Tataouine (south Tunisia) was estimated with a combination of a culture and - molecular-based analysis. Thirty-one isolates, representative of each dominant morphotypes, were affiliated to Actinobacteria, Firmicutes, Proteobacteria and the CFB group while none related to Archaea. Analysis of 16S rRNA gene libraries revealed the presence of species related to Bacteria and Archaea. Sequences related to Archaea were all affiliated to the non-thermophilic Crenarchaeota subgroup. Bacterial sequences were dominated by Proteobacteria, Actinobacteria and Acidobacteria; a few sequences were distributed among eight others phyla, including Thermus/Deinococcus relatives. A correlation between tolerance to desiccation and to radiation has been demonstrated for the radiotolerant bacteria Deinococcus radiodurans. Because bacteria living in the hot desert of Tataouine are one way or another tolerant to desiccation, we investigate whether they could also be tolerant to radiation. Exposition of soil samples to intense gamma radiation yields Bacillus, Thermus/Deinococcus and alpha-Proteobacteria relatives. Four of these strains correspond to radiotolerant species as revealed by evaluation of the resistance levels of the individual cultures. A detailed analysis of the resistance levels for two Thermus/Deinococcus and two alpha-Proteobacteria relatives revealed that they correspond to new radiotolerant species.
Collapse
MESH Headings
- Alphaproteobacteria
- Archaea/classification
- Archaea/genetics
- Archaea/isolation & purification
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/radiation effects
- Biodiversity
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Desert Climate
- Desiccation
- Ecosystem
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Radiation, Ionizing
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Soil Microbiology
- Tunisia
Collapse
Affiliation(s)
- Angélique Chanal
- LEMIR, DEVM, DSV, UMR 6191 CNRS-CEA-Université Aix-Marseille II, IFR 112, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Macario AJL, Brocchieri L, Shenoy AR, Conway de Macario E. Evolution of a Protein-Folding Machine: Genomic and Evolutionary Analyses Reveal Three Lineages of the Archaeal hsp70(dnaK) Gene. J Mol Evol 2006; 63:74-86. [PMID: 16788741 DOI: 10.1007/s00239-005-6207-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 03/14/2006] [Indexed: 11/27/2022]
Abstract
The stress chaperone protein Hsp70 (DnaK) (abbreviated DnaK) and its co-chaperones Hsp40(DnaJ) (or DnaJ) and GrpE are universal in bacteria and eukaryotes but occur only in some archaea clustered in the order 5'-grpE-dnaK-dnaJ-3' in a locus termed Locus I. Three structural varieties of Locus I, termed Types I, II, and III, were identified, respectively, in Methanosarcinales, in Thermoplasmatales and Methanothermobacter thermoautotrophicus, and in Halobacteriales. These Locus I types corresponded to three groups identified by phylogenetic trees of archaeal DnaK proteins including the same archaeal subdivisions. These archaeal DnaK groups were not significantly interrelated, clustering instead with DnaKs from three bacterial lineages, Methanosarcinales with Firmicutes, Thermoplasmatales and M. thermoautotrophicus with Thermotoga, and Halobacteriales with Actinobacteria, suggesting that the three archaeal types of Locus I were acquired by independent events of lateral gene transfer. These associations, however, lacked strong bootstrap support and were sensitive to dataset choice and tree-reconstruction method. Structural features of dnaK loci in bacteria revealed that Methanosarcinales and Firmicutes shared a similar structure, also common to most other bacterial groups. Structural differences were observed instead in Thermotoga compared to Thermoplasmatales and M. thermoautotrophicus, and in Actinobacteria compared to Halobacteriales. It was also found that the association between the DnaK sequences from Halobacteriales and Actinobacteria likely reflects common biases in their amino acid compositions. Although the loci structural features and the DnaK trees suggested the possibility of lateral gene transfer between Firmicutes and Methanosarcinales, the similarity between the archaeal and the ancestral bacterial loci favors the more parsimonious hypothesis that all archaeal sequences originated from a unique prokaryotic ancestor.
Collapse
Affiliation(s)
- Alberto J L Macario
- Division of Molecular Medicine, Wadsworth Center, Room B-749, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
49
|
Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci U S A 2006; 103:3669-74. [PMID: 16505372 PMCID: PMC1450140 DOI: 10.1073/pnas.0510333103] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Indexed: 11/18/2022] Open
Abstract
The division of the living world into three cellular domains, Archaea, Bacteria, and Eukarya, is now generally accepted. However, there is no consensus about the evolutionary relationships among these domains, because all of the proposed models have a number of more or less severe pitfalls. Another drawback of current models for the universal tree of life is the exclusion of viruses, otherwise a major component of the biosphere. Recently, it was suggested that the transition from RNA to DNA genomes occurred in the viral world, and that cellular DNA and its replication machineries originated via transfers from DNA viruses to RNA cells. Here, I explore the possibility that three such independent transfers were at the origin of Archaea, Bacteria, and Eukarya, respectively. The reduction of evolutionary rates following the transition from RNA to DNA genomes would have stabilized the three canonical versions of proteins involved in translation, whereas the existence of three different founder DNA viruses explains why each domain has its specific DNA replication apparatus. In that model, plasmids can be viewed as transitional forms between DNA viruses and cellular chromosomes, and the formation of different levels of cellular organization (prokaryote or eukaryote) could be traced back to the nature of the founder DNA viruses and RNA cells.
Collapse
Affiliation(s)
- Patrick Forterre
- Biologie Moléculaire du Gène Chez les Extrêmophiles, Institut Pasteur, 25, Rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
50
|
Duggin IG, Bell SD. The chromosome replication machinery of the archaeon Sulfolobus solfataricus. J Biol Chem 2006; 281:15029-32. [PMID: 16467299 DOI: 10.1074/jbc.r500029200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the three domains of life, the archaea, bacteria, and eukarya, there are two general lineages of DNA replication proteins: the bacterial and the eukaryal/archaeal lineages. The hyperthermophilic archaeon Sulfolobus solfataricus provides an attractive model for biochemical study of DNA replication. Its relative simplicity in both genomic and biochemical contexts, together with high protein thermostability, has already provided insight into the function of the more complex yet homologous molecules of the eukaryotic domain. Here, we provide an overview of recent insights into the functioning of the chromosome replication machinery of S. solfataricus, focusing on some of the relatively well characterized core components that act at the DNA replication fork.
Collapse
Affiliation(s)
- Iain G Duggin
- MRC Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | |
Collapse
|