1
|
Otani N, Nakajima K, Ishikawa K, Ichiki K, Yoda Y, Ueda T, Takesue Y, Yamamoto T, Tanimura S, Shima M, Okuno T. Comparison of the Hemagglutination Inhibition Titers against Influenza Vaccine Strains in Japan from the 2017/2018 to 2021/2022 Seasons Using a Single Set of Serum Samples. Viruses 2022; 14:v14071455. [PMID: 35891435 PMCID: PMC9323423 DOI: 10.3390/v14071455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
In Japan, inactivated influenza vaccines are used. We measured titers of antibodies to vaccine strains of three influenza types—influenza A (H1N1), influenza A (H3N2), and influenza B/Victoria—from the 2017/2018 to 2021/2022 seasons, but not for influenza A (H3N2) from the 2018/2019 season, using a single set of serum samples from 34 healthy volunteers, and assessed the consistency in antibody positivity between seasons. The antibody titers in the 2017/2018 season were used as a reference. The influenza A (H1N1) antibody titer in 2019/2020 did not differ significantly from that in the 2017/2018 season, but the titers varied in the two subsequent seasons. The influenza A (H3N2) antibody titers toward the 2019/2020, 2020/2021, and 2021/2022 seasonal viruses differed significantly from that in the 2017/2018 season. The influenza B/Victoria antibody titer toward the 2019/2020 seasonal antigen differed from that in the 2017/2018 season, and the antibody positivity was inconsistent between seasons; however, the antibody titer in the 2020/2021 season did not differ significantly from those in the prior two seasons, and the antibody positivity was consistent between seasons. Antibody titers and their consistency can be used to evaluate cross-immunity of antibodies.
Collapse
Affiliation(s)
- Naruhito Otani
- Department of Public Health, Hyogo Medical University, Nishinomiya 663-8501, Japan; (Y.Y.); (M.S.)
- Correspondence: ; Tel.: +81-798-45-6566; Fax: +81-798-45-6567
| | - Kazuhiko Nakajima
- Department of Infection Control and Prevention, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.N.); (K.I.); (K.I.); (T.U.); (Y.T.)
| | - Kaori Ishikawa
- Department of Infection Control and Prevention, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.N.); (K.I.); (K.I.); (T.U.); (Y.T.)
| | - Kaoru Ichiki
- Department of Infection Control and Prevention, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.N.); (K.I.); (K.I.); (T.U.); (Y.T.)
| | - Yoshiko Yoda
- Department of Public Health, Hyogo Medical University, Nishinomiya 663-8501, Japan; (Y.Y.); (M.S.)
| | - Takashi Ueda
- Department of Infection Control and Prevention, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.N.); (K.I.); (K.I.); (T.U.); (Y.T.)
| | - Yoshio Takesue
- Department of Infection Control and Prevention, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.N.); (K.I.); (K.I.); (T.U.); (Y.T.)
| | - Takuma Yamamoto
- Department of Legal Medicine, Hyogo Medical University, Nishinomiya 663-8501, Japan;
| | - Susumu Tanimura
- Department of Public Health Nursing, Mie University Graduate School of Medicine, Tsu 514-0001, Japan;
| | - Masayuki Shima
- Department of Public Health, Hyogo Medical University, Nishinomiya 663-8501, Japan; (Y.Y.); (M.S.)
| | - Toshiomi Okuno
- Department of Microbiology, Hyogo Medical University, Nishinomiya 663-8501, Japan;
| |
Collapse
|
2
|
Peck H, Laurie KL, Rockman S, Leung V, Lau H, Soppe S, Rynehart C, Baas C, Trusheim H, Barr IG. Enhanced isolation of influenza viruses in qualified cells improves the probability of well-matched vaccines. NPJ Vaccines 2021; 6:149. [PMID: 34887440 PMCID: PMC8660794 DOI: 10.1038/s41541-021-00415-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/12/2021] [Indexed: 01/04/2023] Open
Abstract
Influenza vaccines are utilised to combat seasonal and pandemic influenza. The key to influenza vaccination currently is the availability of candidate vaccine viruses (CVVs). Ideally, CVVs reflect the antigenic characteristics of the circulating virus, which may vary depending upon the isolation method. For traditional inactivated egg-based vaccines, CVVs are isolated in embryonated chicken eggs, while for cell-culture production, CVV's are isolated in either embryonated eggs or qualified cell lines. We compared isolation rates, growth characteristics, genetic stability and antigenicity of cell and egg CVV's derived from the same influenza-positive human clinical respiratory samples collected from 2008-2020. Influenza virus isolation rates in MDCK33016PF cells were twice that of eggs and mutations in the HA protein were common in egg CVVs but rare in cell CVVs. These results indicate that fully cell-based influenza vaccines will improve the choice, match and potentially the effectiveness, of seasonal influenza vaccines compared to egg-based vaccines.
Collapse
Affiliation(s)
- Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | | | - Steve Rockman
- Seqirus Ltd, Parkville, VIC, Australia.,Department of Immunology and Microbiology, The University of Melbourne, Parkville, VIC, Australia
| | - Vivian Leung
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Sally Soppe
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Cleve Rynehart
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | | | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Department of Immunology and Microbiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Liu F, Gross FL, Jefferson SN, Holiday C, Bai Y, Wang L, Zhou B, Levine MZ. Age-specific effects of vaccine egg adaptation and immune priming on A(H3N2) antibody responses following influenza vaccination. J Clin Invest 2021; 131:146138. [PMID: 33690218 DOI: 10.1172/jci146138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
A(H3N2) influenza vaccine effectiveness (VE) was low during the 2016-19 seasons and varied by age. We analyzed neutralizing antibody responses to egg- and cell-propagated A(H3N2) vaccine and circulating viruses following vaccination in 375 individuals (aged 7 months to 82 years) across all vaccine-eligible age groups in 3 influenza seasons. Antibody responses to cell- versus egg-propagated vaccine viruses were significantly reduced due to the egg-adapted changes T160K, D225G, and L194P in the vaccine hemagglutinins. Vaccine egg adaptation had a differential impact on antibody responses across the different age groups. Immunologically naive children immunized with egg-adapted vaccines mostly mounted antibodies targeting egg-adapted epitopes, whereas those previously primed with infection produced broader responses even when vaccinated with egg-based vaccines. In the elderly, repeated boosts of vaccine egg-adapted epitopes significantly reduced antibody responses to the WT cell-grown viruses. Analysis with reverse genetic viruses suggested that the response to each egg-adapted substitution varied by age. No differences in antibody responses were observed between male and female vaccinees. Here, the combination of age-specific responses to vaccine egg-adapted substitutions, diverse host immune priming histories, and virus antigenic drift affected antibody responses following vaccination and may have led to the low and variable VE against A(H3N2) viruses across different age groups.
Collapse
|
4
|
Generation and properties of one strain of H3N2 influenza virus with enhanced replication. Vet Microbiol 2020; 253:108970. [PMID: 33421685 DOI: 10.1016/j.vetmic.2020.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/20/2020] [Indexed: 11/23/2022]
Abstract
H3N2 canine influenza virus (CIV) has been circulating in many countries since 2008. The epidemic spread of CIV could be a concern for public health because of the close contact between humans and companion animals. In this study, we used Madin-Darby canine kidney (MDCK) cells as a coinfection model of H3N2 CIV and the pandemic (2009) H1N1 influenza virus to investigate the possibility of genetic mutation or recombination. One of the resultant progeny viruses, designated as CP15, was identified with a significantly increased replication ability. For this viral strain all segments exhibit a homology close to 100 % with its parental strain A/Canine/Jiangsu/06/2010 (JS/10), except for two site mutations K156E and R201 K which occur in the receptor-binding sites of hemagglutinin (HA) and antigen binding sites of neuraminidase (NA), respectively. Virus growth in MDCK cells showed that CP15 had a higher virus titer (more than 10 times) than JS/10. Consistent with this, CP15 exhibited extensive tissue tropism and higher viral RNA loads in the spleen, kidney and lung of mice challenged with this virus compared to JS/10. However, body weight loss and lung injure score due to CP15 infection were greatly reduced. Importantly, anti-CP15 serum antibodies could confer a high neutralization activity against JS/10. These findings indicated that the CP15 strain of high replication ability represents a promising candidate to develop an efficient CIV vaccine.
Collapse
|
5
|
Primary Swine Respiratory Epithelial Cell Lines for the Efficient Isolation and Propagation of Influenza A Viruses. J Virol 2020; 94:JVI.01091-20. [PMID: 32967961 DOI: 10.1128/jvi.01091-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza virus isolation from clinical samples is critical for the identification and characterization of circulating and emerging viruses. Yet efficient isolation can be difficult. In these studies, we isolated primary swine nasal and tracheal respiratory epithelial cells and immortalized swine nasal epithelial cells (siNEC) and tracheal epithelial cells (siTEC) that retained the abilities to form tight junctions and cilia and to differentiate at the air-liquid interface like primary cells. Critically, both human and swine influenza viruses replicated in the immortalized cells, which generally yielded higher-titer viral isolates from human and swine nasal swabs, supported the replication of isolates that failed to grow in Madin-Darby canine kidney (MDCK) cells, and resulted in fewer dominating mutations during viral passaging than MDCK cells.IMPORTANCE Robust in vitro culture systems for influenza virus are critically needed. MDCK cells, the most widely used cell line for influenza isolation and propagation, do not adequately model the respiratory tract. Therefore, many clinical isolates, both animal and human, are unable to be isolated and characterized, limiting our understanding of currently circulating influenza viruses. We have developed immortalized swine respiratory epithelial cells that retain the ability to differentiate and can support influenza replication and isolation. These cell lines can be used as additional tools to enhance influenza research and vaccine development.
Collapse
|
6
|
Rockman S, Laurie KL, Parkes S, Wheatley A, Barr IG. New Technologies for Influenza Vaccines. Microorganisms 2020; 8:microorganisms8111745. [PMID: 33172191 PMCID: PMC7694987 DOI: 10.3390/microorganisms8111745] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Vaccine development has been hampered by the long lead times and the high cost required to reach the market. The 2020 pandemic, caused by a new coronavirus (SARS-CoV-2) that was first reported in late 2019, has seen unprecedented rapid activity to generate a vaccine, which belies the traditional vaccine development cycle. Critically, much of this progress has been leveraged off existing technologies, many of which had their beginnings in influenza vaccine development. This commentary outlines the most promising of the next generation of non-egg-based influenza vaccines including new manufacturing platforms, structure-based antigen design/computational biology, protein-based vaccines including recombinant technologies, nanoparticles, gene- and vector-based technologies, as well as an update on activities around a universal influenza vaccine.
Collapse
Affiliation(s)
- Steven Rockman
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Karen L. Laurie
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
- Correspondence:
| | - Simone Parkes
- Technical Development, Seqirus Ltd, Parkville, Victoria 3052, Australia; (S.R.); (S.P.)
| | - Adam Wheatley
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
| | - Ian G. Barr
- Department of Immunology and Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia; (A.W.); (I.G.B.)
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
The impact of candidate influenza virus and egg-based manufacture on vaccine effectiveness: Literature review and expert consensus. Vaccine 2020; 38:6047-6056. [PMID: 32600916 DOI: 10.1016/j.vaccine.2020.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Influenza is associated with significant morbidity and mortality worldwide. Whilst vaccination is key for the prevention of influenza infection, there are many factors which may contribute to reduced vaccine effectiveness, including antigenic evolution via both antigenic drift and egg-adaptations. Due to the currently dissociated and indirect evidence supporting both the occurrence of these two phenomena in the egg-based manufacturing process and their effects on vaccine effectiveness, this topic remains a subject of debate. OBJECTIVE To review the evidence and level of agreement in expert opinion supporting a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing, using an expert consensus-based methodology and literature reviews. METHODS Ten European influenza specialists were recruited to the expert panel. The overall research question was deconstructed into four component principles, which were examined in series using a novel, online, two-stage assessment of proportional group awareness and consensus. The first stage independently generated a list of supporting references for each component principle via literature searches and expert assessments. In the second stage, a summary of each reference was circulated amongst the experts, who rated their agreement that each reference supported the component principle on a 5-point Likert scale. Finally, the panel were asked if they agreed that, as a whole, the evidence supported a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing. RESULTS All component principles were reported to have a majority of strong or very strong supporting evidence (70-90%). CONCLUSIONS On reviewing the evidence for all component principles, experts unanimously agreed that there is a mechanistic basis for reduced vaccine effectiveness resulting from candidate influenza virus variation due to egg-based manufacturing, particularly in the influenza A/H3N2 strain. Experts pointed to surveillance, candidate vaccine virus selection and manufacturing stages involving eggs as the most likely to impact vaccine effectiveness.
Collapse
|
8
|
Park YW, Kim YH, Jung HU, Jeong OS, Hong EJ, Kim H, Lee JI. Comparison of antigenic mutation during egg and cell passage cultivation of H3N2 influenza virus. Clin Exp Vaccine Res 2020; 9:56-63. [PMID: 32095441 PMCID: PMC7024727 DOI: 10.7774/cevr.2020.9.1.56] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose When influenza viruses are cultured in eggs, amino acid mutations of the hemagglutinin may occur through egg adaptation. On the other hand, when influenza viruses are cultured in animal cells, no antigenic mutation occurs unlike in eggs. Therefore, we examined whether the antigenic mutations actually occurred after passage of H3N2 (A/Texas/50/2012) virus up to 15 times in eggs and MDCK-Sky3851 cells. Materials and Methods Prototype A/Texas/50/2012 (H3N2) influenza virus which was isolated from clinical patient, not passaged in egg, was obtained and propagated using the specific pathogen free egg and the MDCK-Sky3851 cell line up to 15 passage, and the changes in the antigen sequence of the influenza viruses were confirmed by gene sequencing and protein structure analysis. Results In term of the hemagglutination titer of influenza virus, the reactivity to chicken and guinea pig red blood cell showed different results between egg propagated and cell propagated viruses. In the sequence analysis results for hemagglutinin and neuraminidase, no antigenic mutation was observed throughout all passages when cultured in MDCK-Sky3851 cells. On the other hand, mutations occurred in three amino acid sequences (H156R, G186S, S219F) in hemagglutinin up to 15 passages when cultured in eggs. Conclusion H3N2 influenza virus cultured in eggs could lead mutations in amino acid sequence of hemagglutinin, distinct from the corresponding virus cultured in cells for which no antigenic mutation was observed. These findings suggest that cell culture is a more stable and effective way of production with lower risk of antigenic mutations for the manufacture of influenza vaccines.
Collapse
Affiliation(s)
- Yong Wook Park
- Department of Bio R&D, SK Bioscience, Seongnam, Korea.,Department of Veterinary Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Yun Hee Kim
- Department of Bio R&D, SK Bioscience, Seongnam, Korea
| | - Hwan Ui Jung
- Department of Bio R&D, SK Bioscience, Seongnam, Korea
| | - Oh Seok Jeong
- Department of Bio R&D, SK Bioscience, Seongnam, Korea
| | - Eun Ji Hong
- Department of Bio R&D, SK Bioscience, Seongnam, Korea
| | - Hun Kim
- Department of Bio R&D, SK Bioscience, Seongnam, Korea
| | - Jae Il Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|
9
|
Harada Y, Takahashi H, Trusheim H, Roth B, Mizuta K, Hirata-Saito A, Ogane T, Odagiri T, Tashiro M, Yamamoto N. Comparison of suspension MDCK cells, adherent MDCK cells, and LLC-MK2 cells for selective isolation of influenza viruses to be used as vaccine seeds. Influenza Other Respir Viruses 2019; 14:204-209. [PMID: 31651085 PMCID: PMC7040968 DOI: 10.1111/irv.12694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cell-based influenza vaccines can solve the problem of the frequent occurrence of egg adaptation-associated antigenic changes observed in egg-based vaccines. Seed viruses for cell-based vaccines can be prepared from clinical specimens by cell culture; however, clinical samples risk harboring respiratory viruses other than influenza virus. Therefore, it is necessary to investigate the patterns of co-infection in clinical samples and explore whether cell culture technology can selectively propagate influenza viruses from samples containing other respiratory viruses. METHODS A total of 341 clinical specimens were collected from patients with influenza or influenza-like illness and analyzed by ResPlex II assay to detect 18 respiratory viruses. The patterns of co-infection were statistically analyzed with Fisher's exact test. The samples with double or triple infections were passaged in suspension MDCK cells (MDCK-S), adherent MDCK cells (MDCK-A), and LLC-MK2D cells. Cell-passaged samples were analyzed by ResPlex II assay again to investigate whether each cell line could amplify influenza viruses and eliminate other respiratory viruses. RESULTS Double infections were detected in 8.5% and triple infections in 0.9% of the collected clinical specimens. We identified four pairs of viruses with significant correlation. For all samples with double and triple infection, MDCK-S and MDCK-A could selectively propagate influenza viruses, while eliminating all contaminating viruses. In contrast, LLC-MK2D showed lower isolation efficiency for influenza virus and higher isolation efficiency for coxsackievirus/echovirus than MDCK-S and MDCK-A. CONCLUSIONS Both MDCK-S and MDCK-A are considered suitable for the preparation of influenza vaccine seed viruses without adventitious agents or egg-adaptation mutations.
Collapse
Affiliation(s)
- Yuichi Harada
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Heidi Trusheim
- Novartis Vaccines and Diagnostics GmbH, Marburg, Germany
| | - Bernhard Roth
- Novartis Vaccines and Diagnostics GmbH, Marburg, Germany
| | - Katsumi Mizuta
- Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Asumi Hirata-Saito
- Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Teruko Ogane
- Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norio Yamamoto
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Infection Control Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
10
|
Nakamura K, Harada Y, Takahashi H, Trusheim H, Bernhard R, Hamamoto I, Hirata-Saito A, Ogane T, Mizuta K, Konomi N, Konomi Y, Asanuma H, Odagiri T, Tashiro M, Yamamoto N. Systematic evaluation of suspension MDCK cells, adherent MDCK cells, and LLC-MK2 cells for preparing influenza vaccine seed virus. Vaccine 2019; 37:6526-6534. [PMID: 31500967 DOI: 10.1016/j.vaccine.2019.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
Suspension Madin-Darby canine kidney (MDCK) cells (MDCK-N), adherent MDCK cells (MDCK-C), and adherent rhesus monkey kidney LLC-MK2 cells (LLC-MK2D) were systematically evaluated for the preparation of influenza vaccine seed viruses for humans on the basis of primary virus isolation efficiency, growth ability, genetic stability of the hemagglutinin (HA) and neuraminidase (NA) genes, and antigenic properties in hemagglutination inhibition (HI) test of each virus isolate upon further passages. All the subtypes/lineages of influenza viruses (A(H1N1), A(H1N1)pdm09, A(H3N2), B-Victoria, and B-Yamagata) were successfully isolated from clinical specimens by using MDCK-N and MDCK-C, whereas LLC-MK2D did not support virus replication well. Serial passages of A(H1N1) viruses in MDCK-N and MDCK-C induced genetic mutations of HA that resulted in moderate antigenic changes in the HI test. All A(H1N1)pdm09 isolates from MDCK-C acquired amino acid substitutions at the site from K153 to N156 of the HA protein, which resulted in striking antigenic alteration. In contrast, only 30% of MDCK-N isolates showed amino acid changes at this site. The frequency of MDCK-N isolates with less than two-fold reduction in the HI titer was as high as 70%. A(H3N2) and B-Yamagata isolates showed high antigenic stability and no specific amino acid substitution during passages in MDCK-N and MDCK-C. B-Victoria isolates from MDCK-N and MDCK-C acquired genetic changes at HA glycosylation sites that greatly affected their antigenicity. When these cell isolates were applied to passages in hen eggs, A(H1N1), B-Victoria, and B-Yamagata viruses grew well in eggs, while none of the cell isolates of A(H3N2) viruses did. Thus, we demonstrate that MDCK-N might be useful for the preparation of influenza vaccine seed viruses.
Collapse
Affiliation(s)
- Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yuichi Harada
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Heidi Trusheim
- Novartis Vaccines and Diagnostics GmbH, Emil von Behring Str. 76, 35041 Marburg, Germany
| | - Roth Bernhard
- Novartis Vaccines and Diagnostics GmbH, Emil von Behring Str. 76, 35041 Marburg, Germany
| | - Itsuki Hamamoto
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Asumi Hirata-Saito
- Tochigi Prefectural Institute of Public Health and Environmental Science, 2145-13 Shimokamoto-cho, Utsunomiya, Tochigi 329-1196, Japan
| | - Teruko Ogane
- Tochigi Prefectural Institute of Public Health and Environmental Science, 2145-13 Shimokamoto-cho, Utsunomiya, Tochigi 329-1196, Japan
| | - Katsumi Mizuta
- Yamagata Prefectural Institute of Public Health, 1-6-6 Tokamachi, Yamagata, Yamagata 990-0031, Japan
| | - Nami Konomi
- Jinjikai Takahashi Clinic, 4595 Iwai, Bando-city, Ibaraki 306-0631, Japan
| | - Yasushi Konomi
- Jinjikai Takahashi Clinic, 4595 Iwai, Bando-city, Ibaraki 306-0631, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Norio Yamamoto
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan; Department of Infection Control Science, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 208-0011, Japan.
| |
Collapse
|
11
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
12
|
Mutations associated with egg adaptation of influenza A(H1N1)pdm09 virus in laboratory based surveillance in China, 2009–2016. BIOSAFETY AND HEALTH 2019. [DOI: 10.1016/j.bsheal.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Wu NC, Lv H, Thompson AJ, Wu DC, Ng WWS, Kadam RU, Lin CW, Nycholat CM, McBride R, Liang W, Paulson JC, Mok CKP, Wilson IA. Preventing an Antigenically Disruptive Mutation in Egg-Based H3N2 Seasonal Influenza Vaccines by Mutational Incompatibility. Cell Host Microbe 2019; 25:836-844.e5. [PMID: 31151913 PMCID: PMC6579542 DOI: 10.1016/j.chom.2019.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022]
Abstract
Egg-based seasonal influenza vaccines are the major preventive countermeasure against influenza virus. However, their effectiveness can be compromised when antigenic changes arise from egg-adaptive mutations on influenza hemagglutinin (HA). The L194P mutation is commonly observed in egg-based H3N2 vaccine seed strains and significantly alters HA antigenicity. An approach to prevent L194P would therefore be beneficial. We show that emergence of L194P during egg passaging can be impeded by preexistence of a G186V mutation, revealing strong incompatibility between these mutations. X-ray structures illustrate that individual G186V and L194P mutations have opposing effects on the HA receptor-binding site (RBS), and when both G186V and L194P are present, the RBS is severely disrupted. Importantly, wild-type HA antigenicity is maintained with G186V, but not L194P. Our results demonstrate that these epistatic interactions can be used to prevent the emergence of mutations that adversely alter antigenicity during egg adaptation. Most H3N2 egg isolates carry hemagglutinin mutation G186V or L194P, but not both Hemagglutinin double mutation G186V/L194P is highly deleterious to the virus Hemagglutinin double mutation G186V/L194P disrupts the receptor-binding site Wild-type hemagglutinin antigenicity is maintained in G186V, but not in L194P
Collapse
MESH Headings
- Adaptation, Biological
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Binding Sites
- Chick Embryo
- Crystallography, X-Ray
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/growth & development
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mutation, Missense
- Protein Conformation
- Technology, Pharmaceutical/methods
- Virus Cultivation/methods
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Andrew J Thompson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wilson W S Ng
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corwin M Nycholat
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Weiwen Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - James C Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chris K P Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Kuwahara T, Takashita E, Fujisaki S, Shirakura M, Nakamura K, Kishida N, Takahashi H, Suzuki N, Kawaoka Y, Watanabe S, Odagiri T. Isolation of an Egg-Adapted Influenza A(H3N2) Virus without Amino Acid Substitutions at the Antigenic Sites of Its Hemagglutinin. Jpn J Infect Dis 2018; 71:234-238. [PMID: 29709975 DOI: 10.7883/yoken.jjid.2017.551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antigenic changes in the hemagglutinin protein of recent A(H3N2) viruses often arise when these viruses adapt to their egg host. By serial egg passages of a cell-propagated virus, we successfully isolated an egg-adapted influenza A(H3N2) virus, A/Saitama/103/2014, without amino acid substitutions at the antigenic sites of its hemagglutinin protein but with multiple substitutions in its neuraminidase protein. Antigenic analysis of this egg-adapted A/Saitama/103/2014 virus indicated that its antigenicity did not differ from that of the World Health Organization prototype cell-propagated vaccine virus: A/Hong Kong/4801/2014. Our results suggest that this strategy may facilitate egg-based vaccine production without antigenic alterations in hemagglutinin by egg adaptation.
Collapse
Affiliation(s)
- Tomoko Kuwahara
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | - Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | | | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases
| |
Collapse
|
15
|
A Y161F Hemagglutinin Substitution Increases Thermostability and Improves Yields of 2009 H1N1 Influenza A Virus in Cells. J Virol 2018; 92:JVI.01621-17. [PMID: 29118117 DOI: 10.1128/jvi.01621-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Vaccination is the primary strategy for influenza prevention and control. However, egg-based vaccines, the predominant production platform, have several disadvantages, including the emergence of viral antigenic variants that can be induced during egg passage. These limitations have prompted the development of cell-based vaccines, which themselves are not without issue. Most importantly, vaccine seed viruses often do not grow efficiently in mammalian cell lines. Here we aimed to identify novel high-yield signatures for influenza viruses in continuous Madin-Darby canine kidney (MDCK) and Vero cells. Using influenza A(H1N1)pdm09 virus as the testing platform and an integrating error-prone PCR-based mutagenesis strategy, we identified a Y161F mutation in hemagglutinin (HA) that not only enhanced the infectivity of the resultant virus by more than 300-fold but also increased its thermostability without changing its original antigenic properties. The vaccine produced from the Y161F mutant fully protected mice against lethal challenge with wild-type A(H1N1)pdm09. Compared with A(H1N1)pdm09, the Y161F mutant had significantly higher avidity for avian-like and human-like receptor analogs. Of note, the introduction of the Y161F mutation into HA of seasonal H3N2 influenza A virus (IAV) and canine H3N8 IAV also increased yields and thermostability in MDCK cells and chicken embryotic eggs. Thus, residue F161 plays an important role in determining viral growth and thermostability, which could be harnessed to optimize IAV vaccine seed viruses.IMPORTANCE Although a promising complement to current egg-based influenza vaccines, cell-based vaccines have one large challenge: high-yield vaccine seeds for production. In this study, we identified a molecular signature, Y161F, in hemagglutinin (HA) that resulted in increased virus growth in Madin-Darby canine kidney and Vero cells, two cell lines commonly used for influenza vaccine manufacturing. This Y161F mutation not only increased HA thermostability but also enhanced its binding affinity for α2,6- and α2,3-linked Neu5Ac. These results suggest that a vaccine strain bearing the Y161F mutation in HA could potentially increase vaccine yields in mammalian cell culture systems.
Collapse
|
16
|
Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci U S A 2017; 114:12578-12583. [PMID: 29109276 PMCID: PMC5703309 DOI: 10.1073/pnas.1712377114] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H3N2 viruses continuously acquire mutations in the hemagglutinin (HA) glycoprotein that abrogate binding of human antibodies. During the 2014-2015 influenza season, clade 3C.2a H3N2 viruses possessing a new predicted glycosylation site in antigenic site B of HA emerged, and these viruses remain prevalent today. The 2016-2017 seasonal influenza vaccine was updated to include a clade 3C.2a H3N2 strain; however, the egg-adapted version of this viral strain lacks the new putative glycosylation site. Here, we biochemically demonstrate that the HA antigenic site B of circulating clade 3C.2a viruses is glycosylated. We show that antibodies elicited in ferrets and humans exposed to the egg-adapted 2016-2017 H3N2 vaccine strain poorly neutralize a glycosylated clade 3C.2a H3N2 virus. Importantly, antibodies elicited in ferrets infected with the current circulating H3N2 viral strain (that possesses the glycosylation site) and humans vaccinated with baculovirus-expressed H3 antigens (that possess the glycosylation site motif) were able to efficiently recognize a glycosylated clade 3C.2a H3N2 virus. We propose that differences in glycosylation between H3N2 egg-adapted vaccines and circulating strains likely contributed to reduced vaccine effectiveness during the 2016-2017 influenza season. Furthermore, our data suggest that influenza virus antigens prepared via systems not reliant on egg adaptations are more likely to elicit protective antibody responses that are not affected by glycosylation of antigenic site B of H3N2 HA.
Collapse
|
17
|
Yang JR, Cheng CY, Chen CY, Lin CH, Kuo CY, Huang HY, Wu FT, Yang YC, Wu CY, Liu MT, Hsiao PW. A virus-like particle vaccination strategy expands its tolerance to H3N2 antigenic drift by enhancing neutralizing antibodies against hemagglutinin stalk. Antiviral Res 2017; 140:62-75. [DOI: 10.1016/j.antiviral.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
18
|
Nogales A, Martínez-Sobrido L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int J Mol Sci 2016; 18:E20. [PMID: 28025504 PMCID: PMC5297655 DOI: 10.3390/ijms18010020] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
19
|
Suphaphiphat P, Whittaker L, De Souza I, Daniels RS, Dormitzer PR, McCauley JW, Settembre EC. Antigenic characterization of influenza viruses produced using synthetic DNA and novel backbones. Vaccine 2016; 34:3641-8. [PMID: 27219338 PMCID: PMC4940205 DOI: 10.1016/j.vaccine.2016.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 12/25/2022]
Abstract
The global system for manufacturing seasonal influenza vaccines has been developed to respond to the natural evolution of influenza viruses, but the problem of antigenic mismatch continues to be a challenge in certain years. In some years, mismatches arise naturally due to the antigenic drift of circulating viruses after vaccine strain selection has already been made. In other years, antigenic differences between the vaccine virus and circulating viruses are introduced as part of the current system, which relies on the use of egg-adapted isolates as a starting material for candidate vaccine viruses (CVVs). Improving the current process for making vaccine viruses can provide great value. We have previously established a synthetic approach for rapidly generating influenza viruses in a vaccine-approved Madin Darby canine kidney (MDCK) cell line using novel, high-growth backbones that increase virus rescue efficiency and antigen yield. This technology also has the potential to produce viruses that maintain antigenic similarity to the intended reference viruses, depending on the hemagglutinin (HA) and neuraminidase (NA) sequences used for gene synthesis. To demonstrate this utility, we generated a panel of synthetic viruses using HA and NA sequences from recent isolates and showed by hemagglutination inhibition (HI) tests that all synthetic viruses were antigenically-like their conventional egg- or cell-propagated reference strains and there was no impact of the novel backbones on antigenicity. This synthetic approach can be used for the efficient production of CVVs that may be more representative of circulating viruses and may be used for both egg- and cell-based vaccine manufacturing platforms. When combined with mammalian cell culture technology for antigen production, synthetic viruses generated using HA and NA sequences from a non-egg-adapted prototype can help to reduce the potential impact of antigenic differences between vaccine virus and circulating viruses on vaccine effectiveness.
Collapse
Affiliation(s)
- Pirada Suphaphiphat
- Seqirus (previously Novartis Influenza Vaccines), 45 Sidney Street, Cambridge, MA 02139, USA.
| | - Lynne Whittaker
- Crick Worldwide Influenza Centre, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ivna De Souza
- Seqirus (previously Novartis Influenza Vaccines), 45 Sidney Street, Cambridge, MA 02139, USA
| | - Rodney S Daniels
- Crick Worldwide Influenza Centre, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Philip R Dormitzer
- Seqirus (previously Novartis Influenza Vaccines), 45 Sidney Street, Cambridge, MA 02139, USA
| | - John W McCauley
- Crick Worldwide Influenza Centre, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ethan C Settembre
- Seqirus (previously Novartis Influenza Vaccines), 45 Sidney Street, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Parker L, Wharton SA, Martin SR, Cross K, Lin Y, Liu Y, Feizi T, Daniels RS, McCauley JW. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses. J Gen Virol 2016; 97:1333-1344. [PMID: 26974849 PMCID: PMC5394856 DOI: 10.1099/jgv.0.000457] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012–2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.
Collapse
Affiliation(s)
- Lauren Parker
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.,Formerly Divisions of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Stephen A Wharton
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.,Formerly Divisions of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Stephen R Martin
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.,Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Karen Cross
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.,Formerly Divisions of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Yipu Lin
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.,Formerly Divisions of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Yan Liu
- Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Ten Feizi
- Department of Medicine, Glycosciences Laboratory, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Rodney S Daniels
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK.,Formerly Divisions of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - John W McCauley
- Formerly Divisions of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK.,The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| |
Collapse
|
21
|
Hartvickson R, Cruz M, Ervin J, Brandon D, Forleo-Neto E, Dagnew AF, Chandra R, Lindert K, Mateen AA. Non-inferiority of mammalian cell-derived quadrivalent subunit influenza virus vaccines compared to trivalent subunit influenza virus vaccines in healthy children: a phase III randomized, multicenter, double-blind clinical trial. Int J Infect Dis 2015; 41:65-72. [DOI: 10.1016/j.ijid.2015.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022] Open
|
22
|
Current and emerging cell culture manufacturing technologies for influenza vaccines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:504831. [PMID: 25815321 PMCID: PMC4359798 DOI: 10.1155/2015/504831] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 02/16/2015] [Indexed: 01/08/2023]
Abstract
Annually, influenza virus infects millions of people worldwide. Vaccination programs against seasonal influenza infections require the production of hundreds of million doses within a very short period of time. The influenza vaccine is currently produced using a technology developed in the 1940s that relies on replicating the virus in embryonated hens' eggs. The monovalent viral preparation is inactivated and purified before being formulated in trivalent or tetravalent influenza vaccines. The production process has depended on a continuous supply of eggs. In the case of pandemic outbreaks, this mode of production might be problematic because of a possible drastic reduction in the egg supply and the low flexibility of the manufacturing process resulting in a lack of supply of the required vaccine doses in a timely fashion. Novel production systems using mammalian or insect cell cultures have emerged to overcome the limitations of the egg-based production system. These industrially well-established production systems have been primarily selected for a faster and more flexible response to pandemic threats. Here, we review the most important cell culture manufacturing processes that have been developed in recent years for mass production of influenza vaccines.
Collapse
|
23
|
Donis RO, Chen IM, Davis CT, Foust A, Hossain MJ, Johnson A, Klimov A, Loughlin R, Xu X, Tsai T, Blayer S, Trusheim H, Colegate T, Fox J, Taylor B, Hussain A, Barr I, Baas C, Louwerens J, Geuns E, Lee MS, Venhuizen O, Neumeier E, Ziegler T. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing. Vaccine 2014; 32:6583-90. [PMID: 24975811 PMCID: PMC5915289 DOI: 10.1016/j.vaccine.2014.06.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/22/2014] [Accepted: 06/11/2014] [Indexed: 01/18/2023]
Abstract
Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine certified cell lines may well qualify for use in vaccine production.
Collapse
Affiliation(s)
- Ruben O. Donis
- Corresponding author Influenza Division, Centers for Diseases Control and Prevention (CDC), National Center for Immunization and Respiratory Diseases, Influenza Division, 1600 Clifton Road, Mailstop A-20, Atlanta, GA 30333, USA. Tel.: +1 404 639 4968; fax: +1 404 639 2350. ,
| | | | - i-Mei Chen
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - C Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Angie Foust
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M. Jaber Hossain
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adam Johnson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alexander Klimov
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
- National Institute for Health and Welfare (THL), Helsinki, Finland, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Rosette Loughlin
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiyan Xu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Theodore Tsai
- Novartis Vaccines and Diagnostics, Cambridge, MA, USA
| | - Simone Blayer
- Novartis Vaccines and Diagnostics, GmbH & Co. KG, Marburg, Germany
| | - Heidi Trusheim
- Novartis Vaccines and Diagnostics, GmbH & Co. KG, Marburg, Germany
| | | | - John Fox
- Novartis Vaccines and Diagnostics, Liverpool, UK
| | | | | | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia
| | - Chantal Baas
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia
| | | | - Ed Geuns
- Abbott Bioiogicais B.V., Weesp, The Netherlands
| | | | | | | | - Thedi Ziegler
- National Institute for Health and Welfare (THL), Helsinki, Finland, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
24
|
Abstract
Collective knowledge regarding the occurrence of influenza among swine is incomplete due to inconsistent surveillance of swine populations. In this chapter, we review what surveillance activities exist and some of the practical challenges encountered. Furthermore, to support robust surveillance activities, accurate laboratory assays are needed for the detection of the virus and viral nucleic acids within clinical samples, or for antiviral antibodies in serum samples. The most common influenza diagnostic assays used for swine are explained and their use as surveillance tools evaluated.
Collapse
Affiliation(s)
- Jürgen A. Richt
- Science and Techn. Ctr. of Excellence, College of Veterinary Medicine, Kansas State University, Mosier Hall K-224B, Manhattan, 66506-5601 Kansas USA
| | - Richard J. Webby
- Dept. Infectious Diseases (ID), Div. Virology, St. Jude Children's Research Hospital, N. Lauderdale St. 332, Memphis, 38105 Tennessee USA
| |
Collapse
|
25
|
Evaluation of influenza virus A/H3N2 and B vaccines on the basis of cross-reactivity of postvaccination human serum antibodies against influenza viruses A/H3N2 and B isolated in MDCK cells and embryonated hen eggs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:897-908. [PMID: 22492743 DOI: 10.1128/cvi.05726-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The vaccine strains against influenza virus A/H3N2 for the 2010-2011 season and influenza virus B for the 2009-2010 and 2010-2011 seasons in Japan are a high-growth reassortant A/Victoria/210/2009 (X-187) strain and an egg-adapted B/Brisbane/60/2008 (Victoria lineage) strain, respectively. Hemagglutination inhibition (HI) tests with postinfection ferret antisera indicated that the antisera raised against the X-187 and egg-adapted B/Brisbane/60/2008 vaccine production strains poorly inhibited recent epidemic isolates of MDCK-grown A/H3N2 and B/Victoria lineage viruses, respectively. The low reactivity of the ferret antisera may be attributable to changes in the hemagglutinin (HA) protein of production strains during egg adaptation. To evaluate the efficacy of A/H3N2 and B vaccines, the cross-reactivities of postvaccination human serum antibodies against A/H3N2 and B/Victoria lineage epidemic isolates were assessed by a comparison of the geometric mean titers (GMTs) of HI and neutralization (NT) tests. Serum antibodies elicited by the X-187 vaccine had low cross-reactivity to both MDCK- and egg-grown A/H3N2 isolates by HI test and narrow cross-reactivity by NT test in all age groups. On the other hand, the GMTs to B viruses detected by HI test were below the marginal level, so the cross-reactivity was assessed by NT test. The serum neutralizing antibodies elicited by the B/Brisbane/60/2008 vaccine reacted well with egg-grown B viruses but exhibited remarkably low reactivity to MDCK-grown B viruses. The results of these human serological studies suggest that the influenza A/H3N2 vaccine for the 2010-2011 season and B vaccine for the 2009-2010 and 2010-2011 seasons may possess insufficient efficacy and low efficacy, respectively.
Collapse
|
26
|
Stevens J, Chen LM, Carney PJ, Garten R, Foust A, Le J, Pokorny BA, Manojkumar R, Silverman J, Devis R, Rhea K, Xu X, Bucher DJ, Paulson J, Cox NJ, Klimov A, Donis RO. Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs. J Virol 2010; 84:8287-99. [PMID: 20519409 PMCID: PMC2916524 DOI: 10.1128/jvi.00058-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/18/2010] [Indexed: 11/20/2022] Open
Abstract
Isolation of human subtype H3N2 influenza viruses in embryonated chicken eggs yields viruses with amino acid substitutions in the hemagglutinin (HA) that often affect binding to sialic acid receptors. We used a glycan array approach to analyze the repertoire of sialylated glycans recognized by viruses from the same clinical specimen isolated in eggs or cell cultures. The binding profiles of whole virions to 85 sialoglycans on the microarray allowed the categorization of cell isolates into two groups. Group 1 cell isolates displayed binding to a restricted set of alpha2-6 and alpha2-3 sialoglycans, whereas group 2 cell isolates revealed receptor specificity broader than that of their egg counterparts. Egg isolates from group 1 showed binding specificities similar to those of cell isolates, whereas group 2 egg isolates showed a significantly reduced binding to alpha2-6- and alpha2-3-type receptors but retained substantial binding to specific O- and N-linked alpha2-3 glycans, including alpha2-3GalNAc and fucosylated alpha2-3 glycans (including sialyl Lewis x), both of which may be important receptors for H3N2 virus replication in eggs. These results revealed an unexpected diversity in receptor binding specificities among recent H3N2 viruses, with distinct patterns of amino acid substitution in the HA occurring upon isolation and/or propagation in eggs. These findings also suggest that clinical specimens containing viruses with group 1-like receptor binding profiles would be less prone to undergoing receptor binding or antigenic changes upon isolation in eggs. Screening cell isolates for appropriate receptor binding properties might help focus efforts to isolate the most suitable viruses in eggs for production of antigenically well-matched influenza vaccines.
Collapse
Affiliation(s)
- James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Li-Mei Chen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Paul J. Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Angie Foust
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Jianhua Le
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Barbara A. Pokorny
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Ramanunninair Manojkumar
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Jeanmarie Silverman
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Rene Devis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Karen Rhea
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Doris J. Bucher
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - James Paulson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Nancy J. Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Alexander Klimov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Ruben O. Donis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
27
|
The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. Vaccine 2010; 28:4079-85. [DOI: 10.1016/j.vaccine.2010.03.078] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 11/20/2022]
|
28
|
Tung NH, Kwon HJ, Kim JH, Ra JC, Ding Y, Kim JA, Kim YH. Anti-influenza diarylheptanoids from the bark of Alnus japonica. Bioorg Med Chem Lett 2009; 20:1000-3. [PMID: 20045319 DOI: 10.1016/j.bmcl.2009.12.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/28/2022]
Abstract
This study to investigate anti-influenza components from the bark of Alnus japonica resulted in the isolation of two rare acylated diarylheptanoids, named oregonoyl A (5) and oregonoyl B (6), along with nine known compounds (1-4 and 7-11). Their structures were elucidated on the basis of extensive spectroscopic and chemical methods. Antiviral testing of compounds 1-11 against KBNP-0028 (H9N2) avian influenza virus showed that platyphyllone (10) was strongly active, and platyphyllonol-5-xylopyranoside (9) was moderately active against KBNP-0028 as compared with the positive control, zanamivir, respectively.
Collapse
Affiliation(s)
- Nguyen Huu Tung
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Reading PC, Pickett DL, Tate MD, Whitney PG, Job ER, Brooks AG. Loss of a single N-linked glycan from the hemagglutinin of influenza virus is associated with resistance to collectins and increased virulence in mice. Respir Res 2009; 10:117. [PMID: 19930664 PMCID: PMC2787511 DOI: 10.1186/1465-9921-10-117] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 11/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Glycosylation on the globular head of the hemagglutinin (HA) protein of influenza virus acts as an important target for recognition and destruction of virus by innate immune proteins of the collectin family. This, in turn, modulates the virulence of different viruses for mice. The role of particular oligosaccharide attachments on the HA in determining sensitivity to collectins has yet to be fully elucidated. Methods When comparing the virulence of H3N2 subtype viruses for mice we found that viruses isolated after 1980 were highly glycosylated and induced mild disease in mice. During these studies, we were surprised to find a small plaque variant of strain A/Beijing/353/89 (Beij/89) emerged following infection of mice and grew to high titres in mouse lung. In the current study we have characterized the properties of this small plaque mutant both in vitro and in vivo. Results Small plaque mutants were recovered following plaquing of lung homogenates from mice infected with influenza virus seed Beij/89. Compared to wild-type virus, small plaque mutants showed increased virulence in mice yet did not differ in their ability to infect or replicate in airway epithelial cells in vitro. Instead, small plaque variants were markedly resistant to neutralization by murine collectins, a property that correlated with the acquisition of an amino acid substitution at residue 246 on the viral HA. We present evidence that this substitution was associated with the loss of an oligosaccharide glycan from the globular head of HA. Conclusion A point mutation in the gene encoding the HA of Beij/89 was shown to ablate a glycan attachment site. This was associated with resistance to collectins and increased virulence in mice.
Collapse
Affiliation(s)
- Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Okomo-Adhiambo M, Nguyen HT, Sleeman K, Sheu TG, Deyde VM, Garten RJ, Xu X, Shaw MW, Klimov AI, Gubareva LV. Host cell selection of influenza neuraminidase variants: implications for drug resistance monitoring in A(H1N1) viruses. Antiviral Res 2009; 85:381-8. [PMID: 19917319 DOI: 10.1016/j.antiviral.2009.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/21/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
The neuraminidase inhibitors (NAIs), oseltamivir and zanamivir, are essential for treatment and prevention of influenza A and B infections. Oseltamivir resistance among influenza A (H1N1) viruses rapidly emerged and spread globally during the 2007-2008 and 2008-2009 influenza seasons. Approximately 20% and 90% of viruses tested for NAI susceptibility at CDC during these seasons, respectively, were resistant to oseltamivir (IC(50) approximately 100-3000 time>those of sensitive viruses), based on the chemiluminescent NA inhibition assay. Pyrosequencing analysis confirmed H274Y mutation (H275Y in N1 numbering) in the neuraminidase (NA) gene of oseltamivir-resistant viruses. Full NA sequence analysis of a subset of oseltamivir-resistant and sensitive virus isolates from both seasons (n=725) showed that 53 (7.3%) had mutations at residue D151 (D-->E/G/N), while 9 (1.2%) had mutations at Q136 (Q-->K) and 2 (0.3%) had mutations at both residues. Viruses with very high IC(50) for oseltamivir and peramivir, and elevated IC(50) for zanamivir, had H274Y in addition to mutations at D151 and/or Q136, residues which can potentially confer NAI resistance based on recent N1 NA crystal structure data. Mutations at D151 without H274Y, did not elevate IC(50) for any tested NAI, however, Q136K alone significantly reduced susceptibility to zanamivir (36-fold), peramivir (80-fold) and A-315675 (114-fold) but not oseltamivir. Mutations at D151 and Q136 were present only in MDCK grown viruses but not in matching original clinical specimens (n=33) which were available for testing, suggesting that these variants were the result of cell culture selection or they were present in very low proportions. Our findings provide evidence that propagation of influenza virus outside its natural host may lead to selection of virus variants with mutations in the NA that affect sensitivity to NAIs and thus poses implications for drug resistance monitoring and diagnostics.
Collapse
Affiliation(s)
- Margaret Okomo-Adhiambo
- Virus Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mail Stop G-16, 1600 Clifton Road Atlanta GA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cools HJ, Gussekloo J, Remmerswaal JE, Remarque EJ, Kroes AC. Benefits of increasing the dose of influenza vaccine in residents of long-term care facilities: A randomized placebo-controlled trial. J Med Virol 2009; 81:908-14. [DOI: 10.1002/jmv.21456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Kryazhimskiy S, Bazykin GA, Plotkin JB, Plotkin J, Dushoff J. Directionality in the evolution of influenza A haemagglutinin. Proc Biol Sci 2008; 275:2455-64. [PMID: 18647721 PMCID: PMC2603193 DOI: 10.1098/rspb.2008.0521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of haemagglutinin (HA), an important influenza virus antigen, has been the subject of intensive research for more than two decades. Many characteristics of HA's sequence evolution are captured by standard Markov chain substitution models. Such models assign equal fitness to all accessible amino acids at a site. We show, however, that such models strongly underestimate the number of homoplastic amino acid substitutions during the course of HA's evolution, i.e. substitutions that repeatedly give rise to the same amino acid at a site. We develop statistics to detect individual homoplastic events and find that they preferentially occur at positively selected epitopic sites. Our results suggest that the evolution of the influenza A HA, including evolution by positive selection, is strongly affected by the long-term site-specific preferences for individual amino acids.
Collapse
Affiliation(s)
- Sergey Kryazhimskiy
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
33
|
Hampson AW. Vaccines for Pandemic Influenza. The History of our Current Vaccines, their Limitations and the Requirements to Deal with a Pandemic Threat. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n6p510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fears of a potential pandemic due to A(H5N1) viruses have focussed new attention on our current vaccines, their shortcomings, and concerns regarding global vaccine supply in a pandemic. The bulk of current vaccines are inactivated split virus vaccines produced from egggrown virus and have only modest improvements compared with those first introduced over 60 years ago. Splitting, which was introduced some years ago to reduce reactogenicity, also reduces the immunogenicity of vaccines in immunologically naïve recipients. The A(H5N1) viruses have been found poorly immunogenic and present other challenges for vaccine producers which further exacerbate an already limited global production capacity. There have been some recent improvements in vaccine production methods and improvements to immunogenicity by the development of new adjuvants, however, these still fall short of providing timely supplies of vaccine for all in the face of a pandemic. New approaches to influenza vaccines which might fulfil the demands of a pandemic situation are under evaluation, however, these remain some distance from clinical reality and face significant regulatory hurdles.
Key words: Adjuvant, Antigen, Cell-culture, Immune response, Immunogenicity, Influenza A(H5N1), Split vaccine
Collapse
|
34
|
Chen Z, Aspelund A, Jin H. Stabilizing the glycosylation pattern of influenza B hemagglutinin following adaptation to growth in eggs. Vaccine 2007; 26:361-71. [PMID: 18079027 DOI: 10.1016/j.vaccine.2007.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/01/2007] [Accepted: 11/06/2007] [Indexed: 11/15/2022]
Abstract
The currently circulating influenza B viruses from both antigenic lineages contain an N-linked glycosylation site in the hemagglutinin (HA) protein at positions of 196 or 197. However, egg adaptation caused the loss of the glycosylation site that could impact virus antigenicity and vaccine efficacy. The effect of the 196/197 glycosylation site on influenza B virus growth and antigenicity was systemically evaluated in this study by the molecular approach. Paired recombinant 6:2 reassortant influenza B vaccine strains, with or without the 196/197 glycosylation site, were generated by reverse genetics and the glycosylation site was retained in MDCK cells. In contrast, all the viruses that contained the introduced glycosylation site were unable to grow in eggs and rapidly lost the glycosylation site once adapted to grow in eggs. We showed that glycosylation affected virus binding to the alpha-2,3-linked sialic acid receptor and affected virus antigenicity as tested by postinfected ferret sera. We have further identified that the Arginine residue at amino acid position 141 (141R) can stabilize the 196/197 glycosylation site without affecting virus antigenicity. Thus, the 141R could be introduced into vaccine strains to retain the 196/197 glycosylation site for influenza B vaccines.
Collapse
Affiliation(s)
- Zhongying Chen
- Medimmune Inc., 297 North Bernardo Avenue, Mountain View, CA 94043, United States.
| | | | | |
Collapse
|
35
|
Asaoka N, Tanaka Y, Sakai T, Fujii Y, Ohuchi R, Ohuchi M. Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities. Microbes Infect 2005; 8:511-9. [PMID: 16300986 DOI: 10.1016/j.micinf.2005.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/10/2005] [Accepted: 08/16/2005] [Indexed: 11/16/2022]
Abstract
Madin Darby canine kidney (MDCK) cells have generally been used to isolate influenza viruses from patients. However, in recent years, most fresh isolates of the H3N2 subtype have shown poor growth in MDCK cell cultures. Such low-growth viruses were often converted to high-growth viruses after several passages through MDCK cell cultures. In the present study, viruses were found to lose a potential glycosylation site near the receptor-binding pocket of hemagglutinin (HA), at the same time as they acquired the high-growth property. The growth curves of viruses in MDCK cell cultures revealed that multi-cycle replication did not function well in the low-growth viruses. However, the production of progeny viruses within a single cycle of growth did not differ much between the low- and high-growth viruses. The high-growth viruses showed higher infection efficiency in MDCK cell cultures than the low-growth viruses. The HA genes of both low- and high-growth viruses were separately cloned into the SV40 vector to compare their receptor binding affinities. The HA of high-growth viruses showed a much higher receptor binding affinity than that of low-growth viruses, when assayed by hemadsorption and the release kinetics of erythrocytes with bacterial neuraminidase. Reverse genetics studies demonstrated that HA was a crucial determinant for multi-cycle replication in MDCK cell cultures. Taken together, these results demonstrate that inefficient multi-cycle growth of fresh isolates is due to their low receptor binding affinities.
Collapse
Affiliation(s)
- Naoko Asaoka
- Department of Microbiology, Kawasaki Medical School, Kurashiki 710-0192, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Pyhälä R, Alanko S, Forsten T, Haapa K, Kinnunen L, Jääskivi M, Visakorpi R, Valle M. Early kinetics of antibody response to inactivated influenza vaccine. ACTA ACUST UNITED AC 2005; 1:271-8. [PMID: 15566741 DOI: 10.1016/0928-0197(94)90057-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1993] [Revised: 09/15/1993] [Accepted: 09/28/1993] [Indexed: 11/20/2022]
Abstract
The aim was to examine the rapidity of haemagglutination inhibiting (HI) antibody response induced by immunization with a current inactivated trivalent influenza vaccine. Five to six sequential serum samples collected in autumn 1992 from each of 68 vaccinees in three age groups were studied for HI antibodies to ten influenza virus strains representing vaccine and epidemic viruses. Geometric mean titres, response rates and protection rates are presented. Response rates of > 70% were overall, but not until two weeks after the vaccination. Significant two- and four-day post-vaccination antibody responses were detected only occasionally. In previously vaccinated persons, average antibody titres to some of the viruses decreased during the first days after the vaccination. In the subsequent samples, the titres remained lower than in persons who were not vaccinated against influenza in preceding years. Protection against influenza infection may be frequently developed not until two weeks after vaccination. This has relevance to prophylactic administration of amantadine and rimantadine when an influenza A outbreak is imminent and the vaccination is late.
Collapse
Affiliation(s)
- R Pyhälä
- National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Audsley JM, Tannock GA. The growth of attenuated influenza vaccine donor strains in continuous cell lines. J Virol Methods 2005; 123:187-93. [PMID: 15620401 DOI: 10.1016/j.jviromet.2004.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
The growth of the Russian live attenuated influenza vaccine donor strains A/Leningrad/134/17/57, A/Leningrad/134/47/57 and B/USSR/60/69 was studied in cells of the VERO and Madin-Darby canine kidney (MDCK) lines as six-well cultures and cell factories infected at different multiplicities of infection. Yields for A/Leningrad/134/17/57 and A/Leningrad/134/47/57 were comparable in either cell line over a range of multiplicities but were about 10-fold lower than in the allantoic fluids of infected chicken embryos. For both A/Leningrad/134/47/57 and B/USSR/60/69, yields from the MDCK line were about 10-fold higher than for the VERO line. For B/USSR/60/69, yields in eggs were approximately 100-fold higher than those obtained in the MDCK line. A feature of the growth of B/USSR/60/69 was its reduced capacity to produce infectious progeny in either cell line at multiplicities of infection of 2.0 or 1.0 pfu/cell. Inhibition was due probably due to the presence of defective-interfering particles and was not detected with A/Leningrad/134/17/57 or A/Leningrad/134/47/57 in cultures of either line infected at the same multiplicities. Yields for both A/Leningrad/134/47/57 and B/USSR/60/69 in cells of the MDCK line were comparable when grown in six-well cultures or cell factories.
Collapse
Affiliation(s)
- J M Audsley
- Department of Biotechnology and Environmental Biology, RMIT University, P.O. Box 71, Bundoora, Vic. 3083, Australia
| | | |
Collapse
|
38
|
Saito T, Nakaya Y, Suzuki T, Ito R, Saito T, Saito H, Takao S, Sahara K, Odagiri T, Murata T, Usui T, Suzuki Y, Tashiro M. Antigenic alteration of influenza B virus associated with loss of a glycosylation site due to host-cell adaptation. J Med Virol 2004; 74:336-43. [PMID: 15332284 DOI: 10.1002/jmv.20178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Effects of host-cell adaptation of the hemagglutinin (HA) protein were evaluated by the analyses of four pairs of recent influenza B field isolates, each pair consisting of an Madin Darby canine kidney (MDCK)- and an embryonated chicken egg-derived isolates from the same clinical specimen. Among the isolates examined, all of the MDCK-derived isolates retained glycosylation site at amino acid 197 on the HA1 molecule, whereas three egg-derived isolates lost it. Antigenic difference in the HA molecule between an MDCK- and an egg-derived isolates of three of these pairs was demonstrated to be associated with the glycosylation 197. Replication of the MDCK-derived isolates was suppressed in eggs, suggesting that the presence of the glycosylation 197 was disadvantageous to replication in eggs. Virus-binding affinity assay revealed that the loss of carbohydrate chain did not significantly alter the preferential recognition of sialic acid linkage. Immunogenicity and vaccine efficacy of an MDCK- and an egg-derived clones of B/Akita/27/2001, the former retained the glycosylation 197 and the latter lost it, were compared in a hamster model. When formalin-inactivated whole virion vaccines prepared from the paired isolates were administered into hamsters, no significant difference between them was observed in protective ability against challenges by the homologous and heterologous clones. Implication of the egg adaptation of influenza virus to antigenic surveillance of the field isolates as well as the selection of vaccine strains, and possibility of the involvement of the viral protein(s) other than the HA in the egg adaptation were discussed.
Collapse
Affiliation(s)
- Takehiko Saito
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Audsley JM, Tannock GA. The role of cell culture vaccines in the control of the next influenza pandemic. Expert Opin Biol Ther 2004; 4:709-17. [PMID: 15155162 DOI: 10.1517/14712598.4.5.709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pandemic influenza A viruses of avian origin are of particular concern and have crossed the species barrier several times in recent years, giving rise to illness and occasionally death in humans. This situation could become dramatically worse if the infectivity of avian viruses for humans were increased by reassortment between the genes of human and avian viruses. Co-infection of humans or an intermediate host with an avian strain and an existing human strain could produce new viruses of unknown pathogenicity to which the entire population would be susceptible. Inactivated vaccines against influenza have been prepared for many years using viruses grown in embryonated chicken eggs. However, the use of eggs presents difficulties when vaccine supplies need to be expanded at short notice. It seems likely that future vaccines will be prepared in high-yielding cell cultures from continuous lines that are preferably anchorage-independent. At present, only certain preparations of the Vero and Madin-Darby canine kidney cell lines, grown and maintained in serum-free medium, are acceptable to all regulatory authorities. However, this situation is likely to change with increasing need for non-pandemic and pandemic vaccines.
Collapse
Affiliation(s)
- J M Audsley
- Department of Biotechnology and Environmental Biology, RMIT University, Bundoora Vic., Australia.
| | | |
Collapse
|
40
|
Motta FC, Rosado AS, Couceiro JNSS. Standardization of denaturing gradient gel electrophoresis for mutant screening of influenza A (H3N2) virus samples. J Virol Methods 2002; 101:105-15. [PMID: 11849689 DOI: 10.1016/s0166-0934(01)00426-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of the extensive genetic variability of the influenza viruses, new virus mutants arise worldwide. In the human population, some strains may become potentially epidemic after evading the immune response of the host. At present, molecular methods have made it possible to identify these variants. However, if a large number of samples need to be analyzed the identification of randomly mutated nucleotides cannot be achieved by sequencing analysis or restriction fragment length polymorphism (RFLP). In order to improve this process, a denaturing gradient gel electrophoresis (DGGE) protocol capable of discriminating between reference strains representative of different influenza seasons, some mutant strains, and five clinical isolates was standardized Ribonudeic acid (RNA) was isolated and submitted to a one-step RT-PCR that amplified the region codifying for the globular domain of the Haemagglutinin (HA) molecule. The amplicons were analyzed by electrophoresis in 6% polyacrylamide gel at 60 degreeC/150 V for 8 h, using a 31--41% urea--formamide gradient. This method was able to distinguish between closely related nucleotide sequences, confirming its suitability as screening methodology for the analysis of influenza virus epidemiology, by allowing a faster and more extensive evaluation of a large number of the variant strains detected in a specific region of the world.
Collapse
Affiliation(s)
- F C Motta
- Depto. de Virologia, Lab. de Virologia Molecular I, Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro, 21.941-590, RJ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
41
|
Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S. Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology 2001; 289:74-85. [PMID: 11601919 DOI: 10.1006/viro.2001.1121] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To identify the molecular determinants contributing to the inability of recent human influenza A(H3N2) viruses to agglutinate chicken erythrocytes, phenotypic revertants were selected upon passage in eggs or MDCK cells. The Leu194Ile or Val226Ile substitutions were detected in their hemagglutinin (HA) sequence concomitantly with the phenotypic reversion. Remarkably, as little as 3.5% of variants bearing a Val226Ile substitution was found to confer the ability to agglutinate chicken erythrocytes to the virus population. Hemadsorption assays following transient expression of mutated HA proteins showed that the successive Gln226 --> Leu --> Ile --> Val changes observed on natural isolates resulted in a progressive loss of the ability of the HA to bind chicken erythrocytes. The Val226Ile change maintained the preference of the HA for SAalpha2,6Gal over SAalpha2,3Gal and enhanced binding of the HA to alpha2,6Gal receptors present on chicken erythrocytes. In contrast, simultaneous Ser193Arg and Leu194Ile substitutions that were found to confer the ability to agglutinate sheep erythrocytes increased the affinity of the HA for SAalpha2,3Gal.
Collapse
Affiliation(s)
- R Medeiros
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
Collapse
Affiliation(s)
- J J Skehel
- National Institute for Medical Research, London NW7 1AA, England
| | | |
Collapse
|
43
|
Hiromoto Y, Saito T, Lindstrom S, Nerome K. Characterization of low virulent strains of highly pathogenic A/Hong Kong/156/97 (H5N1) virus in mice after passage in embryonated hens' eggs. Virology 2000; 272:429-37. [PMID: 10873787 DOI: 10.1006/viro.2000.0371] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Avian influenza A H5N1 viruses were isolated from humans for the first time in Hong Kong in 1997. The virulence of A/Hong Kong/156/97 (HK156) strain in mice was found to change significantly depending on the passage history of the virus. Madin-Darby canine kidney (MDCK) cell-grown parental virus and three of its clones derived from mouse brain showed high pathogenicity in mice after intranasal or intracerebral infection. In contrast, the egg-derived parental virus HK156-E3 and its cloned viruses were markedly less pathogenic in mice. It appeared that differences in pathogenicity among viruses derived from MDCK cells and eggs were due to their ability or inability to disseminate from the lungs to the brain. Sequence analysis of the entire protein coding regions of all eight RNA genome segments revealed a total of six conserved amino acid differences in the HA1 domain (residue 211) of the HA protein, as well as the PB1 (residues 456 and 712), PA (residue 631), NP (residue 127), and NS1 (residue 101) proteins that correlated with observed changes in virulence and neurovirulence of HK156 virus in mice. Thus it was evident that the passaging of HK156 in embryonated eggs led to the adaptation and selection of variants demonstrating markedly decreased pathogenicity and neurovirulence in mice that appeared to be attributable to specific amino acid changes in the HA and internal proteins.
Collapse
Affiliation(s)
- Y Hiromoto
- Department of Virology I, National Institute of Infectious Diseases, 23-1, Toyama 1-chome, Tokyo, Shinjuku-ku, 162-8640, Japan
| | | | | | | |
Collapse
|
44
|
Saito T, Tashiro M. Vaccines and therapeutics against influenza virus infections. Pediatr Int 2000; 42:219-25. [PMID: 10804745 DOI: 10.1046/j.1442-200x.2000.01201.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Vaccination prior to epidemic season is the best measure to control influenza virus infection; however, there are several issues to be considered regarding influenza vaccines in Japan. In the present review, current issues regarding influenza vaccine in Japan are described, as well as the future prospects of vaccine development. As well as vaccination, anti-influenza agents such as amantadine are now available in Japan. Furthermore, neuraminidase inhibitors are expected to appear in the market in near future. These anti-influenza agents represent new options for influenza control. CONCLUSIONS Vaccination and antiviral agents are a major armamentarium against influenza infections. Thus, exploratory studies on novel forms of vaccine and anti-influenza drugs should help to prepare against pandemics that must emerge in near future.
Collapse
Affiliation(s)
- T Saito
- Department of Virology I, National Institute of Infectious Diseases, Shinjuku-Ku, Japan
| | | |
Collapse
|
45
|
Gambaryan AS, Robertson JS, Matrosovich MN. Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 1999; 258:232-9. [PMID: 10366560 DOI: 10.1006/viro.1999.9732] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Propagation of human influenza viruses in embryonated chicken eggs (CE) results in the selection of variants with amino acid substitutions near the receptor-binding site of the hemagglutinin (HA) molecule. To evaluate the mechanisms by which these substitutions enable human virus growth in CE, we studied the binding of 10 human influenza A (H1N1, H3N2) and B strains, isolated and propagated solely in MDCK cells, and of their egg-adapted counterparts to preparations of cellular membranes, gangliosides, sialylglycoproteins, and sialyloligosaccharides. All egg-adapted variants differed from nonadapted strains by increased binding to the plasma membranes of chorio-allantoic (CAM) cells of CE and by the ability to bind to CAM gangliosides. In addition, there was no decrease in affinity for inhibitors within allantoic fluid. These findings indicate that growth of human influenza viruses in CE is restricted because of their inefficient binding to receptors on CAM cells and that gangliosides can play an important role in virus binding and/or penetration. The effects of the egg-adaptation substitutions on the receptor-binding properties of the viruses include (i) enhancement of virus binding to the terminal Sia(alpha2-3)Gal determinant (substitutions in HA positions 190, 225 of H1N1 strains and in position 186 of H3N2 strains); (ii) a decrease of steric interference with more distant parts of the Sia(alpha2-3Gal)-containing receptors (a loss of glycosylation sites in positions 163 of H1 HA and 187 of type B HA); and (iii) enhanced ionic interactions with the negatively charged molecules due to charged substitutions at the tip of the HA [187, 189, 190 (H1), and 145, 156 (H3)]. Concomitantly with enhanced binding to Sia(alpha2-3)Gal-terminated receptors, all egg-adapted variants decreased their affinity for equine macroglobulin, a glycoprotein bearing terminal 6'-sialyl(N-acetyllactosamine)-moieties.
Collapse
Affiliation(s)
- A S Gambaryan
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow, 142782, Russia
| | | | | |
Collapse
|
46
|
Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 1998; 72:7367-73. [PMID: 9696833 PMCID: PMC109961 DOI: 10.1128/jvi.72.9.7367-7373.1998] [Citation(s) in RCA: 715] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1998] [Accepted: 05/19/1998] [Indexed: 11/20/2022] Open
Abstract
Genetic and biologic observations suggest that pigs may serve as "mixing vessels" for the generation of human-avian influenza A virus reassortants, similar to those responsible for the 1957 and 1968 pandemics. Here we demonstrate a structural basis for this hypothesis. Cell surface receptors for both human and avian influenza viruses were identified in the pig trachea, providing a milieu conducive to viral replication and genetic reassortment. Surprisingly, with continued replication, some avian-like swine viruses acquired the ability to recognize human virus receptors, raising the possibility of their direct transmission to human populations. These findings help to explain the emergence of pandemic influenza viruses and support the need for continued surveillance of swine for viruses carrying avian virus genes.
Collapse
Affiliation(s)
- T Ito
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Blick TJ, Sahasrabudhe A, McDonald M, Owens IJ, Morley PJ, Fenton RJ, McKimm-Breschkin JL. The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology 1998; 246:95-103. [PMID: 9656997 DOI: 10.1006/viro.1998.9194] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously described a 4-guanidino-Neu5Ac2en (zanamivir)-resistant neuraminidase (NA) variant G70C4-G, with an active site mutation Glu 119 to Gly. This variant has been found to also harbor a hemagglutinin (HA) mutation in the receptor binding site, Ser 186 to Phe. Examination of early passages of the G70C4-G virus revealed that this HA mutation had arisen by the first passage. From a subsequent passage two transient variants were isolated which had each acquired a different second HA mutation, Ser 165 to Asn and Lys 222 to Thr. Both were highly drug resistant and drug dependent and their ability to adsorb to and penetrate cells was decreased. Comparison of drug sensitivities between the variant, with the additional HA mutation at Ser 165, and viruses with either mutation alone revealed that these two HA mutations acted synergistically to increase resistance. To determine the contribution to resistance of each of the NA and HA mutations in G70C4-G, the NA mutation was separated from the HA mutation by reassorting. The NA mutation and the HA mutation each conferred low-level resistance to zanamivir, while the two mutations interacted synergistically in the double mutant to give higher resistance in vitro. Infectivity was not adversely affected in the double mutant and while there was a small decrease in sensitivity to zanamivir in the mouse model, there was no detectable resistance to zanamivir in the ferret model.
Collapse
Affiliation(s)
- T J Blick
- Glaxo Wellcome Research and Development Ltd., Stevenage, Hertfordshire, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
48
|
Fitch WM, Bush RM, Bender CA, Cox NJ. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A 1997; 94:7712-8. [PMID: 9223253 PMCID: PMC33681 DOI: 10.1073/pnas.94.15.7712] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have studied the HA1 domain of 254 human influenza A(H3N2) virus genes for clues that might help identify characteristics of hemagglutinins (HAs) of circulating strains that are predictive of that strain's epidemic potential. Our preliminary findings include the following. (i) The most parsimonious tree found requires 1,260 substitutions of which 712 are silent and 548 are replacement substitutions. (ii) The HA1 portion of the HA gene is evolving at a rate of 5.7 nucleotide substitutions/year or 5.7 x 10(-3) substitutions/site per year. (iii) The replacement substitutions are distributed randomly across the three positions of the codon when allowance is made for the number of ways each codon can change the encoded amino acid. (iv) The replacement substitutions are not distributed randomly over the branches of the tree, there being 2.2 times more changes per tip branch than for non-tip branches. This result is independent of how the virus was amplified (egg grown or kidney cell grown) prior to sequencing or if sequencing was carried out directly on the original clinical specimen by PCR. (v) These excess changes on the tip branches are probably the result of a bias in the choice of strains to sequence and the detection of deleterious mutations that had not yet been removed by negative selection. (vi) There are six hypervariable codons accumulating replacement substitutions at an average rate that is 7.2 times that of the other varied codons. (vii) The number of variable codons in the trunk branches (the winners of the competitive race against the immune system) is 47 +/- 5, significantly fewer than in the twigs (90 +/- 7), which in turn is significantly fewer variable codons than in tip branches (175 +/- 8). (viii) A minimum of one of every 12 branches has nodes at opposite ends representing viruses that reside on different continents. This is, however, no more than would be expected if one were to randomly reassign the continent of origin of the isolates. (ix) Of 99 codons with at least four mutations, 31 have ratios of non-silent to silent changes with probabilities less than 0.05 of occurring by chance, and 14 of those have probabilities <0.005. These observations strongly support positive Darwinian selection. We suggest that the small number of variable positions along the successful trunk lineage, together with knowledge of the codons that have shown positive selection, may provide clues that permit an improved prediction of which strains will cause epidemics and therefore should be used for vaccine production.
Collapse
Affiliation(s)
- W M Fitch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92692, USA
| | | | | | | |
Collapse
|
49
|
Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 1997; 233:224-34. [PMID: 9201232 DOI: 10.1006/viro.1997.8580] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Avian influenza virus strains representing most hemagglutinin (HA) subtypes were compared with human influenza A (H1N1,H3N2) and B virus isolates, including those with no history of passaging in embryonated hen's eggs, for their ability to bind free N-acetylneuraminic acid (Neu5Ac) and sialylollgosaccharides in a competitive binding assay and to attach to gangliosides in a solid-phase adsorption assay. The avian viruses, irrespective of their HA subtype, showed a higher affinity for sialyl-3-lactose and the other Neu5Ac2-3Gal-terminated oligosaccharides and a lower affinity for sialyl-6-lactose than for free Neu5Ac, indicative of specific interactions between the HA and the 3-linked Gal and poor accommodation of 6-linked Gal in the avian receptor-binding site (RBS). Human H1 and H3 strains, by contrast, were unable to bind to 3-linked Gal, interacting instead with the asialic portion of sialyl-6-(N-acetyllactosamine). Different parts of this moiety were recognized by H3 and H1 subtype viruses (Gal and GlcNAc, respectively). Comparison of the HA amino acid sequences revealed that residues in positions. 138, 190, 194, 225, 226, and 228 are conserved in the avian RBS, while the human HAs harbor substitutions at these positions. A characteristic feature of avian viruses was their binding to Neu5Ac2-3Gal-containing gangliosides. This property of avian precursor viruses was preserved in early human H3 isolates, but was gradually lost with further circulation of the H3 HA in humans. Consequently, later human H3 isolates, as well as H1 and type B human strains, were unable to bind to short Neu5Ac2-3Gal-terminated gangliosides, an incompatibility that correlated with higher glycosylation of the HA globular head of human viruses. Our results suggest that the RBS is highly conserved among HA subtypes of avian influenza virus, while that of human viruses displays distinctive genotypic and phenotypic variability.
Collapse
Affiliation(s)
- M N Matrosovich
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Pyhälä R, Ikonen N, Haanpää M, Kinnunen L. HA1 domain of influenza A (H3N2) viruses in Finland in 1989-1995: evolution, egg-adaptation and relationship to vaccine strains. Arch Virol 1996; 141:1033-46. [PMID: 8712921 DOI: 10.1007/bf01718607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The HA1 gene sequences of 22 MDCK cell-derived influenza A (H3N2) strains, ten of their egg-derived counterparts and three vaccine strains were determined. Antigenic and sequence differences between the epidemic and vaccine strains were recorded, most striking in 1992/93; a minority of the amino acid differences in 1989-95 was involved in egg-adaptation. Changes in the assortment of amino acid substitutions produced during egg-adaptation of field strains may account for the difficulty encountered in isolating these viruses in embryonated eggs. Six revertant amino acids, characteristic of field strains prevalent in 1969-71 were recorded in 1994/95. Their genome sequence was interpreted to have been maintained over the interval years among low abundant sequences of the viral quasispecies. Potential changes of carbohydrate moieties were recorded in two glycosylation sites, suggesting that oligosaccharides at these sites are not necessarily advantageous for the H3N2 subtype virus currently.
Collapse
MESH Headings
- Adaptation, Physiological
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Base Sequence
- Cell Line
- Chick Embryo
- DNA, Viral
- Disease Outbreaks
- Dogs
- Finland/epidemiology
- Hemagglutinin Glycoproteins, Influenza Virus
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Humans
- Influenza A Virus, H3N2 Subtype
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Molecular Sequence Data
- Ovum/virology
- Phylogeny
- Retrospective Studies
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- R Pyhälä
- WHO National Influenza Centre, National Public Health Institute, Helsinki, Finland
| | | | | | | |
Collapse
|