1
|
Van Es LJC, Possee RD, King LA. Characterisation of extracellular vesicles in baculovirus infection of Spodoptera frugiperda cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e163. [PMID: 38947876 PMCID: PMC11212295 DOI: 10.1002/jex2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an enveloped DNA virus of the Baculoviridae family. This baculovirus is widely exploited for the biological control of insect pest species and as an expression platform to produce recombinant proteins in insect cells. Extracellular vesicles (EVs) are secreted by all cells and are involved in key roles in many biological processes through their cargo consisting of proteins, RNA or DNA. In viral infections, EVs have been found to transfer both viral and cellular cargo that can elicit either a pro- or antiviral response in recipient cells. Here, small EVs (sEVs) released by Spodoptera frugiperda (Sf) insect cells were characterised for the first time. Using S. frugiperda (SfC1B5) cells stably expressing the baculovirus gp64, the viral envelope protein GP64 was shown to be incorporated into sEVs. Sf9 cells were also transfected with a bacmid AcMNPV genome lacking p6.9 (AcΔP6.9) to prevent budded virus production. The protein content of sEVs from both mock- and AcΔP6.9-transfected cells were analysed by mass spectrometry. In addition to GP64, viral proteins Ac-F, ME-53 and viral ubiquitin were identified, as well as many host proteins including TSG101-which may be useful as a protein marker for sEVs.
Collapse
Affiliation(s)
- Lex J. C. Van Es
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Oxford Expression Technologies LtdOxfordUK
| | | | - Linda A. King
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
2
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. Nat Commun 2024; 15:250. [PMID: 38177118 PMCID: PMC10767040 DOI: 10.1038/s41467-023-44596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Coby Y Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Tran H Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545104. [PMID: 37398449 PMCID: PMC10312762 DOI: 10.1101/2023.06.15.545104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a unique protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M. C. Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Coby Y. Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Tran H. Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Chen ZK, Lin S, Wu YX, Zhao ZM, Zhou XM, Sadiq S, Zhang ZD, Guo XJ, Wu P. Hsp90 could promote BmNPV proliferation by interacting with Actin-4 and enhance its expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104667. [PMID: 36773793 DOI: 10.1016/j.dci.2023.104667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
As a highly infectious pathogen, Bombyx mori nuclear polyhedrosis virus (BmNPV) has a high lethality rate in silkworm. Our previous study have confirmed that Hsp90 plays a positive role in BmNPV proliferation and Hsp90 inhibitor, geldanamycin (GA) can decrease the replication of BmNPV in vitro. However, its molecular mechanism is not fully understood. In the present study, first, we found that GA could inhibit the proliferation of BmNPV in a dose-dependent manner and delay the pathogenesis of BmNPV in vivo possibly by altering the transcript level of genes associated with cell apoptosis and immune pathways. Furthermore, by immunoprecipitation (IP) and mass spectrometry analysis, we identified a series of proteins potentially interacting with Hsp90 including two BmNPV encoded proteins. Subsequently, by Co-IP we confirmed the interaction between BmActin-4 and BmHsp90. Knocking down Bmhsp90 by small interfering RNA inhibited the protein expression level of BmActin-4. Over-expression of Bmactin-4 promoted the replication of BmNPV whereas knockdown of Bmactin-4 suppressed BmNPV replication. In addition, decrease of the transcript level of Bmhsp90 in Bmactin-4 knocking down BmN cells was also detected. Taken together, BmHsp90 can interact with BmActin-4 and promote its expression, thereby promoting BmNPV proliferation. Our findings may enrich the molecular mechanism of Hsp90 for promoting virus proliferation and provide new clues to elucidate the interact mechanism between silkworm and virus.
Collapse
Affiliation(s)
- Zi-Kang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Yi-Xiang Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Zhi-Meng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Xue-Ming Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Zheng-Dong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Xi-Jie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China.
| |
Collapse
|
5
|
Hou S, Li Y, Fu Y. me53 encoded by Autographa californica multiple nucleopolyhedrovirus: from mechanism to function. Virus Genes 2023; 59:188-194. [PMID: 36229721 DOI: 10.1007/s11262-022-01943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
me53, a highly conserved immediate early gene in all Lepidoptera baculoviruses, has been of great interest in recent years. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is in the family Baculoviridae, genus Alphabaculovirus. The me53 gene of AcMNPV has been sequenced, and it was transcribed late after infection. The structure of ME53 protein and its roles in the infection of host cells were summarized and discussed, including that (1) the production of Budding Virus (BV); (2) nucleocapsid formation in the host nuclei; (3) ME53 forms a lesion on the cell membrane of AcMNPV-infected cells and co-locates with GP64 and the primary capsid protein VP39; (4) the nuclear translocation signal sequence of ME53 is essential for optimal baculovirus production. In this review, we focus on the emerging roles of ME53 by discussing novel mechanisms identified to mediate or interact by ME53, which provides an important reference for the effective transformation, utilization and improvement of the anti-insect activity of AcMNPV.
Collapse
Affiliation(s)
- Shuoyu Hou
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yingqi Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
6
|
Potential Proteins Interactions with Bombyx mori Nucleopolyhedrovirus Revealed by Co-Immunoprecipitation. INSECTS 2022; 13:insects13070575. [PMID: 35886751 PMCID: PMC9324236 DOI: 10.3390/insects13070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022]
Abstract
Virus–host interactions are critical for virus replication, virulence, and pathogenicity. The Bombyx mori nucleopolyhedrovirus (BmNPV) is a typical model baculovirus, representing one of the most common and harmful pathogens in sericulture. Herein, we used co-immunoprecipitation to identify candidate proteins with potential interactions with BmNPV. First, a recombinant BV virus particle rBmBV-egfp-p64-3×flag-gp64sp was constructed using a MultiBac baculovirus multigene expression system. Co-immunoprecipitation experiments were then performed with the recombinant BV virus infected with BmN cells and Dazao silkworms. LC-MS/MS analysis revealed a total of 845 and 1368 candidate proteins were obtained from BmN cells and silkworm samples, respectively. Bioinformatics analysis (Gene Ontology, KEGG Pathway) was conducted for selection of proteins with significant enrichment for further confirmation of the effects on BmNPV replication. Overall, the results showed that SEC61 and PIC promoted the replication of BmNPV, while FABP1 inhibited the replication of BmNPV. In summary, this study reveals the potential proteins involved in BmNPV invasion and proliferation in the host and provides a platform for identifying the potential receptor proteins of BmNPV.
Collapse
|
7
|
Li S, Ou B, Lv Y, Gan T, Zhao H, Liu W. VP39 of Spodoptera litura multicapsid nucleopolyhedrovirus cannot efficiently rescue the nucleocapsid assembly of vp39-null Autographa californica multiple nucleopolyhedrovirus. Virol J 2021; 18:81. [PMID: 33879205 PMCID: PMC8059189 DOI: 10.1186/s12985-021-01553-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp39 is conserved in all sequenced baculovirus genomes. In previous studies, VP39 has been identified as the major capsid structure protein of baculoviruses and found to be essential for nucleocapsid assembly. The nucleocapsid composition and structure of Group I and II NPVs of the Alphabaculovirus genus are very similar. It is not clear whether the major capsid structure protein VP39 of Group I NPVs is functionally identical to or substitutable with the Group II NPV VP39. In this study, the function of Group II Spodoptera litura MNPV (SpltMNPV) VP39 in Group I AcMNPV was characterized. Methods Sequence alignment of AcMNPV VP39 and SpltMNPV VP39 was performed using Clustal X and edited with GeneDoc. To determine whether VP39 of Group I NPVs can be functionally substituted by Group II NPV VP39, a vp39-null AcMNPV (vAcvp39KO) and a vp39-pseudotyped AcMNPV (vAcSpltvp39:FLAG), in which the Group I AcMNPV vp39 coding sequence was replaced with that of SpltMNPV from Group II NPVs, were constructed via homologous recombination in Escherichia coli. Using an anti-FLAG monoclonal antibody, immunoblot analysis was performed to examine SpltMNPV VP39 expression. Fluorescence and light microscopy were used to monitor viral replication and infection. Viral growth curve analysis was performed using a fifty percent tissue culture infective dose (TCID50) endpoint dilution assay. Viral morphogenesis was detected using an electron microscope. Results Sequence alignment indicated that the N-termini of AcMNPV VP39 and SpltMNPV VP39 are relatively conserved, whereas the C-terminus of SpltMNPV VP39 lacks the domain of amino acid residues 306–334 homologous to AcMNPV VP39. Immunoblot analysis showed that SpltMNPV VP39 was expressed in vAcSpltvp39:FLAG. Fluorescence and light microscopy showed that vAcSpltvp39:FLAG did not spread by infection. Viral growth curve analysis confirmed a defect in infectious budded virion production. Electron microscopy revealed that although masses of abnormally elongated empty capsid structures existed inside the nuclei of Sf9 cells transfected with vAcSpltvp39:FLAG, no nucleocapsids were observed. Conclusion Altogether, our results demonstrated that VP39 from SpltMNPV cannot efficiently substitute AcMNPV VP39 during nucleocapsid assembly in AcMNPV.
Collapse
Affiliation(s)
- Sainan Li
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China.
| | - Bingming Ou
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Yina Lv
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Tian Gan
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Haizhou Zhao
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Wenhua Liu
- Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| |
Collapse
|
8
|
Wang X, Zhang Y, Fei S, Awais MM, Zheng H, Feng M, Sun J. Heat Shock Protein 75 (TRAP1) facilitate the proliferation of the Bombyx mori nucleopolyhedrovirus. Int J Biol Macromol 2021; 175:372-378. [PMID: 33549665 DOI: 10.1016/j.ijbiomac.2021.01.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
The viruses utilize multiple cellular proteins to facilitate their proliferation. The Heat Shock Protein (HSP), the highly conserved protein in eukaryotes and prokaryotes, plays a critical role in facilitating viral proliferation. However, less is known about the role of the HSPs in the life cycles of the Baculoviruses. We constructed recombinant Bombyx mori nucleopolyhedrovirus and discovered the Heat Shock Protein 75 (TRAP1) in the B. mori ovary (BmN) cells by the co-immunoprecipitation experiment using the GP64 (glycoprotein 64) as the bait protein. Tissue expression profile analysis of B. mori indicated that the TRAP1 gene has higher expression levels in the ovary, midgut, and hemolymph. Down-regulation of TRAP1 via RNA interference (RNAi) and geldanamycin (GA, a TRAP1 inhibitor) treatment can reduce the expression level of the major capsid protein VP39 (viral protein 39) of BmNPV. In contrast, the up-regulation of TRAP1 via overexpression can increase the expression level of the VP39. These results indicated that the TRAP1 of B. mori could facilitate the proliferation of the BmNPV. This study provided new insights into the function of TRAP1, and the basic mechanisms of the baculoviruses life cycle for disease prevention.
Collapse
Affiliation(s)
- Xiong Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yinong Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Hao Zheng
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Min Feng
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Zhang J, Li Y, Zhao S, Wu X. Identification of A functional region in Bombyx mori nucleopolyhedrovirus VP39 that is essential for nuclear actin polymerization. Virology 2020; 550:37-50. [PMID: 32877775 DOI: 10.1016/j.virol.2020.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Nuclear actin polymerization plays an indispensable role in the nuclear assembly of baculovirus nucleocapsid, but the underlying viral infection-mediated mechanism remains unclear. VP39 is the major protein in baculovirus capsid, which builds the skeleton of the capsid tubular structure. VP39 is suggested in previous studies to interact with cellular actin and mediate actin polymerization. However, it is unclear about the role of VP39 in mediating nuclear actin polymerization. Results in this study indicated that vp39 deletion abolished nuclear actin polymerization, which was recovered after vp39 repair, revealing the essential part of VP39 in nuclear actin polymerization. Furthermore, a series of mutants with vp39 deletions were constructed to analyze the important region responsible for nuclear actin polymerization. In addition, intracellular localization analysis demonstrated that the amino acids 192-286 in VP39 C-terminal are responsible for nuclear actin polymerization.
Collapse
Affiliation(s)
- Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Bai H, Hu Y, Hu X, Li J, Mu J, Zhou Y, Chen X, Wang Y. Major capsid protein of Autographa californica multiple nucleopolyhedrovirus contributes to the promoter activity of the very late viral genes. Virus Res 2019; 273:197758. [PMID: 31541668 DOI: 10.1016/j.virusres.2019.197758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/04/2023]
Abstract
The baculovirus expression vector system (BEVS) is one of the most powerful eukaryotic expression systems. Recombinant protein expression is usually controlled by promoters of the baculovirus very late genes (i.e., polyhedrin and p10); therefore, identifying novel regulatory factors for these promoters is key to increasing BEVS productivity. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the viral vector most frequently used in BEVS. VP39 is the major nucleocapsid protein of AcMNPV and plays a pivotal role in nucleocapsid assembly in the nucleus. In this study, we found that knocking out vp39 from the AcMNPV genome resulted in decreased protein abundance of polyhedrin and P10. Further assays revealed that the mRNA transcripts and the promoter activities of polyhedrin and p10 were decreased in the absence of vp39, suggesting that VP39 contributes to the activity of the very late viral gene promoters and may represent a means of optimizing the current BEVS.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Yangyang Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xue Hu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jing Li
- College of Pharmacy, Nankai University, Tianjin, China
| | - Jingfang Mu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhou
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Wang
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
11
|
Li S, Wang Y, Hou D, Guan Z, Shen S, Peng K, Deng F, Chen X, Hu Z, Wang H, Wang M. Host factor heat-shock protein 90 contributes to baculovirus budded virus morphogenesis via facilitating nuclear actin polymerization. Virology 2019; 535:200-209. [DOI: 10.1016/j.virol.2019.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022]
|
12
|
Nucleocapsid Assembly of Baculoviruses. Viruses 2019; 11:v11070595. [PMID: 31266177 PMCID: PMC6669607 DOI: 10.3390/v11070595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 01/27/2023] Open
Abstract
The baculovirus nucleocapsid is formed through a rod-like capsid encapsulating a genomic DNA molecule of 80~180 kbp. The viral capsid is a large oligomer composed of many copies of various protein subunits. The assembly of viral capsids is a complex oligomerization process. The timing of expression of nucleocapsid-related proteins, transport pathways, and their interactions can affect the assembly process of preformed capsids. In addition, the selection of viral DNA and the injection of the viral genome into empty capsids are the critical steps in nucleocapsid assembly. This paper reviews the replication and recombination of baculovirus DNA, expression and transport of capsid proteins, formation of preformed capsids, DNA encapsulation, and nucleocapsid formation. This review will provide a basis for further study of the nucleocapsid assembly mechanism of baculovirus.
Collapse
|
13
|
Feng M, Kong X, Zhang J, Xu W, Wu X. Identification of a novel host protein SINAL10 interacting with GP64 and its role in Bombyx mori nucleopolyhedrovirus infection. Virus Res 2018; 247:102-110. [DOI: 10.1016/j.virusres.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022]
|
14
|
Bézier A, Harichaux G, Musset K, Labas V, Herniou EA. Qualitative proteomic analysis of Tipula oleracea nudivirus occlusion bodies. J Gen Virol 2017; 98:284-295. [DOI: 10.1099/jgv.0.000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Grégoire Harichaux
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Valérie Labas
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| |
Collapse
|
15
|
Alfonso V, Amalfi S, López MG, Taboga O. Effects of deletion of the ac109 gene of Autographa californica nucleopolyhedrovirus on interactions with mammalian cells. Arch Virol 2016; 162:835-840. [PMID: 27868165 DOI: 10.1007/s00705-016-3142-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 12/01/2022]
Abstract
Baculoviruses are able to enter into mammalian cells, where they can express a transgene that is placed under an appropriate promoter, without producing infectious progeny. ORF109 encodes an essential baculovirus protein that participates in the interaction of the baculovirus with mammalian cells. To date, the mechanisms underlying this interaction are not yet known. We demonstrated that although a Ac109 knock out virus maintained its ability to enter into BHK-21 cells, there was a marked reduction in the expression efficiency of the nuclear transgene. Moreover, the amount of free cytoplasmic viral DNA, which was detected by transcription of a reporter gene, was severely diminished. These results suggest Ac109 could be involved in maintaining the integrity of the viral nucleic acid.
Collapse
Affiliation(s)
- Victoria Alfonso
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - Sabrina Amalfi
- INTA, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - María Gabriela López
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina
| | - Oscar Taboga
- INTA, CONICET, Instituto de Biotecnología, CICVyA, Nicolás Repetto y de los Reseros S/N, Hurlingham, CP 1686, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Fang Z, Li C, Wu W, Yuan M, Yang K. The Autographa californica multiple nucleopolyhedrovirus Ac132 plays a role in nuclear entry. J Gen Virol 2016; 97:3030-3038. [DOI: 10.1099/jgv.0.000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhixin Fang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chunyan Li
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wenbi Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Meijin Yuan
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kai Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
17
|
Marzook NB, Newsome TP. Viruses That Exploit Actin-Based Motility for Their Replication and Spread. Handb Exp Pharmacol 2016; 235:237-261. [PMID: 27757755 DOI: 10.1007/164_2016_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The actin cytoskeleton is a crucial part of the eukaryotic cell. Viruses depend on host cells for their replication, and, as a result, many have developed ways of manipulating the actin network to promote their spread. This chapter reviews the various ways in which viruses utilize the actin cytoskeleton at discrete steps in their life cycle, from entry into the host cell, replication, and assembly of new progeny to virus release. Various actin inhibitors that function in different ways to affect proper actin dynamics can be used to parse the role of actin at these steps.
Collapse
Affiliation(s)
- N Bishara Marzook
- The School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Timothy P Newsome
- The School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Rüdiger AT, Mayrhofer P, Ma-Lauer Y, Pohlentz G, Müthing J, von Brunn A, Schwegmann-Weßels C. Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles. Virology 2016; 497:185-197. [PMID: 27479465 PMCID: PMC7111311 DOI: 10.1016/j.virol.2016.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023]
Abstract
Coronavirus spike proteins mediate host-cell-attachment and virus entry. Virus replication takes place within the host cell cytosol, whereas assembly and budding occur at the endoplasmic reticulum-Golgi intermediate compartment. In this study we demonstrated that the last 39 amino acid stretches of Alphacoronavirus spike cytoplasmic domains of the human coronavirus 229E, NL63, and the porcine transmissible gastroenteritis virus TGEV interact with tubulin alpha and beta chains. In addition, a partial co-localization of TGEV spike proteins with authentic host cell β-tubulin was observed. Furthermore, drug-induced microtubule depolymerization led to changes in spike protein distribution, a reduction in the release of infectious virus particles and less amount of spike protein incorporated into virions. These data demonstrate that interaction of Alphacoronavirus spike proteins with tubulin supports S protein transport and incorporation into virus particles. The cytoplasmic domain of coronavirus S proteins interacts with tubulin. Microtubule depolymerization influences S protein distribution. Viral titers are reduced after microtubule depolymerization. S protein incorporation into virus particles depends on intact microtubule.
Collapse
Affiliation(s)
- Anna-Theresa Rüdiger
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Peter Mayrhofer
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Yue Ma-Lauer
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Albrecht von Brunn
- Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, 80336 Munich, Germany; German Centers for Infection Research (DZIF), Ludwig-Maximilians-University Munich, Germany.
| | - Christel Schwegmann-Weßels
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
19
|
Au S, Wu W, Zhou L, Theilmann DA, Panté N. A new mechanism for nuclear import by actin-based propulsion used by a baculovirus nucleocapsid. J Cell Sci 2016; 129:2905-11. [PMID: 27284005 DOI: 10.1242/jcs.191668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 01/21/2023] Open
Abstract
The transport of macromolecules into the nucleus is mediated by soluble cellular receptors of the importin β superfamily and requires the Ran-GTPase cycle. Several studies have provided evidence that there are exceptions to this canonical nuclear import pathway. Here, we report a new unconventional nuclear import mechanism exploited by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). We found that AcMNPV nucleocapsids entered the nucleus of digitonin-permeabilized cells in the absence of exogenous cytosol or under conditions that blocked the Ran-GTPase cycle. AcMNPV contains a protein that activates the Arp2/3 complex and induces actin polymerization at one end of the rod-shaped nucleocapsid. We show that inhibitors of Arp2/3 blocked nuclear import of nucleocapsids in semi-permeabilized cells. Nuclear import of nucleocapsids was also reconstituted in purified nuclei supplemented with G-actin and Arp2/3 under actin polymerization conditions. Thus, we propose that actin polymerization drives not only migration of baculovirus through the cytoplasm but also pushes the nucleocapsid through the nuclear pore complex to enter the cell nucleus. Our findings point to a very distinct role of actin-based motility during the baculovirus infection cycle.
Collapse
Affiliation(s)
- Shelly Au
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Wu
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lixin Zhou
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A Theilmann
- Summerland Research and Development Centre, AAFC, Summerland, British Columbia, Canada
| | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus. J Virol 2016; 90:3480-95. [PMID: 26763996 DOI: 10.1128/jvi.02912-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are transported through the cell. These include (i) entry of budded virus (BV) into the host cell and (ii) egress and budding of nucleocapsids newly produced from the plasma membrane. Prior studies have shown that the entry of nucleocapsids involves the polymerization of actin to propel nucleocapsids to nuclear pores and entry into the nucleus. For the spread of infection, progeny viruses must rapidly exit the infected cells, but the mechanism by which AcMNPV nucleocapsids traverse the cytoplasm is unknown. In this study, we examined whether nucleocapsids interact with lepidopteran kinesin-1 motor molecules and are potentially carried as cargo on microtubules to the plasma membrane in AcMNPV-infected cells. This study indicates that microtubule transport is utilized for the production of budded virus.
Collapse
|
21
|
Wang Q, Bosch BJ, Vlak JM, van Oers MM, Rottier PJ, van Lent JWM. Budded baculovirus particle structure revisited. J Invertebr Pathol 2015; 134:15-22. [PMID: 26743500 PMCID: PMC7127228 DOI: 10.1016/j.jip.2015.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/13/2023]
Abstract
Baculovirus budded virion ultrastructure has been revisited using cryo-electron microscopy. The now well-preserved virions have a remarkable elongated, ovoid shape and large lateral space between nucleocapsid and the intact envelope. Consistent with previous findings using classical electron microscopy the nucleocapsid has a distinctive cap and base structure interacting tightly with the envelope. Most spikes are densely clustered at the two apical ends of the virion. Using cryo-electron microscopy the viral envelope appeared to contain two layers with a total thickness of ≈6–7 nm, which is significantly thicker than a usual biological membrane (<4 nm). The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new structural model of baculovirus budded virions.
Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈6–7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs.
Collapse
Affiliation(s)
- Qiushi Wang
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands; Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Peter J Rottier
- Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Paul A, Hasan A, Rodes L, Sangaralingam M, Prakash S. Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges. Adv Drug Deliv Rev 2014; 71:115-30. [PMID: 24503281 DOI: 10.1016/j.addr.2014.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
Abstract
Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non-viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction have demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions.
Collapse
Affiliation(s)
- Arghya Paul
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Laetitia Rodes
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada
| | - Mugundhine Sangaralingam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada.
| |
Collapse
|
23
|
Ishikawa T, Wakabayashi-Nakao K, Nakagawa H. Methods to examine the impact of nonsynonymous SNPs on protein degradation and function of human ABC transporter. Methods Mol Biol 2014; 1015:225-50. [PMID: 23824860 DOI: 10.1007/978-1-62703-435-7_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Clinical studies have strongly suggested that genetic polymorphisms and/or mutations of certain ATP-binding cassette (ABC) transporter genes might be regarded as significant factors affecting patients' responses to medication and/or the risk of diseases. In the case of ABCG2, certain single nucleotide polymorphisms (SNPs) in the encoding gene alter the substrate specificity and/or enhance endoplasmic reticulum-associated degradation (ERAD) of the de novo synthesized ABCG2 protein via the ubiquitin-mediated proteasomal proteolysis pathway. Hitherto accumulated clinical data imply that several nonsynonymous SNPs affect the ABCG2-mediated clearance of drugs or cellular metabolites, although some controversies still exist. Therefore, we recently developed high-speed functional screening and ERAD of ABC transporters so as to evaluate the effect of genetic polymorphisms on their function and protein expression levels in vitro. In this chapter we present in vitro experimental methods to elucidate the impact of nonsynonymous SNPs on protein degradation of ABCG2 as well as on its transport function.
Collapse
|
24
|
Wu Y, Wu Y, Wu Y, Tang H, Wu H, Zhang G, Wang W. Screening of candidate proteins interacting with IE-2 of Bombyx mori nucleopolyhedrovirus. Mol Biol Rep 2013; 40:5797-804. [DOI: 10.1007/s11033-013-2683-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
25
|
Snoussi K, Kann M. Interaction of parvoviruses with the nuclear envelope. Adv Biol Regul 2013; 54:39-49. [PMID: 24157125 DOI: 10.1016/j.jbior.2013.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Parvoviruses are serious pathogens but also serve as platforms for gene therapy or for using their lytic activity in experimental cancer treatment. Despite of their growing importance during the last decade little is known on how the viral genome is transported into the nucleus of the infected cell, which is crucial for replication. As nucleic acids are not karyophilic per se nuclear import must be driven by proteins attached to the viral genome. In turn, presence and conformation of these proteins depend upon the entry pathway of the virus into the cell. This review focuses on the trafficking of the parvoviral genome from the cellular periphery to nucleus. Despite of the uncertainties in knowledge about the entry pathway we show that parvoviruses developed a unique strategy to pass the nuclear envelope by hijacking enzymes involved in mitosis.
Collapse
Affiliation(s)
- Kenza Snoussi
- Department of Infection Biology (Molecular Virology), University of Tsukuba, Japan; Human Biology Program, University of Tsukuba, Japan
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
26
|
Abstract
Intracellular pathogens have developed elaborate mechanisms to exploit the different cellular systems of their unwilling hosts to facilitate their entry, replication, and survival. In particular, a diverse range of bacteria and viruses have evolved unique strategies to harness the power of Arp2/3-mediated actin polymerization to enhance their cell-to-cell spread. In this review, we discuss how studying these pathogens has revolutionized our molecular understanding of Arp2/3-dependent actin assembly and revealed key signaling pathways regulating actin assembly in cells. Future analyses of microbe-host interactions are likely to continue uncovering new mechanisms regulating actin assembly and dynamics, as well as unexpected cellular functions for actin. Further, studies with known and newly emerging pathogens will also undoubtedly continue to enhance our understanding of the role of the actin cytoskeleton during pathogenesis and potentially highlight future therapeutic approaches.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
27
|
Au S, Wu W, Panté N. Baculovirus nuclear import: open, nuclear pore complex (NPC) sesame. Viruses 2013; 5:1885-900. [PMID: 23881277 PMCID: PMC3738967 DOI: 10.3390/v5071885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 01/16/2023] Open
Abstract
Baculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During infection, the rod-shape, 250-nm long nucleocapsid delivers its genome into the nucleus. Electron microscopy evidence suggests that baculoviruses, specifically the Alphabaculoviruses (nucleopolyhedroviruses) and the Betabaculoviruses (granuloviruses), have evolved two very distinct modes for doing this. Here we review historical and current experimental results of baculovirus nuclear import studies, with an emphasis on electron microscopy studies employing the prototypical baculovirus Autographa californica multiple nucleopolyhedrovirus infecting cultured cells. We also discuss the implications of recent studies towards theories of nuclear transport mechanisms.
Collapse
Affiliation(s)
| | | | - Nelly Panté
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-822-3369; Fax: +1-604-822-2416
| |
Collapse
|
28
|
Baculovirus VP1054 is an acquired cellular PURα, a nucleic acid-binding protein specific for GGN repeats. J Virol 2013; 87:8465-80. [PMID: 23720732 DOI: 10.1128/jvi.00068-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Baculovirus VP1054 protein is a structural component of both of the virion types budded virus (BV) and occlusion-derived virus (ODV), but its exact role in virion morphogenesis is poorly defined. In this paper, we reveal sequence and functional similarity between the baculovirus protein VP1054 and the cellular purine-rich element binding protein PUR-alpha (PURα). The data strongly suggest that gene transfer has occurred from a host to an ancestral baculovirus. Deletion of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp1054 gene completely prevented viral cell-to-cell spread. Electron microscopy data showed that assembly of progeny nucleocapsids is dramatically reduced in the absence of VP1054. More precisely, VP1054 is required for proper viral DNA encapsidation, as deduced from the formation of numerous electron-lucent capsid-like tubules. Complementary searching identified the presence of genetic elements composed of repeated GGN trinucleotide motifs in baculovirus genomes, the target sequence for PURα proteins. Interestingly, these GGN-rich sequences are disproportionally distributed in baculoviral genomes and mostly occurred in proximity to the gene for the major occlusion body protein polyhedrin. We further demonstrate that the VP1054 protein specifically recognizes these GGN-rich islands, which at the same time encode crucial proline-rich domains in p78/83, an essential gene adjacent to the polyhedrin gene in the AcMNPV genome. While some viruses, like human immunodeficiency virus type 1 (HIV-1) and human JC virus (JCV), utilize host PURα protein, baculoviruses encode the PURα-like protein VP1054, which is crucial for viral progeny production.
Collapse
|
29
|
Zhang X, Chen M, Ma X, Zhao X, Wang J, Shao H, Song Q, Stanley D. Suppression of AcMNPV replication by adf and thymosin protein up-regulation in a new testis cell line, Ha-shl-t. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:158-171. [PMID: 23315790 DOI: 10.1002/arch.21082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Host cytoskeletons facilitate the entry, replication, and egress of viruses because cytoskeletons are essential for viral survival. One mechanism of resisting viral infections involves regulating cytoskeletal polymerization/depolymerization. However, the molecular mechanisms of regulating these changes in cytoskeleton to suppress viral replication remain unclear. We established a cell line (named Ha-shl-t) from the pupal testis of Helicoverpa armigera (Lepidoptera: Noctuidae). The new testis cell line suppresses Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) replication via disassembly of cytoskeleton. Up-regulation of thymosin (actin disassembling factor) and adf (actin depolymerizing factor) reduces F-actin. Silencing thymosin or adf or treating cells with the F-actin stabilizer phalloidin led to increased AcMNPV replication, while treating cells with an F-actin assembly inhibitor cytochalasin B decreased viral replication. We infer that Ha-shl-t cells utilize F-actin depolymerization to suppress AcMNPV replication by up-regulating thymosin and adf. We propose Ha-shl-t as a model system for investigating cytoskeletal regulation in antiviral action and testicular biology generally.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bak A, Irons SL, Martinière A, Blanc S, Drucker M. Host cell processes to accomplish mechanical and non-circulative virus transmission. PROTOPLASMA 2012; 249:529-39. [PMID: 21984344 DOI: 10.1007/s00709-011-0328-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/28/2011] [Indexed: 05/22/2023]
Abstract
Mechanical vector-less transmission of viruses, as well as vector-mediated non-circulative virus transmission, where the virus attaches only to the exterior of the vector during the passage to a new host, are apparently simple processes: the viruses are carried along with the wind, the food or by the vector to a new host. We discuss here, using the examples of the non-circulatively transmitted Cauliflower mosaic virus that binds to its aphid vector's exterior mouthparts, and that of the mechanically (during feeding activity) transmitted Autographa californica multicapsid nucleopolyhedrovirus, that transmission of these viruses is not so simple as previously thought. Rather, these viruses prepare their transmission carefully and long before the actual acquisition event. Host-virus interactions play a pivotal and specialised role in the future encounter with the vector or the new host. This ensures optimal propagation and enlarges the tremendous bottleneck transmission presents for viruses and other pathogens.
Collapse
Affiliation(s)
- Aurélie Bak
- INRA, Equipe CaGeTE, UMR BGPI Plant Pathogen Interactions, TA A54K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
31
|
Nuclear actin and lamins in viral infections. Viruses 2012; 4:325-47. [PMID: 22590674 PMCID: PMC3347030 DOI: 10.3390/v4030325] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022] Open
Abstract
Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections.
Collapse
|
32
|
Essential C-terminal region of the baculovirus minor capsid protein VP80 binds DNA. J Virol 2011; 86:1728-38. [PMID: 22090126 DOI: 10.1128/jvi.05600-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The essential Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) minor capsid protein VP80 has been recently shown to interact with the virus-triggered, nuclear F-actin cytoskeleton. A role for VP80 in virus morphogenesis has been proposed in the maturation of progeny nucleocapsids and in their egress from the virogenic stroma toward the nuclear periphery by a mechanism, which also includes F-actin filaments. We performed functional mapping of VP80 demonstrating that its highly conserved C-terminal region plays a crucial role in virion morphogenesis. Protein database mining identified a putative basic helix-loop-helix (bHLH) domain, a DNA-binding module typical for eukaryotic transcription factors, in the essential C-terminal region of VP80. Using a molecular modeling approach, we predicted the three-dimensional structure of this domain, revealing some unique properties. Biochemical assays proved that VP80 can form homodimers, a critical prerequisite of DNA-binding bHLH proteins. The ability of VP80 to bind DNA was subsequently confirmed by an electrophoretic mobility shift assay. We further show that AcMNPV DNA replication occurs in the absence of VP80. Immunolabeling of VP80 in baculovirus-infected cells rather points toward its involvement in nucleocapsid maturation. The competence of VP80 to interact with both F-actin and DNA provides novel insight into baculovirus morphogenesis.
Collapse
|
33
|
Direct interaction of baculovirus capsid proteins VP39 and EXON0 with kinesin-1 in insect cells determined by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy. J Virol 2011; 86:844-53. [PMID: 22072745 DOI: 10.1128/jvi.06109-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replicates in the nucleus of insect cells to produce nucleocapsids, which are transported from the nucleus to the plasma membrane for budding through GP64-enriched areas to form budded viruses. However, little is known about the anterograde trafficking of baculovirus nucleocapsids in insect cells. Preliminary confocal scanning laser microscopy studies showed that enhanced green fluorescent protein (EGFP)-tagged nucleocapsids and capsid proteins aligned and colocalized with the peripheral microtubules of virus-infected insect cells. A colchicine inhibition assay of virus-infected insect cells showed a significant reduction in budded virus production, providing further evidence for the involvement of microtubules and suggesting a possible role of kinesin in baculovirus anterograde trafficking. We investigated the interaction between AcMNPV nucleocapsids and kinesin-1 with fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) and show for the first time that AcMNPV capsid proteins VP39 and EXON0, but not Orf1629, interact with the tetratricopeptide repeat (TPR) domain of kinesin. The excited-state fluorescence lifetime of EGFP fused to VP39 or EXON0 was quenched from 2.4 ± 1 ns to 2.1 ± 1 ns by monomeric fluorescent protein (mDsRed) fused to TPR (mDsRed-TPR). However, the excited-state fluorescence lifetime of an EGFP fusion of Orf1629 remained unquenched by mDsRed-TPR. These data indicate that kinesin-1 plays an important role in the anterograde trafficking of baculovirus in insect cells.
Collapse
|
34
|
Micheloud GA, Gioria VV, Eberhardt I, Visnovsky G, Claus JD. Production of the Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line in stirred reactor and airlift reactor. J Virol Methods 2011; 178:106-16. [PMID: 21906626 DOI: 10.1016/j.jviromet.2011.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/14/2011] [Indexed: 10/17/2022]
Abstract
The velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), is one of the main plagues for soybean crops. Velvetbean caterpillar larvae are susceptible to be infected by occlusion bodies of the baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), a biological insecticide. The insect cell line saUFL-AG-286 produces very high yields of occlusion bodies of AgMNPV in suspension cultures done in the low-cost serum-free medium UNL-10 in shake-flasks. However, its ability to adapt to conditions of industrial production in bioreactors was unknown. The aim of this study was to characterize the growth of saUFL-AG-286 cell cultures in UNL-10 medium, as well as its capability to replicate AgMNPV in two different bio-reactors at laboratory scale. The cell line was able to adapt to conditions that can be used at industrial scale, both in an airlift reactor and a stirred reactor, although the former was better than the last to support the cell growth. The infection with AgMNPV in the airlift reactor produced a high yield of occlusion bodies, with very low production of budded virus, the progeny used as inoculums. On the other hand, infection in the stirred reactor yielded high titers of budded virus. These results suggest that a feasible strategy for scaling-up the production of AgMNPV might involve the use of airlift reactors for the scaling-up of cell suspension cultures and the final production of occlusion bodies, while the scaling-up of the viral inoculums being carried out under conditions as those existing in stirred reactors.
Collapse
Affiliation(s)
- Gabriela A Micheloud
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
35
|
Immediate-early protein ME53 forms foci and colocalizes with GP64 and the major capsid protein VP39 at the cell membranes of Autographa californica multiple nucleopolyhedrovirus-infected cells. J Virol 2011; 85:9696-707. [PMID: 21775466 DOI: 10.1128/jvi.00833-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
me53 is an immediate-early/late gene found in all lepidopteran baculoviruses sequenced to date. Deletion of me53 results in a greater-than-1,000-fold reduction in budded-virus production in tissue culture (J. de Jong, B. M. Arif, D. A. Theilmann, and P. J. Krell, J. Virol. 83:7440-7448, 2009). We investigated the localization of ME53 using an ME53 construct fused to green fluorescent protein (GFP). ME53:GFP adopted a primarily cytoplasmic distribution at early times postinfection and a primarily nuclear distribution at late times postinfection. Additionally, at late times ME53:GFP formed distinct foci at the cell periphery. These foci colocalized with the major envelope fusion protein GP64 and frequently with VP39 capsid protein, suggesting that these cell membrane regions may represent viral budding sites. Deletion of vp39 did not influence the distribution of ME53:GFP; however, deletion of gp64 abolished ME53:GFP foci at the cell periphery, implying an association between ME53 and GP64. Despite the association of ME53 and GP64, ME53 fractionated with the nucleocapsid only after budded-virus fractionation. Together these findings suggest that ME53 may be providing a scaffold that bridges the viral envelope and nucleocapsid.
Collapse
|
36
|
Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery. J Virol 2011; 85:5350-62. [PMID: 21450830 DOI: 10.1128/jvi.00035-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, we showed that the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) VP80 protein is essential for the formation of both virion types, budded virus (BV) and occlusion-derived virus (ODV). Deletion of the vp80 gene did not affect assembly of nucleocapsids. However, these nucleocapsids were not able to migrate from the virogenic stroma to the nuclear periphery. In the current paper, we constructed a baculovirus recombinant with enhanced-green fluorescent protein (EGFP)-tagged VP80, allowing visualization of the VP80 distribution pattern during infection. In baculovirus-infected cells, the EGFP-VP80 protein is entirely localized in nuclei, adjacent to the virus-triggered F-actin scaffold that forms a highly organized three-dimensional network connecting the virogenic stroma physically with the nuclear envelope. Interaction between VP80 and host actin was confirmed by coimmunoprecipitation. We further showed that VP80 is associated with the nucleocapsid fraction of both BVs and ODVs, typically at one end of the nucleocapsids. In addition, the presence of sequence motifs with homology to invertebrate paramyosin proteins strongly supports a role for VP80 in the polar transport of nucleocapsids to the periphery of the nucleus on their way to the plasma membrane to form BVs and for assembly in the nuclear periphery to form ODVs for embedding in viral occlusion bodies.
Collapse
|
37
|
Cohen S, Au S, Panté N. How viruses access the nucleus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1634-45. [PMID: 21167871 DOI: 10.1016/j.bbamcr.2010.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/24/2010] [Accepted: 12/08/2010] [Indexed: 10/25/2022]
Abstract
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
38
|
DNA condensates organized by the capsid protein VP15 in White Spot Syndrome Virus. Virology 2010; 408:197-203. [DOI: 10.1016/j.virol.2010.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/23/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022]
|
39
|
Kariithi HM, Ince IA, Boeren S, Vervoort J, Bergoin M, van Oers MM, Abd-Alla AMM, Vlak JM. Proteomic analysis of Glossina pallidipes salivary gland hypertrophy virus virions for immune intervention in tsetse fly colonies. J Gen Virol 2010; 91:3065-74. [PMID: 20719992 DOI: 10.1099/vir.0.023671-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many species of tsetse flies (Diptera: Glossinidae) can be infected by a virus that causes salivary gland hypertrophy (SGH). The genomes of viruses isolated from Glossina pallidipes (GpSGHV) and Musca domestica (MdSGHV) have recently been sequenced. Tsetse flies with SGH have reduced fecundity and fertility which cause a serious problem for mass rearing in the frame of sterile insect technique (SIT) programmes to control and eradicate tsetse populations in the wild. A potential intervention strategy to mitigate viral infections in fly colonies is neutralizing of the GpSGHV infection with specific antibodies against virion proteins. Two major GpSGHV virion proteins of about 130 and 50 kDa, respectively, were identified by Western analysis using a polyclonal rabbit antibody raised against whole GpSHGV virions. The proteome of GpSGHV, containing the antigens responsible for the immune-response, was investigated by liquid chromatography tandem mass spectrometry and 61 virion proteins were identified by comparison with the genome sequence. Specific antibodies were produced in rabbits against seven candidate proteins, including the ORF10/C-terminal fragment, ORF47 and ORF96 as well as proteins involved in peroral infectivity PIF-1 (ORF102), PIF-2 (ORF53), PIF-3 (ORF76) and P74 (ORF1). Antiserum against ORF10 specifically reacted to the 130 kDa protein in a Western blot analysis and to the envelope protein of GpSGHV, detected by using immunogold-electron microscopy. This result suggests that immune intervention of viral infections in colonies of G. pallidipes is a realistic option.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nie Y, Theilmann DA. Deletion of AcMNPV AC16 and AC17 results in delayed viral gene expression in budded virus infected cells but not transfected cells. Virology 2010; 404:168-79. [PMID: 20627351 DOI: 10.1016/j.virol.2010.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 01/19/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
Abstract
This study investigated the combined function of the Autographa californica multiple nucleopolyhedrovirus overlapping genes ac16 (BV/ODV-E26, DA26) and ac17. Ac17 is a late gene and the promoter is within the ac16 open reading frame. A double ac16-ac17 knockout virus was generated to assess the function of each gene independently or together. Loss of ac17 did not affect viral DNA synthesis but budded virus (BV) production was reduced. Deletion of both ac16-ac17 resulted in reduced viral DNA synthesis and a further reduction in BV production. In BV infected Sf9 cells, viral gene expression was delayed up to 12 h in the absence of both AC16 and AC17 but not if either gene was present. Cells infected by transfecting viral DNA, by-passing the BV particle, exhibited no delay in gene expression from the double knockout virus. AC16 and AC17 are therefore required for rapid viral gene expression in cells infected by BV.
Collapse
Affiliation(s)
- Yingchao Nie
- Plant Science, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
41
|
The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization. J Virol 2010; 84:7857-68. [PMID: 20484515 DOI: 10.1128/jvi.00174-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nuclear filamentous actin (F-actin) is essential for nucleocapsid morphogenesis of lepidopteran nucleopolyhedroviruses. Previously, we had demonstrated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-C42 (C42) is involved in nuclear actin polymerization by recruiting P78/83, an AcMNPV orf9-encoded N-WASP homology protein that is capable of activating an actin-related-protein 2/3 (Arp2/3) complex to initiate actin polymerization, to the nucleus. To further investigate the role of C42 in virus-induced actin polymerization, the recombinant bacmid vAc(p78/83nls-gfp), with a c42 knockout, p78/83 tagged with a nuclear localization signal coding sequence, and egfp as a reporter gene under the control of the Pp10 promoter, was constructed and transfected to Sf9 cells. In the nuclei of vAc(p78/83nls-gfp)-transfected cells, polymerized F-actin filaments were absent, whereas other actin polymerization elements (i.e., P78/83, G-actin, and Arp2/3 complex) were present. This in vivo evidence indicated that C42 actively participates in the nuclear actin polymerization process as a key element, besides its role in recruiting P78/83 to the nucleus. In order to collect in vitro evidence for the participation of C42 in actin polymerization, an anti-C42 antibody was used to neutralize the viral nucleocapsid, which is capable of initiating actin polymerization in vitro. Both the kinetics of pyrene-actin polymerization and F-actin-specific staining by phalloidin indicated that anti-C42 can significantly attenuate the efficiency of F-actin formation compared to that with control antibodies. Furthermore, we have identified the putative pocket protein binding sequence (PPBS) on C42 that is essential for C42 to exert its function in nuclear actin polymerization.
Collapse
|
42
|
Abstract
Baculoviruses produce two progeny phenotypes during their replication cycles. The occlusion-derived virus (ODV) is responsible for initiating primary infection in the larval midgut, and the budded virus (BV) phenotype is responsible for the secondary infection. The proteomics of several baculovirus ODVs have been revealed, but so far, no extensive analysis of BV-associated proteins has been conducted. In this study, the protein composition of the BV of Autographa californica nucleopolyhedrovirus (AcMNPV), the type species of baculoviruses, was analyzed by various mass spectrometry (MS) techniques, including liquid chromatography-triple quadrupole linear ion trap (LC-Qtrap), liquid chromatography-quadrupole time of flight (LC-Q-TOF), and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). SDS-PAGE and MALDI-TOF analyses showed that the three most abundant proteins of the AcMNPV BV were GP64, VP39, and P6.9. A total of 34 viral proteins associated with the AcMNPV BV were identified by the indicated methods. Thirteen of these proteins, PP31, AC58/59, AC66, IAP-2, AC73, AC74, AC114, AC124, chitinase, polyhedron envelope protein (PEP), AC132, ODV-E18, and ODV-E56, were identified for the first time to be BV-associated proteins. Western blot analyses showed that ODV-E18 and ODV-E25, which were previously thought to be ODV-specific proteins, were also present in the envelop fraction of BV. In addition, 11 cellular proteins were found to be associated with the AcMNPV BV by both LC-Qtrap and LC-Q-TOF analyses. Interestingly, seven of these proteins were also identified in other enveloped viruses, suggesting that many enveloped viruses may commonly utilize certain conserved cellular pathways.
Collapse
|
43
|
Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH. J Virol 2010; 84:5351-9. [PMID: 20219938 DOI: 10.1128/jvi.02517-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The budded virus (BV) of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infects insect cells and transduces mammalian cells mainly through the endocytosis pathway. However, this study revealed that the treatment of the virus bound to Sf9 cells at low pH could efficiently rescue the infectivity of AcMNPV in the presence of endocytosis pathway inhibitors. A colocalization assay of the major capsid protein VP39 with the early endosome marker EEA1 showed that at low pH, AcMNPV entered Sf9 cells via an endosome-independent pathway. Using a fluorescent probe (R18), we showed that at low pH, the viral nucleocapsid entered Sf9 cells via direct fusion at the cell surface. By using the myosin-specific inhibitor 2,3-butanedione monoxime (BDM) and the microtubule inhibitor nocodazole, the low pH-triggered direct fusion was demonstrated to be dependent on myosin-like proteins and independent of microtubules. The reverse transcription-PCR of the IE1 gene as a marker for viral entry showed that the kinetics of AcMNPV in cells triggered by low pH was similar to that of the normal entry via endocytosis. The low pH-mediated infection assay and VP39 and EEA1 colocalization assay also demonstrated that AcMNPV could efficiently transduce mammalian cells via direct membrane fusion at the cell surface. More importantly, we found that a low-pH trigger could significantly improve the transduction efficiency of AcMNPV in mammalian cells, leading to the potential application of this method when using baculovirus as a vector for heterologous gene expression and for gene therapy.
Collapse
|
44
|
Peng K, Wu M, Deng F, Song J, Dong C, Wang H, Hu Z. Identification of protein-protein interactions of the occlusion-derived virus-associated proteins of Helicoverpa armigera nucleopolyhedrovirus. J Gen Virol 2009; 91:659-70. [PMID: 19906939 DOI: 10.1099/vir.0.017103-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to identify protein-protein interactions among the components of the occlusion-derived virus (ODV) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV), a group II alphabaculovirus in the family Baculoviridae. To achieve this, 39 selected genes of potential ODV structural proteins were cloned and expressed in the Gal4 yeast two-hybrid (Y2H) system. The direct-cross Y2H assays identified 22 interactions comprising 13 binary interactions [HA9-ODV-EC43, ODV-E56-38K, ODV-E56-PIF3, LEF3-helicase, LEF3-alkaline nuclease (AN), GP41-38K, GP41-HA90, 38K-PIF3, 38K-PIF2, VP80-HA100, ODV-E66-PIF3, ODV-E66-PIF2 and PIF3-PIF2] and nine self-associations (IE1, HA44, LEF3, HA66, GP41, CG30, 38K, PIF3 and P24). Five of these interactions - LEF3-helicase and LEF3-AN, and the self-associations of IE1, LEF3 and 38K - have been reported previously in Autographa californica multiple nucleopolyhedrovirus. As HA44 and HA100 were two newly identified ODV proteins of group II viruses, their interactions were further confirmed. The self-association of HA44 was verified with a His pull-down assay and the interaction of VP80-HA100 was confirmed by a co-immunoprecipitation assay. A summary of the protein-protein interactions of baculoviruses reported so far, comprising 68 interactions with 45 viral proteins and five host proteins, is presented, which will facilitate our understanding of the molecular mechanisms of baculovirus infection.
Collapse
Affiliation(s)
- Ke Peng
- State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Saito H, Osumi M, Hirano H, Shin W, Nakamura R, Ishikawa T. Technical pitfalls and improvements for high-speed screening and QSAR analysis to predict inhibitors of the human bile salt export pump (ABCB11/BSEP). AAPS JOURNAL 2009; 11:581-9. [PMID: 19688600 DOI: 10.1208/s12248-009-9137-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/30/2009] [Indexed: 01/24/2023]
Abstract
Drug-induced hepatotoxicity is one of the major problems encountered in drug discovery and development. Selection of a candidate compound for pre-clinical studies in the drug discovery process is a critical step that can determine the speed and expenditure of clinical development. Because inhibition of human adenosine triphosphate-binding cassette transporter ABCB11 (SPGP/bile salt export pump) has severe consequences, which include intrahepatic cholestasis and hepatotoxicity, resulting from exposure to toxic xenobiotics or drug interactions, in vitro screening methods are necessary for quantifying and characterizing the inhibition of ABCB11. In line with such initiatives, we developed methods for in vitro high-speed screening and quantitative structure-activity relationship (QSAR) analysis to investigate the interaction of ABCB11 with a variety of compounds. We identified one set of chemical fragmentation codes closely linked with inhibition of ABCB11. Furthermore, the high-speed screening method enables us to analyze the kinetics of ABCB11-inhibition by test compounds and to distinguish competitive and non-competitive inhibitors. Troglitazone and novobiocin were found to be competitive inhibitors to taurocholate, whereas porphyrins were non-competitive inhibitors. Kinetics-based classification of inhibitors is considered important to improve the accuracy of our QSAR analysis. The present mini-review addresses technical pitfalls and improvements for high-speed screening and QSAR analysis in the ABCB11 inhibition study.
Collapse
Affiliation(s)
- Hikaru Saito
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Haines FJ, Griffiths CM, Possee RD, Hawes CR, King LA. Involvement of lipid rafts and cellular actin in AcMNPV GP64 distribution and virus budding. Virol Sin 2009. [DOI: 10.1007/s12250-009-3055-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
47
|
Cheng XW, Lynn DE. Baculovirus interactions in vitro and in vivo. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:217-39. [PMID: 19426856 DOI: 10.1016/s0065-2164(09)01205-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Baculoviruses are promising viral insecticides and are safe for the environment. Interaction of baculoviruses in vitro and in vivo is a basic molecular and ecological question that has practical applications in agriculture. Cellular secretion is also a fundamental property in cell-cell communication. Here, we review recent investigations on how baculoviruses interact with insect cells and insect hosts. We focus particularly on a new interaction mechanism in which a secretion from cells infected with one virus enhances infection by a second virus. We also discuss a hypothesis that the secreted signals may serve as ligands that bind to the receptors on the surface of the cells that harbor the suppressed genomes of Thysanoplusia orichalcea MNPV (ThorMNPV) in Sf21 and Spodoptera exigua MNPV (SeMNPV) in High 5 to initiate signal transduction leading to the activation of genome replication of ThorMNPV in Sf21 and SeMNPV in High 5. We also discuss how the enhanced replication of SeMNPV replication by Autographa californica MNPV (AcMNPV) in nonpermissive insect cells depends on the types of cells. Interaction of baculoviruses in insects focused on mutualism and antagonism, even though the mechanism is not clear on mutualism. The antagonism of a Nucleopolyhedrovirus (NPV) with a Granulovirus (GV) has been extensively studied by a metalloprotein in the capsule of GV that disrupts the peritrophic membrane, a physical barrier to NPV entry to the midgut of larvae, to facilitate NPV infection.
Collapse
Affiliation(s)
- Xiao-Wen Cheng
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, Ohio 45056, USA
| | | |
Collapse
|
48
|
AcMNPV EXON0 (AC141) which is required for the efficient egress of budded virus nucleocapsids interacts with beta-tubulin. Virology 2009; 385:496-504. [PMID: 19155039 DOI: 10.1016/j.virol.2008.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/15/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encoded protein, EXON0 (AC141), is required for the efficient transport of nucleocapsids out of the nucleus for the production of budded virus (BV). To further elucidate the molecular mechanisms by which EXON0 regulates BV production, EXON0 was tagged at the N-terminus with 3x FLAG-6x His. Protein complexes were isolated by tandem affinity purification and potential EXON0 specific interacting protein partners were gel purified and identified by LC-MS/MS. This analysis showed that the cellular protein, beta-tubulin, co-purified with EXON0 which was confirmed by co-immunoprecipitation. In addition, immunofluorescence showed that EXON0 and beta-tubulin co-localized during virus infection. The microtubule inhibitors colchicine and nocodazole were used to treat AcMNPV infected Sf9 cells and results showed that BV production was reduced by over 85%. These data suggest that the egress of AcMNPV budded virus may be facilitated by the interaction of EXON0 with beta-tubulin and microtubules.
Collapse
|
49
|
Kana BD, Bonazzi M, Calzavara-Silva CE. The molecular and cellular basis of infection-Perspectives from the first advanced summer school in Africa. IUBMB Life 2008; 61:85-90. [PMID: 18785262 DOI: 10.1002/iub.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bavesh D Kana
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | | | | |
Collapse
|
50
|
Mäkelä AR, Närvänen A, Oker-Blom C. Peptide-mediated interference with baculovirus transduction. J Biotechnol 2008; 134:20-32. [PMID: 18294718 DOI: 10.1016/j.jbiotec.2007.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Baculovirus represents a multifunctional platform with potential for biomedical applications including disease therapies. The importance of F3, a tumor-homing peptide, in baculovirus transduction was previously recognized by the ability of F3 to augment viral binding and gene delivery to human cancer cells following display on the viral envelope. Here, F3 was utilized as a molecular tool to expand understanding of the poorly characterized baculovirus-mammalian cell interactions. Baculovirus-mediated transduction of HepG2 hepatocarcinoma cells was strongly inhibited by coincubating the virus with synthetic F3 or following incorporation of F3 into viral nucleocapsid by genetic engineering, the former suggesting direct interaction of the soluble peptide with the virus particles. Since internalization and nuclear accumulation of the virus were significantly inhibited or delayed, but the kinetics of viral binding, initial uptake, and endosomal release were unaffected, F3 likely interferes with cytoplasmic trafficking and subsequent nuclear transport of the virus. A polyclonal antibody raised against nucleolin, the internalizing receptor of F3, failed to inhibit cellular binding, but considerably reduced viral transduction efficiency, proposing the involvement of nucleolin in baculovirus entry. Together, these results render the F3 peptide a tool for elucidating the mechanism and molecular details conferring to baculovirus-mediated gene transduction in mammalian cells.
Collapse
Affiliation(s)
- Anna R Mäkelä
- NanoScience Center, Department of Biological and Environmental Science, PO Box 35, FIN-40014 University of Jyväskylä, Finland.
| | | | | |
Collapse
|