1
|
Albrecht PJ, Liu Y, Houk G, Ruggiero B, Banov D, Dockum M, Day A, Rice FL, Bassani G. Cutaneous targets for topical pain medications in patients with neuropathic pain: individual differential expression of biomarkers supports the need for personalized medicine. Pain Rep 2024; 9:e1119. [PMID: 38375092 PMCID: PMC10876238 DOI: 10.1097/pr9.0000000000001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Numerous potential cutaneous targets exist for treating chronic pain with topically applied active pharmaceutical ingredients. This preliminary human skin tissue investigation was undertaken to characterize several key biomarkers in keratinocytes and provide proof-of-principle data to support clinical development of topical compounded formulations for peripheral neuropathic pain syndromes, such as postherpetic neuralgia (PHN). Objectives The study intended to identify objective biomarkers in PHN skin on a patient-by-patient personalized medicine platform. The totality of biopsy biomarker data can provide a tissue basis for directing individualized compounded topical preparations to optimize treatment efficacy. Methods Referencing 5 of the most common actives used in topical pain relief formulations (ketamine, gabapentin, clonidine, baclofen, and lidocaine), and 3 well-established cutaneous mediators (ie, neuropeptides, cannabinoids, and vanilloids), comprehensive immunolabeling was used to quantify receptor biomarkers in skin biopsy samples taken from ipsilateral (pain) and contralateral (nonpain) dermatomes of patients with PHN. Results Epidermal keratinocyte labeling patterns were significantly different among the cohort for each biomarker, consistent with potential mechanisms of action among keratinocytes. Importantly, the total biomarker panel indicates that the enriched PHN cohort contains distinct subgroups. Conclusion The heterogeneity of the cohort differences may explain studies that have not shown statistical group benefit from topically administered compounded therapies. Rather, the essential need for individual tissue biomarker evaluations is evident, particularly as a means to direct a more accurately targeted topical personalized medicine approach and generate positive clinical results.
Collapse
Affiliation(s)
| | - Yi Liu
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - George Houk
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Beth Ruggiero
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - Marilyn Dockum
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - A.J. Day
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| | - Frank L. Rice
- Integrated Tissue Dynamics, LLC (INTiDYN), Rensselaer, NY, USA
| | - Gus Bassani
- Professional Compounding Centers of America (PCCA), Houston, TX, USA
| |
Collapse
|
2
|
The Interaction of Human Papillomavirus Infection and Prostaglandin E2 Signaling in Carcinogenesis: A Focus on Cervical Cancer Therapeutics. Cells 2022; 11:cells11162528. [PMID: 36010605 PMCID: PMC9406919 DOI: 10.3390/cells11162528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.
Collapse
|
3
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
4
|
Impact of HPV E5 on viral life cycle via EGFR signaling. Microb Pathog 2020; 139:103923. [DOI: 10.1016/j.micpath.2019.103923] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022]
|
5
|
Paolini F, Curzio G, Cordeiro MN, Massa S, Mariani L, Pimpinelli F, de Freitas AC, Franconi R, Venuti A. HPV 16 E5 oncoprotein is expressed in early stage carcinogenesis and can be a target of immunotherapy. Hum Vaccin Immunother 2016; 13:291-297. [PMID: 27929754 DOI: 10.1080/21645515.2017.1264777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HPV16 persistent infection is a well-known condition that precedes human cancer development. High risk HPV E5 proteins cooperate with E6/E7 oncogenes to promote hyper-proliferation of infected cells leading to possible cancer progression. Thus, presence of E5 viral transcripts could be a key marker of active infection and, in turn, a target of immunotherapy. Purpose of the study is to detect E5 transcripts in clinical samples and to explore the activity of novel anti-HPV16 E5 DNA vaccines. HPV transcripts were detected by PCR with specific primers encompassing the splice-donor sites of E5 transcript. For E5-based immunotherapies, 2 E5-based versions of DNA vaccines carrying whole E5 gene or a synthetic multiepitope gene were improved by fusion to sequence of PVX coat protein. These vaccines were challenged with a new luminescent animal model based on C3-Luc cell line. E5 transcripts were detected in clinical samples of women with HPV positive low-grade SIL, demonstrating the validity of our test. In C3 pre-clinical mouse model, vaccine candidates were able to induce a strong cellular immunity as indicated by ELISPOT assays. In addition, E5-CP vaccines elicited strong anti-tumor effects as showed by decreased tumor growth monitored by animal imaging. The tumor growth inhibition was comparable to those obtained with anti-E7 DNA vaccines. In conclusion, detection of E5 transcripts in clinical samples indicates that E5 is a possible target of immunotherapy. Data from pre-clinical model demonstrate that E5 genetic immunization is feasible, efficacious and could be utilized in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Silvia Massa
- c ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia , Rome , Italy
| | - Luciano Mariani
- a Regina Elena National Cancer Institute, HPV Unit , Rome , Italy
| | | | | | - Rosella Franconi
- c ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia , Rome , Italy
| | - Aldo Venuti
- a Regina Elena National Cancer Institute, HPV Unit , Rome , Italy
| |
Collapse
|
6
|
de Freitas AC, Coimbra EC, Leitão MDCG. Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:91-103. [PMID: 24388872 DOI: 10.1016/j.bbcan.2013.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 12/10/2013] [Accepted: 12/27/2013] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide and is responsible for 275,000 deaths each year. Persistent infection with high-risk human papillomavirus (HR-HPV) is an essential factor for the development of cervical cancer. Although the process is not fully understood, molecular mechanisms caused by HPV infection are necessary for its development and reveal a large number of potential biomarkers for diagnosis and prognosis. These molecules are host genes and/or proteins, and cellular microRNAs involved in cell cycle regulation that result from disturbed expression of HR-HPV E5, E6 and E7 oncoproteins. One of the current challenges in medicine is to discover potent biomarkers that can correctly diagnose cervical premalignant lesions and standardize clinical management. Currently, studies are showing that some of these molecules are potential biomarkers of cervical carcinogenesis, and it is possible to carry out a more accurate diagnosis and provide more appropriate follow-up treatment for women with cervical dysplasia. In this paper, we review recent research studies on cell cycle molecules deregulated by HPV infections, as well as their potential use for cervical cancer screening.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Eliane Campos Coimbra
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
7
|
DiMaio D, Petti LM. The E5 proteins. Virology 2013; 445:99-114. [PMID: 23731971 DOI: 10.1016/j.virol.2013.05.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/23/2022]
Abstract
The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating these activities. The primary target of the 44-amino acid BPV1 E5 protein is the PDGF β receptor, whereas the EGF receptor appears to be an important target of the 83-amino acid HPV16 E5 protein. Both E5 proteins also bind to the vacuolar ATPase and affect MHC class I expression and cell-cell communication. Continued studies of the E5 proteins will elucidate important aspects of transmembrane protein-protein interactions, cellular signal transduction, cell biology, virus replication, and tumorigenesis.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, USA; Department of Therapeutic Radiology, Yale School of Medicine, USA; Department of Molecular Biophysics & Biochemistry, Yale University, USA; Yale Cancer Center, USA.
| | | |
Collapse
|
8
|
Pang CL, Thierry F. Human papillomavirus proteins as prospective therapeutic targets. Microb Pathog 2012; 58:55-65. [PMID: 23164805 DOI: 10.1016/j.micpath.2012.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Human papillomaviruses (HPV) are the causative agents of a subset of cervical cancers that are associated with persistent viral infection. The HPV genome is an ∼8 kb circle of double-stranded DNA that encodes eight viral proteins, among which the products of the E6 and E7 open reading frames are recognized as being the primary HPV oncogenes. E6 and E7 are expressed in pre-malignant lesions as well as in cervical cancers; hence these proteins have been extensively studied as potential targets for HPV therapies and novel vaccines. Here we review the expression and functions of E6 and E7 in the viral vegetative cycle and in oncogenesis. We also explore the expression and functions of other HPV proteins, including those with oncogenic properties, and discuss the potential of these molecules as alternative therapeutic targets.
Collapse
Affiliation(s)
- Chai Ling Pang
- Singapore Immunology Network, 8A Biomedical Grove, #4-06 Immunos, A*STAR, Singapore 138648, Singapore
| | | |
Collapse
|
9
|
Epidermal Growth Factor Genetic Variation Associated With Advanced Cervical Cancer in Younger Women. Am J Clin Oncol 2012; 35:247-50. [DOI: 10.1097/coc.0b013e31820dbbf5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Human papillomavirus-16 E5 protein: oncogenic role and therapeutic value. Cell Oncol (Dordr) 2012; 35:67-76. [DOI: 10.1007/s13402-011-0069-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2011] [Indexed: 10/14/2022] Open
|
11
|
Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer 2011; 10:140. [PMID: 22078316 PMCID: PMC3248866 DOI: 10.1186/1476-4598-10-140] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses (PVs) are established agents of human and animal cancers. They infect cutaneous and mucous epithelia. High Risk (HR) Human PVs (HPVs) are consistently associated with cancer of the uterine cervix, but are also involved in the etiopathogenesis of other cancer types. The early oncoproteins of PVs: E5, E6 and E7 are known to contribute to tumour progression. While the oncogenic activities of E6 and E7 are well characterised, the role of E5 is still rather nebulous. The widespread causal association of PVs with cancer makes their study worthwhile not only in humans but also in animal model systems. The Bovine PV (BPV) system has been the most useful animal model in understanding the oncogenic potential of PVs due to the pivotal role of its E5 oncoprotein in cell transformation. This review will highlight the differences between HPV-16 E5 (16E5) and E5 from other PVs, primarily from BPV. It will discuss the targeting of E5 as a possible therapeutic agent.
Collapse
Affiliation(s)
- Aldo Venuti
- Department of Pathology and Animal Health, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
In vivo HPV 16 E5 mRNA: expression pattern in patients with squamous intra-epithelial lesions of the cervix. J Clin Virol 2011; 52:79-83. [PMID: 21767984 DOI: 10.1016/j.jcv.2011.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Human Papillomavirus (HPV) type 16 E5 is a small protein, which is reported to display transforming activity in vitro and in animal studies. The E5 transcriptional activity, however, has been rarely reported in vivo in literature. OBJECTIVES (a) To detect the E5 transcripts in vivo in a population of HPV 16 positive patients with abnormal cytology and (b) to correlate the level of expression to the degree of the cytological lesion. STUDY DESIGN AND METHODS 250 cytological samples of HPV positive women were obtained and tested for the E6/E7 mRNA expression. Patients were selected if HPV 16 only mRNA positive and with a cytology consistent with low-grade/high-grade squamous intra-epithelial (LSIL/HSIL) lesions. Selected patients were tested for the E5 transcripts by reverse RT PCR, comparing the expression level in vivo with a transfected HPV 16 E5 HaCaT cell line. RESULTS 27 HPV 16 E6/E7 mRNA positive LSIL/HSIL patients were selected. 13 out of 17 LSIL patients were tested positive for the E5 mRNA, showing an ample range of positivity. In the HSIL group 7 out of 10 patients were tested positive, displaying lower and more homogeneous levels of expression if compared with the transfected cells. CONCLUSION The HPV 16 E5 transcripts levels showed a broad distribution in vivo; the discrepancy was wider in LSIL patients, with HSIL patients displaying a more homogeneous profile. However, because of the limited number of patients, we could not draw a firm conclusion about the correlation between the E5 expression and the disease progression.
Collapse
|
13
|
Kim MK, Kim HS, Kim SH, Oh JM, Han JY, Lim JM, Juhnn YS, Song YS. Human papillomavirus type 16 E5 oncoprotein as a new target for cervical cancer treatment. Biochem Pharmacol 2010; 80:1930-5. [PMID: 20643111 DOI: 10.1016/j.bcp.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/03/2010] [Accepted: 07/08/2010] [Indexed: 01/29/2023]
Abstract
Human papillomavirus (HPV) infection is considered to be the necessary cause of cervical cancer. E6 and E7 oncoproteins of HPV have been known to play major roles in malignant transformation of cervical cells, inhibiting the tumor suppressors p53 and Rb. However, the role of E5 oncoprotein has been relatively less defined. HPV 16 E5 is a hydrophobic membrane-bound protein which associates with the Golgi apparatus, endoplasmic reticulum and perinuclear membrane. Accumulating evidences have suggested that E5 oncoprotein may also contribute to cervical carcinogenesis through modulating cellular signaling pathways in addition to augmenting the immortalization potential of E6 and E7. Multiple mechanisms, including activation of EGFR or inflammatory cell signaling pathway, have been implicated in malignant transformation by HPV 16 E5. Therefore, targeting E5 may be a rational approach for chemoprevention and treatment of cervical cancer, and understanding its oncogenic processes may help us to design novel therapeutic strategies. In this review, we discussed the roles of HPV 16 E5 in cervical carcinogenesis, altering several cellular signaling pathways involved in cell proliferation, angiogenesis and apoptosis.
Collapse
Affiliation(s)
- Mi-Kyung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Oh JM, Kim SH, Lee YI, Seo M, Kim SY, Song YS, Kim WH, Juhnn YS. Human papillomavirus E5 protein induces expression of the EP4 subtype of prostaglandin E2 receptor in cyclic AMP response element-dependent pathways in cervical cancer cells. Carcinogenesis 2008; 30:141-9. [PMID: 18849297 DOI: 10.1093/carcin/bgn236] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) is the major cause of uterine cervical cancer, but the role of the HPV E5 in carcinogenesis is not clearly understood. Prostaglandins are known to contribute to carcinogenesis of cervical cancer, and we therefore investigated the effect of HPV16 E5 on the expression of prostaglandin E2 (PGE2) receptors and underlying mechanisms. Stable expression of the E5 induced expression of the EP4 subtype of PGE2 receptors in C33A cervical cancer cells, and transfection of E5 small interfering RNA (siRNA) decreased it. EP4 protein expression was increased in human cervical cancer tissues, and EP4 mediated E5-induced increase in anchorage-independent colony formation and vascular endothelial growth factor expression. E5 induced cyclooxygenase-2 (COX-2) expression, and COX-2 increased PGE2 secretion and EP4 expression. The induction of EP4 by PGE2 and E5 was inhibited by an EP4 antagonist, inhibitors of cyclic adenosine monophosphate-dependent protein kinase or phosphatidylinositol 3-kinase, and a cyclic adenosine monophosphate response element (CRE) decoy. E5 increased the luciferase expression controlled by a variant CRE of the EP4 promoter, and it also increased the binding of cyclic adenosine monophosphate response element binding protein (CREB) to oligonucleotides containing this CRE. We conclude that the HPV16 E5 protein induces EP4 receptor protein in cervical cancer cells and that this induction involves epidermal growth factor receptor, COX-2, PGE2, EP2 and EP4, protein kinase A, CREB and CRE.
Collapse
Affiliation(s)
- Jung-Min Oh
- Interdisciplinary Graduate Program in Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Jongno-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Maufort JP, Williams SMG, Pitot HC, Lambert PF. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res 2007; 67:6106-12. [PMID: 17616666 PMCID: PMC2858287 DOI: 10.1158/0008-5472.can-07-0921] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPVs), which cause the vast majority of cervical cancer, other anogenital cancers, and a subset of head and neck squamous cell carcinomas, encode three oncogenes: E5, E6, and E7. To determine the oncogenic properties of HPV16 E5 in vivo, we previously generated K14E5 transgenic mice, in which expression of E5 was directed to the basal compartment of stratified squamous epithelia. In these mice, E5 induced epidermal hyperplasia and spontaneous skin tumors. In the current study, we determined how E5 contributes to tumor formation in the skin using a multistage model for skin carcinogenesis that specifies the role of genes in three stages: initiation, promotion, and malignant progression. Both initiation and promotion are required steps for papilloma formation. K14E5 mice treated with the initiating agent 7,12-dimethylbenz(a)anthracene (DMBA) developed more papillomas than like-treated nontransgenic mice, whereas neither K14E5 nor nontransgenic mice treated with the promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) developed papillomas. K14E5 mice treated with both DMBA and TPA to induce large numbers of papillomas had a higher incidence and earlier onset of carcinoma progression compared with like-treated nontransgenic mice. Thus, HPV16 E5 contributes to two stages of skin carcinogenesis: promotion and progression. The progressive neoplastic disease in K14E5 mice differed from that in nontransgenic mice in that benign tumors converted from exophytic to endophytic papillomas before progressing to carcinomas. Initial genetic and immunohistopathologic analyses did not determine the underlying basis for this distinct morphology, which correlates with a highly penetrant neoplastic phenotype.
Collapse
Affiliation(s)
- John P. Maufort
- Department of Oncology and the McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sybil M. Genther Williams
- Department of Oncology and the McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Henry C. Pitot
- Department of Oncology and the McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul F. Lambert
- Department of Oncology and the McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
16
|
Kotake-Nara E, Takizawa S, Saida K. Endothelin-2/vasoactive Intestinal Contractor via ROCK regulates transglutaminase 1 on differentiation of mouse keratinocytes. Biochem Biophys Res Commun 2007; 357:168-73. [PMID: 17418814 DOI: 10.1016/j.bbrc.2007.03.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/17/2007] [Indexed: 10/23/2022]
Abstract
We previously found that endothelin-2/vasoactive intestinal contractor (ET-2/VIC) greatly increased in mouse epidermis after birth. In the present study, we evaluated whether ET-2/VIC expression was associated with the calcium-induced differentiation of cultured mouse keratinocytes. The differentiation induction was revealed by morphological change, cornified envelope (CE) formation, and involucrin and transglutaminase 1 (TG 1) expressions. ET-2/VIC gene expression and peptide production subsequently increased in the induction of the differentiation. We also found that Y-27632, a Rho-associated coiled-coil forming protein serine/threonine kinase (ROCK) inhibitor, suppressed up-regulation of ET-2/VIC gene expression, the induction of morphological change, the CE formation, and TG 1 expression, but not involucrin expression. These results indicate new three findings, (1) ET-2/VIC expression increases and has potential as a differentiation marker, (2) ET-2/VIC expression is mediated by ROCK, and (3) the ROCK regulated TG 1 expression, on the calcium-induced differentiation of mouse keratinocytes.
Collapse
Affiliation(s)
- Eiichi Kotake-Nara
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
17
|
Smiley AK, Klingenberg JM, Aronow BJ, Boyce ST, Kitzmiller WJ, Supp DM. Microarray analysis of gene expression in cultured skin substitutes compared with native human skin. J Invest Dermatol 2006; 125:1286-301. [PMID: 16354201 DOI: 10.1111/j.0022-202x.2005.23971.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cultured skin substitutes (CSS), prepared using keratinocytes, fibroblasts, and biopolymers, can facilitate closure of massive burn wounds by increasing the availability of autologous tissue for grafting. But because they contain only two cell types, skin substitutes cannot replace all of the functions of native human skin. To better understand the physiological and molecular differences between CSS and native skin, we undertook a comprehensive analysis of gene expression in native skin, cultured keratinocytes, cultured fibroblasts, and skin substitutes using Affymetrix gene chip microarrays. Hierarchical tree clustering identified six major clusters of coordinately regulated genes, using a list of 1030 genes that were the most differentially expressed between groups. These clusters correspond to biomarker pools representing expression signatures for native skin, fibroblasts, keratinocytes, and cultured skin. The expression analysis revealed that entire clusters of genes were either up- or downregulated upon combination of fibroblasts and keratinocytes in cultured skin grafts. Further, several categories of genes were overexpressed in CSS compared with native skin, including genes associated with hyperproliferative skin or activated keratinocytes. The observed pattern of expression indicates that CSS in vitro, which display a well-differentiated epidermal layer, exhibit a hyperproliferative phenotype similar to wounded native skin.
Collapse
Affiliation(s)
- Andrea K Smiley
- Research Department, Shriners Hospitals for Children, Cincinnati Burns Hospital, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
18
|
El-Mofty SK, Lu DW. Prevalence of high-risk human papillomavirus DNA in nonkeratinizing (cylindrical cell) carcinoma of the sinonasal tract: a distinct clinicopathologic and molecular disease entity. Am J Surg Pathol 2005; 29:1367-72. [PMID: 16160480 DOI: 10.1097/01.pas.0000173240.63073.fe] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carcinomas of the nose and paranasal sinuses are a heterogeneous group of neoplasms that differ histologically, biologically, and clinically. Some of these tumors are known to harbor high-risk human papillomavirus (HPV) DNA. In an attempt to identify specific phenotypes associated with HPV infection, 39 cases of sinonasal carcinomas were evaluated by PCR for the presence of HPV DNA. The tumors were also studied with a panel of immunohistochemical stains, including p16, p53, and Ki-67 antibodies. Twenty-one cases were identified as keratinizing squamous cell carcinoma (KSCC) with a male-to-female ratio of 3:1. Eight cases were nonkeratinizing (cylindrical cell) carcinoma (NKCa) with a male-to-female ratio of 1:1. Ten cases were sinonasal undifferentiated carcinoma (SNUC), and 9 of these patients were men. HPV DNA, particularly type 16, was detected in 9 cases: 4 of 21 (19%) of KSCC, 4 of 8 (50%) of NKCa, and 1 of 10 (10%) of SNUC. In addition to a higher prevalence of HPV DNA in NKCa, the tumors also showed a distinct immunophenotype characterized by strong and diffuse staining for p16, high labeling scores for Ki-67, and negative or low reactivity to p53. On the other hand, KSCC and SNUC were either negative or weakly reactive to p16 antibodies. KSCC cases were more likely to be positive and more strongly reactive to p53 stain. Unlike KSCC, SNUC had high Ki-67 labeling scores. These observations suggest that NKCa of the sinonasal tract is a distinct histopathologic and molecular disease entity, which should be added to the list of upper aerodigestive tract tumors with strong etiologic relationship to high risk HPV.
Collapse
Affiliation(s)
- Samir K El-Mofty
- Department of Pathology & Immunology, Washington University School of Medicine, 660 S. Euclid, Campus Box 8118, St. Louis, MO 63110, USA.
| | | |
Collapse
|
19
|
Suprynowicz FA, Disbrow GL, Simic V, Schlegel R. Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology 2005; 332:102-13. [PMID: 15661144 DOI: 10.1016/j.virol.2004.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 09/10/2004] [Accepted: 11/10/2004] [Indexed: 11/24/2022]
Abstract
The E5 proteins of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 16 (HPV-16) are small (44-83 amino acids), hydrophobic polypeptides that localize to membranes of the Golgi apparatus and endoplasmic reticulum, respectively. While the oncogenic properties of BPV-1 E5 have been characterized in detail, less is known about HPV-16 E5 due to its low expression in mammalian cells. Using codon-optimized HPV-16 E5 DNA, we have generated stable fibroblast cell lines that express equivalent levels of epitope-tagged BPV-1 and HPV-16 E5 proteins. In contrast to BPV-1 E5, HPV-16 E5 does not activate growth factor receptors, phosphoinositide 3-kinase or c-Src, and fails to induce focus formation, although it does promote anchorage-independent growth in soft agar. These variant activities are apparently unrelated to differences in intracellular localization of the E5 proteins since retargeting HPV-16 E5 to the Golgi apparatus does not induce focus formation.
Collapse
Affiliation(s)
- Frank A Suprynowicz
- Department of Pathology, Georgetown University Medical School, Preclinical Sciences Building, Room GR10C, 3900 Reservoir Road, NW, Box #571432, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
20
|
Peh WL, Middleton K, Christensen N, Nicholls P, Egawa K, Sotlar K, Brandsma J, Percival A, Lewis J, Liu WJ, Doorbar J. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol 2002; 76:10401-16. [PMID: 12239317 PMCID: PMC136551 DOI: 10.1128/jvi.76.20.10401-10416.2002] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal papillomaviruses are widely used as models to study papillomavirus infection in humans despite differences in genome organization and tissue tropism. Here, we have investigated the extent to which animal models of papillomavirus infection resemble human disease by comparing the life cycles of 10 different papillomavirus types. Three phases in the life cycles of all viruses were apparent using antibodies that distinguish between early events, the onset of viral genome amplification, and the expression of capsid proteins. The initiation of these phases follows a highly ordered pattern that appears important for the production of virus particles. The viruses examined included canine oral papillomavirus, rabbit oral papillomavirus (ROPV), cottontail rabbit papillomavirus (CRPV), bovine papillomavirus type 1, and human papillomavirus types 1, 2, 11, and 16. Each papillomavirus type showed a distinctive gene expression pattern that could be explained in part by differences in tissue tropism, transmission route, and persistence. As the timing of life cycle events affects the accessibility of viral antigens to the immune system, the ideal model system should resemble human mucosal infection if vaccine design is to be effective. Of the model systems examined here, only ROPV had a tissue tropism and a life cycle organization that resembled those of the human mucosal types. ROPV appears most appropriate for studies of the life cycles of mucosal papillomavirus types and for the development of prophylactic vaccines. The persistence of abortive infections caused by CRPV offers advantages for the development of therapeutic vaccines.
Collapse
Affiliation(s)
- Woei Ling Peh
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The E5 protein of papillomaviruses. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0168-7069(02)08020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Abstract
The papillomavirus E5 proteins are short, hydrophobic transforming proteins. The transmembrane E5 protein encoded by bovine papillomavirus transforms cells by activating the platelet-derived growth factor beta receptor tyrosine kinase in a ligand-independent fashion. The bovine papillomavirus E5 protein forms a stable complex with the receptor, thereby inducing receptor dimerization and activation, trans-phosphorylation, and recruitment of cellular signaling proteins to the receptor. The E5 proteins of the human papillomaviruses also appear to affect the activity of growth factor receptors and their signaling pathways. The interaction of papillomavirus E5 proteins with a subunit of the vacuolar ATPase may also contribute to transformation. Further analysis of these unique mechanisms of viral transformation will yield new insight into the regulation of growth factor receptor activity and cellular signal transduction pathways.
Collapse
Affiliation(s)
- D DiMaio
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | | |
Collapse
|
23
|
Thomsen P, van Deurs B, Norrild B, Kayser L. The HPV16 E5 oncogene inhibits endocytic trafficking. Oncogene 2000; 19:6023-32. [PMID: 11146554 DOI: 10.1038/sj.onc.1204010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The small hydrophobic E5 protein of Human Papillomavirus type 16 (HPV16) binds to the 16-kDa subunit of the V-H+-ATPase. This binding has been suggested to interfere with acidification of late endocytic structures. We here used video microscopy, ratio imaging and confocal microscopy of living C127 fibroblasts to study the effects of E5. Various endocytic markers including the pH-sensitive probe DM-NERF coupled to dextran, TransFluoSpheres and TRITC-concanavalin A, were applied. In E5-transfected cells, none of these markers colocalized with the membrane permeable probe LysoTracker Red, which accumulates in acidic, late endocytic structures, or with a green fluorescent version of the small GTPase Rab7 labeling late endocytic structures. Importantly, however, late endocytic structures accumulating LysoTracker were still present in the E5-transfected cells. It is therefore concluded that HPV16 E5 perturbs trafficking from early to late endocytic structures rather than acidification.
Collapse
Affiliation(s)
- P Thomsen
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
24
|
Venuti A, Salani D, Manni V, Poggiali F, Bagnato A. Expression of endothelin 1 and endothelin A receptor in HPV-associated cervical carcinoma: new potential targets for anticancer therapy. FASEB J 2000; 14:2277-83. [PMID: 11053249 DOI: 10.1096/fj.00-0024com] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human papillomaviruses (HPV) are associated with cervical cancer and interact with growth factors that may enhance malignant transformation of cervical carcinoma cells. Endothelin-1 (ET-1) is released from HPV transfected keratinocytes and induces increased growth response in these cell lines in comparison with normal cells. In the present study several cervical carcinoma cell lines have been analyzed to investigate the expression of ET-1 and its receptors as well as their involvement in tumor growth. All HPV-positive cancer cells secreted ET-1 and expressed mRNA for ET-1 and its receptors, whereas a HPV-negative carcinoma cell line expressed only the ETBR mRNA and didn't secrete ET-1. Binding studies showed that HPV-associated cells expressed an increased number of functional ETAR. ET-1 stimulated a marked dose-dependent increase in [3H]-thymidine incorporation with respect to the normal cells whereas ET-3 and ETBR agonists had no effect. In HPV-positive cancer cells, a specific antagonist of ETAR inhibited the proliferation induced by ET-1 and substantially reduced the basal growth rate of unstimulated cervical tumor cells, whereas the ETBR antagonist had no effect. These results demonstrate that ET-1 participates in the progression of neoplastic growth in HPV-associated carcinoma, in which ETAR are increased and could be targeted for antitumor therapy.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Binding, Competitive/drug effects
- Cell Division/drug effects
- Cell Line
- Dose-Response Relationship, Drug
- Endothelin Receptor Antagonists
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Oligopeptides/pharmacology
- Papillomaviridae
- Papillomavirus Infections/genetics
- Papillomavirus Infections/pathology
- Papillomavirus Infections/prevention & control
- Peptides, Cyclic/pharmacology
- Piperidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioimmunoassay
- Receptor, Endothelin A
- Receptors, Endothelin/genetics
- Receptors, Endothelin/metabolism
- Tumor Cells, Cultured
- Tumor Virus Infections/genetics
- Tumor Virus Infections/pathology
- Tumor Virus Infections/prevention & control
- Uterine Cervical Neoplasms/drug therapy
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/virology
- Viper Venoms/pharmacology
Collapse
Affiliation(s)
- A Venuti
- Laboratories of Virology, Regina Elena Cancer Institue, 00158 Rome, Italy.
| | | | | | | | | |
Collapse
|