1
|
Bai M, Gallen E, Memarzadeh S, Howie J, Gao X, Kuo CWS, Brown E, Swingler S, Wilson SJ, Shattock MJ, France DJ, Fuller W. Targeted degradation of zDHHC-PATs decreases substrate S-palmitoylation. PLoS One 2024; 19:e0299665. [PMID: 38512906 PMCID: PMC10956751 DOI: 10.1371/journal.pone.0299665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Reversible S-palmitoylation of protein cysteines, catalysed by a family of integral membrane zDHHC-motif containing palmitoyl acyl transferases (zDHHC-PATs), controls the localisation, activity, and interactions of numerous integral and peripheral membrane proteins. There are compelling reasons to want to inhibit the activity of individual zDHHC-PATs in both the laboratory and the clinic, but the specificity of existing tools is poor. Given the extensive conservation of the zDHHC-PAT active site, development of isoform-specific competitive inhibitors is highly challenging. We therefore hypothesised that proteolysis-targeting chimaeras (PROTACs) may offer greater specificity to target this class of enzymes. In proof-of-principle experiments we engineered cell lines expressing tetracycline-inducible Halo-tagged zDHHC5 or zDHHC20, and evaluated the impact of Halo-PROTACs on zDHHC-PAT expression and substrate palmitoylation. In HEK-derived FT-293 cells, Halo-zDHHC5 degradation significantly decreased palmitoylation of its substrate phospholemman, and Halo-zDHHC20 degradation significantly diminished palmitoylation of its substrate IFITM3, but not of the SARS-CoV-2 spike protein. In contrast, in a second kidney derived cell line, Vero E6, Halo-zDHHC20 degradation did not alter palmitoylation of either IFITM3 or SARS-CoV-2 spike. We conclude from these experiments that PROTAC-mediated targeting of zDHHC-PATs to decrease substrate palmitoylation is feasible. However, given the well-established degeneracy in the zDHHC-PAT family, in some settings the activity of non-targeted zDHHC-PATs may substitute and preserve substrate palmitoylation.
Collapse
Affiliation(s)
- Mingjie Bai
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily Gallen
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Memarzadeh
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Jacqueline Howie
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xing Gao
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chien-Wen S. Kuo
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elaine Brown
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Swingler
- Medical Research Council–University of Glasgow Centre for Virus Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sam J. Wilson
- Medical Research Council–University of Glasgow Centre for Virus Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael J. Shattock
- School of Cardiovascular and Metabolic Medicine & Sciences, King’s College London, London, United Kingdom
| | - David J. France
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - William Fuller
- School of Cardiovascular & Metabolic Health, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Structure of infective Getah virus at 2.8 Å resolution determined by cryo-electron microscopy. Cell Discov 2022; 8:12. [PMID: 35149682 PMCID: PMC8832435 DOI: 10.1038/s41421-022-00374-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Getah virus (GETV), a member of the genus alphavirus, is a mosquito-borne pathogen that can cause pyrexia and reproductive losses in animals. Although antibodies to GETV have been found in over 10% of healthy people, there are no reports of clinical symptoms associated with GETV. The biological and pathological properties of GETV are largely unknown and antiviral or vaccine treatments against GETV are still unavailable due to a lack of knowledge of the structure of the GETV virion. Here, we present the structure of infective GETV at a resolution of 2.8 Å with the atomic models of the capsid protein and the envelope glycoproteins E1 and E2. We have identified numerous glycosylation and S-acylation sites in E1 and E2. The surface-exposed glycans indicate a possible impact on viral immune evasion and host cell invasion. The S-acylation sites might be involved in stabilizing the transmembrane assembly of E1 and E2. In addition, a cholesterol and a phospholipid molecule are observed in a transmembrane hydrophobic pocket, together with two more cholesterols surrounding the pocket. The cholesterol and phospholipid stabilize the hydrophobic pocket in the viral envelope membrane. The structural information will assist structure-based antiviral and vaccine screening, design, and optimization.
Collapse
|
4
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|
5
|
Harrington HR, Zimmer MH, Chamness LM, Nash V, Penn WD, Miller TF, Mukhopadhyay S, Schlebach JP. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. J Biol Chem 2020; 295:6798-6808. [PMID: 32169904 DOI: 10.1074/jbc.ra120.012706] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
Viruses maximize their genetic coding capacity through a variety of biochemical mechanisms, including programmed ribosomal frameshifting (PRF), which facilitates the production of multiple proteins from a single mRNA transcript. PRF is typically stimulated by structural elements within the mRNA that generate mechanical tension between the transcript and ribosome. However, in this work, we show that the forces generated by the cotranslational folding of the nascent polypeptide chain can also enhance PRF. Using an array of biochemical, cellular, and computational techniques, we first demonstrate that the Sindbis virus structural polyprotein forms two competing topological isomers during its biosynthesis at the ribosome-translocon complex. We then show that the formation of one of these topological isomers is linked to PRF. Coarse-grained molecular dynamics simulations reveal that the translocon-mediated membrane integration of a transmembrane domain upstream from the ribosomal slip site generates a force on the nascent polypeptide chain that scales with observed frameshifting. Together, our results indicate that cotranslational folding of this viral protein generates a tension that stimulates PRF. To our knowledge, this constitutes the first example in which the conformational state of the nascent polypeptide chain has been linked to PRF. These findings raise the possibility that, in addition to RNA-mediated translational recoding, a variety of cotranslational folding or binding events may also stimulate PRF.
Collapse
Affiliation(s)
| | - Matthew H Zimmer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Veronica Nash
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | | | | |
Collapse
|
6
|
Gadalla MR, Veit M. Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin Drug Discov 2019; 15:159-177. [PMID: 31809605 DOI: 10.1080/17460441.2020.1696306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: S-acylation is the attachment of fatty acids not only to cysteines of cellular, but also of viral proteins. The modification is often crucial for the protein´s function and hence for virus replication. Transfer of fatty acids is mediated by one or several of the 23 members of the ZDHHC family of proteins. Since their genes are linked to various human diseases, they represent drug targets.Areas covered: The authors explore whether targeting acylation of viral proteins might be a strategy to combat viral diseases. Many human pathogens contain S-acylated proteins; the ZDHHCs involved in their acylation are currently identified. Based on the 3D structure of two ZDHHCs, the regulation and the biochemistry of the palmitolyation reaction and the lipid and protein substrate specificities are discussed. The authors then speculate how ZDHHCs might recognize S-acylated membrane proteins of Influenza virus.Expert opinion: Although many viral diseases can now be treated, the available drugs bind to viral proteins that rapidly mutate and become resistant. To develop inhibitors for the genetically more stable cellular ZDHHCs, their binding sites for viral substrates need to be identified. If only a few cellular proteins are recognized by the same binding site, development of specific inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
7
|
Kordyukova LV, Serebryakova MV, Khrustalev VV, Veit M. Differential S-Acylation of Enveloped Viruses. Protein Pept Lett 2019; 26:588-600. [PMID: 31161979 DOI: 10.2174/0929866526666190603082521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, Minsk 220116, Belarus
| | - Michael Veit
- Institut für Virologie, Vet.-Med. Faculty, Free University Berlin, Berlin 14163, Germany
| |
Collapse
|
8
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|
9
|
Ramsey J, Mukhopadhyay S. Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins. Viruses 2017; 9:v9080228. [PMID: 28820485 PMCID: PMC5580485 DOI: 10.3390/v9080228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/04/2023] Open
Abstract
For 30 years it was thought the alphavirus 6K gene encoded a single 6 kDa protein. However, through a bioinformatics search 10 years ago, it was discovered that there is a frameshifting event and two proteins, 6K and transframe (TF), are translated from the 6K gene. Thus, many functions attributed to the 6K protein needed reevaluation to determine if they properly belong to 6K, TF, or both proteins. In this mini-review, we reevaluate the past research on 6K and put those results in context where there are two proteins, 6K and TF, instead of one. Additionally, we discuss the most cogent outstanding questions for 6K and TF research, including their collective importance in alphavirus budding and their potential importance in disease based on the latest virulence data.
Collapse
Affiliation(s)
- Jolene Ramsey
- Department of Biology at Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
10
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|
11
|
Wagner JM, Pajerowski JD, Daniels CL, McHugh PM, Flynn JA, Balliet JW, Casimiro DR, Subramanian S. Enhanced production of Chikungunya virus-like particles using a high-pH adapted spodoptera frugiperda insect cell line. PLoS One 2014; 9:e94401. [PMID: 24713807 PMCID: PMC3979839 DOI: 10.1371/journal.pone.0094401] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus-like particles (VLPs) have potential to be used as a prophylactic vaccine based on testing in multiple animal models and are currently being evaluated for human use in a Phase I clinical trial. The current method for producing these enveloped alphavirus VLPs by transient gene expression in mammalian cells presents challenges for scalable and robust industrial manufacturing, so the insect cell baculovirus expression vector system was evaluated as an alternative expression technology. Subsequent to recombinant baculovirus infection of Sf21 cells in standard culture media (pH 6.2–6.4), properly processed Chikungunya structural proteins were detected and assembled capsids were observed. However, an increase in culture pH to 6.6–6.8 was necessary to produce detectable concentrations of assembled VLPs. Since this elevated production pH exceeds the optimum for growth medium stability and Sf21 culture, medium modifications were made and a novel insect cell variant (SfBasic) was derived by exposure of Sf21 to elevated culture pH for a prolonged period of time. The high-pH adapted SfBasic insect cell line described herein is capable of maintaining normal cell growth into the typical mammalian cell culture pH range of 7.0–7.2 and produces 11-fold higher Chikungunya VLP yields relative to the parental Sf21 cell line. After scale-up into stirred tank bioreactors, SfBasic derived VLPs were chromatographically purified and shown to be similar in size and structure to a VLP standard derived from transient gene expression in HEK293 cells. Total serum anti-Chikungunya IgG and neutralizing titers from guinea pigs vaccinated with SfBasic derived VLPs or HEK293 derived VLPs were not significantly different with respect to production method, suggesting that this adapted insect cell line and production process could be useful for manufacturing Chikungunya VLPs for use as a vaccine. The adaptation of Sf21 to produce high levels of recombinant protein and VLPs in an elevated pH range may also have applications for other pH-sensitive protein or VLP targets.
Collapse
Affiliation(s)
- James M. Wagner
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - J. David Pajerowski
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Christopher L. Daniels
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Patrick M. McHugh
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Jessica A. Flynn
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - John W. Balliet
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Danilo R. Casimiro
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Shyamsundar Subramanian
- Vaccine Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
The article summarises the results of more than 30 years of research on palmitoylation (S‐acylation) of viral proteins, the post‐translational attachment of fatty acids to cysteine residues of integral and peripheral membrane proteins. Analysing viral proteins is not only important to characterise the cellular pathogens but also instrumental to decipher the palmitoylation machinery of cells. This comprehensive review describes methods to identify S‐acylated proteins and covers the fundamental biochemistry of palmitoylation: the location of palmitoylation sites in viral proteins, the fatty acid species found in S‐acylated proteins, the intracellular site of palmitoylation and the enzymology of the reaction. Finally, the functional consequences of palmitoylation are discussed regarding binding of proteins to membranes or membrane rafts, entry of enveloped viruses into target cells by spike‐mediated membrane fusion as well as assembly and release of virus particles from infected cells. The topics are described mainly for palmitoylated proteins of influenza virus, but proteins of other important pathogens, such as the causative agents of AIDS and severe acute respiratory syndrome, and of model viruses are discussed.
Collapse
Affiliation(s)
- Michael Veit
- Department of Immunology and Molecular Biology, Free University, Berlin, Germany.
| |
Collapse
|
13
|
A specific domain of the Chikungunya virus E2 protein regulates particle formation in human cells: implications for alphavirus vaccine design. J Virol 2012; 86:8879-83. [PMID: 22647698 DOI: 10.1128/jvi.00370-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virus-like particles (VLPs) can be generated from Chikungunya virus (CHIKV), but different strains yield variable quantities of particles. Here, we define the genetic basis for these differences and show that amino acid 234 in E2 substantially affects VLP production. This site is located within the acid-sensitive region (ASR) known to initiate a major conformational change in E1/E2. Selected other mutations in the ASR, or changes in pH, also increased VLP yield. These results demonstrate that the ASR of E2 plays an important role in regulating particle generation.
Collapse
|
14
|
West J, Hernandez R, Ferreira D, Brown DT. Mutations in the endodomain of Sindbis virus glycoprotein E2 define sequences critical for virus assembly. J Virol 2006; 80:4458-68. [PMID: 16611906 PMCID: PMC1472013 DOI: 10.1128/jvi.80.9.4458-4468.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Envelopment of Sindbis virus at the plasma membrane is a multistep process in which an initial step is the association of the E2 protein via a cytoplasmic endodomain with the preassembled nucleocapsid. Sindbis virus is vectored in nature by blood-sucking insects and grows efficiently in a number of avian and mammalian vertebrate hosts. The assembly of Sindbis virus, therefore, must occur in two very different host cell environments. Mammalian cells contain cholesterol which insect membranes lack. This difference in membrane composition may be critical in determining what requirements are placed on the E2 tail for virus assembly. To examine the interaction between the E2 tail and the nucleocapsid in Sindbis virus, we have produced substitutions and deletions in a region of the E2 tail (E2 amino acids 408 to 415) that is initially integrated into the endoplasmic reticulum. This sequence was identified as being critical for nucleocapsid binding in an in vitro peptide protection assay. The effects of these mutations on virus assembly and function were determined in both vertebrate and invertebrate cells. Amino acid substitutions (at positions E2: 408, 410, 411, and 413) reduced infectious virus production in a position-dependent fashion but were not efficient in disrupting assembly in mammalian cells. Deletions in the E2 endodomain (delta406-407, delta409-411, and delta414-417) resulted in the failure to assemble virions in mammalian cells. Electron microscopy of BHK cells transfected with these mutants revealed assembly of nucleocapsids that failed to attach to membranes. However, introduction of these deletion mutants into insect cells resulted in the assembly of virus-like particles but no assayable infectivity. These data help define protein interactions critical for virus assembly and suggest a fundamental difference between Sindbis virus assembly in mammalian and insect cells.
Collapse
Affiliation(s)
- John West
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, North Carolina 27695-7622, USA
| | | | | | | |
Collapse
|
15
|
Whitehurst CB, Willis JH, Sinodis CN, Hernandez R, Brown DT. Single and multiple deletions in the transmembrane domain of the Sindbis virus E2 glycoprotein identify a region critical for normal virus growth. Virology 2006; 347:199-207. [PMID: 16387341 DOI: 10.1016/j.virol.2005.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 10/29/2005] [Accepted: 11/19/2005] [Indexed: 11/16/2022]
Abstract
Sindbis virus is composed of two nested T = 4 icosahedral protein shells containing 240 copies each of three structural proteins: E1, E2, and Capsid in a 1:1:1 stoichiometric ratio. E2 is a 423 amino acid glycoprotein with a membrane spanning domain 26 amino acids in length and a 33 amino acid cytoplasmic endodomain. The interaction of the endodomain with the nucleocapsid is an essential step in virus maturation and directs the formation of the outer protein shell as envelopment occurs. A previous study had determined that deletions in the transmembrane domain could affect virus assembly and infectivity (Hernandez et al., 2003. J. Virol. 77 (23), 12710-12719). Unexpectedly, a single deletion mutant (from 26 to 25 amino acids) resulted in a 1000-fold decrease in infectious virus production while another deletion of eight amino acids had no affect on infectious virus production. To further investigate the importance of these mutants, other single deletion mutants and another eight amino acid deletion mutant were constructed. We found that deletions located closer to the cytoplasmic (inner leaflet) of the membrane bilayer had a more detrimental effect on virus assembly and infectivity than those located closer to the luminal (outer leaflet) of the membrane bilayer. We also found that selective pressure can restore single amino acid deletions in the transmembrane domain but not necessarily to the wild type sequence. The partial restoration of an eight amino acid deletion (from 18 to 22 amino acids) also partially restored infectious virus production. The amount of infectious virus produced by this revertant was equivalent to that produced for the four amino acid deletion produced by site directed mutagenesis. These results suggest that the position of the deletion and the length of the C terminal region of the E2 transmembrane domain is vital for normal virus production. Deletion mutants resulting in decreased infectivity produce particles that appear to be processed and transported correctly suggesting a role involved in virus entry.
Collapse
Affiliation(s)
- Christopher B Whitehurst
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, 128 Polk Hall, NC 27695, USA
| | | | | | | | | |
Collapse
|
16
|
Wilkinson TA, Tellinghuisen TL, Kuhn RJ, Post CB. Association of sindbis virus capsid protein with phospholipid membranes and the E2 glycoprotein: implications for alphavirus assembly. Biochemistry 2005; 44:2800-10. [PMID: 15723524 DOI: 10.1021/bi0479961] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A late stage in assembly of alphaviruses within infected cells is thought to be directed by interactions between the nucleocapsid and the cytoplasmic domain of the E2 protein, a component of the viral E1/E2 glycoprotein complex that is embedded in the plasma membrane. Recognition between the nucleocapsid protein and the E2 protein was explored in solution using NMR spectroscopy, as well as in binding assays using a model phospholipid membrane system that incorporated a variety of Sindbis virus E2 cytoplasmic domain (cdE2) and capsid protein constructs. In these binding assays, synthetic cdE2 peptides were reconstituted into phospholipid vesicles to simulate the presentation of cdE2 on the inner leaflet of the plasma membrane. Results from these binding assays showed a direct interaction between a peptide containing the C-terminal 16 amino acids of the cdE2 sequence and a Sindbis virus capsid protein construct containing amino acids 19-264. Additional experiments that probed the sequence specificity of this cdE2-capsid interaction are also described. Further binding assays demonstrated an interaction between the 19-264 capsid protein and artificial vesicles containing neutral or negatively charged phospholipids, while capsid protein constructs with N-terminal truncations displayed either little or no affinity for such vesicles. The membrane-binding property of the capsid protein suggests that the membrane may play an active role in alphavirus assembly. The results are consistent with an assembly process involving an initial membrane association, whereby an association with E2 glycoprotein further enhances capsid binding to facilitate membrane envelopment of the nucleocapsid for budding. Collectively, these experiments elucidate certain requirements for the binding of Sindbis virus capsid protein to the cytoplasmic domain of the E2 glycoprotein, a critical event in the alphavirus maturation pathway.
Collapse
Affiliation(s)
- Thomas A Wilkinson
- Department of Biological Sciences and the Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
17
|
Tellinghuisen TL, Perera R, Kuhn RJ. Genetic and biochemical studies on the assembly of an enveloped virus. GENETIC ENGINEERING 2002; 23:83-112. [PMID: 11570108 DOI: 10.1007/0-306-47572-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- T L Tellinghuisen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
18
|
Veit M, Schmidt MF. Enzymatic depalmitoylation of viral glycoproteins with acyl-protein thioesterase 1 in vitro. Virology 2001; 288:89-95. [PMID: 11543661 DOI: 10.1006/viro.2001.1063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many glycoproteins of enveloped viruses as well as cellular proteins are covalently modified with fatty acids. Palmitoylation is often reversible, but the enzymology of this hydrophobic protein modification is not understood. Recently a cytosolic enzyme designated acyl-protein thioesterase 1 (APT1) was purified, which depalmitoylates several cellular proteins. Since hitherto no transmembrane proteins have been tested as substrates for APT1 we have investigated whether palmitoylated viral membrane glycoproteins can be deacylated by use of this enzyme. Recombinant APT1 was purified from Escherichia coli, and depalmitoylation of [3H]palmitate-labeled glycoproteins present in virus particles was measured by SDS-PAGE, fluorography, and scanning densitometry. We find that APT1 causes rapid and almost complete cleavage of fatty acids from the G-protein of vesicular stomatitis virus, hemagglutinin proteins of influenza A and C virus, and E2 of Semliki Forest virus (SFV). In contrast, E1 of SFV is largely resistant against APT1 activity. This substrate specificity of APT1 was also observed using microsomes prepared from SFV-infected cells. Our data emphasize the potential of APT1 as a tool for functional analysis of protein-bound fatty acids.
Collapse
Affiliation(s)
- M Veit
- Department of Immunology and Molecular Biology, Faculty of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | | |
Collapse
|
19
|
Smit JM, Bittman R, Wilschut J. Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low-pH-induced viral membrane fusion activity. FEBS Lett 2001; 498:57-61. [PMID: 11389898 DOI: 10.1016/s0014-5793(01)02495-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The envelope glycoproteins E1 and E2 of Sindbis virus are palmitoylated at cysteine residues within their transmembrane domains (E1 at position 430, and E2 at positions 388 and 390). Here, we investigated the in vitro membrane fusion activity of Sindbis virus variants (derived from the Toto 1101 infectious clone), in which the E1 C430 and/or E2 C388/390 residues had been substituted for alanines. Both the E1 and E2 mutant viruses, as well as a triple mutant virus, fused with liposomes in a strictly low-pH-dependent manner, the fusion characteristics being indistinguishable from those of the parent Toto 1101 virus. These results demonstrate that acylation of the transmembrane domain of Sindbis virus E1 and E2 is not required for expression of viral membrane fusion activity.
Collapse
Affiliation(s)
- J M Smit
- Department of Medical Microbiology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
20
|
Kim KH, Strauss EG, Strauss JH. Adaptive mutations in Sindbis virus E2 and Ross River virus E1 that allow efficient budding of chimeric viruses. J Virol 2000; 74:2663-70. [PMID: 10684281 PMCID: PMC111755 DOI: 10.1128/jvi.74.6.2663-2670.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus glycoproteins E2 and E1 form a heterodimer that is required for virus assembly. We have studied adaptive mutations in E2 of Sindbis virus (SIN) and E1 of Ross River virus (RR) that allow these two glycoproteins to interact more efficiently in a chimeric virus that has SIN E2 but RR E1. These mutations include K129E, K131E, and V237F in SIN E2 and S310F and C433R in RR E1. Although RR E1 and SIN E2 will form a chimeric heterodimer, the chimeric virus is almost nonviable, producing about 10(-7) as much virus as SIN at 24 h and 10(-5) as much after 48 h. Chimeras containing one adaptive change produced 3 to 20 times more virus than did the parental chimera, whereas chimeras with two changes produced 10 to 100 times more virus and chimeras containing three mutations produced yields that were 180 to 250 times better. None of the mutations had significant effects upon the parental wild-type viruses, however. Passage of the triple variants eight or nine times resulted in variants that produced virus rapidly and were capable of producing >10(8) PFU/ml of culture fluid within 24 h. These further-adapted variants possessed one or two additional mutations, including E2-V116K, E2-S110N, or E1-T65S. The RR E1-C433R mutation was studied in more detail. This Cys is located in the putative transmembrane domain of E1 and was shown to be palmitoylated. Mutation to Arg-433 resulted in loss of palmitoylation of E1. The positively charged arginine residue within the putative transmembrane domain of E1 would be expected to alter the conformation of this domain. These results suggest that interactions within the transmembrane region are important for the assembly of the E1/E2 heterodimer, as are regions of the ectodomains possibly identified by the locations of adaptive mutations in these regions. Further, the finding that four or five changes in the chimera allow virus production that approaches the levels seen with the parental SIN and exceeds that of the parental RR illustrates that the structure and function of SIN and RR E1s have been conserved during the 50% divergence in sequence that has occurred.
Collapse
Affiliation(s)
- K H Kim
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
21
|
Shmulevitz M, Duncan R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J 2000; 19:902-12. [PMID: 10698932 PMCID: PMC305630 DOI: 10.1093/emboj/19.5.902] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1999] [Revised: 01/04/2000] [Accepted: 01/12/2000] [Indexed: 11/13/2022] Open
Abstract
The non-enveloped fusogenic avian and Nelson Bay reoviruses encode homologous 10 kDa non-structural transmembrane proteins. The p10 proteins localize to the cell surface of transfected cells in a type I orientation and induce efficient cell-cell fusion. Mutagenic studies revealed the importance of conserved sequence-predicted structural motifs in the membrane association and fusogenic properties of p10. These motifs included a centrally located transmembrane domain, a conserved cytoplasmic basic region, a small hydrophobic motif in the N-terminal domain and four conserved cysteine residues. Functional analysis indicated that the extreme C-terminus of p10 functions in a sequence-independent manner to effect p10 membrane localization, while the N-terminal domain displays a sequence-dependent effect on the fusogenic property of p10. The small size, unusual arrangement of structural motifs and lack of any homologues in previously described membrane fusion proteins suggest that the fusion-associated small transmembrane (FAST) proteins of reovirus represent a new class of membrane fusion proteins.
Collapse
Affiliation(s)
- M Shmulevitz
- Department of Microbiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|