1
|
Coronel Arrechea C, Giolito ML, García IA, Soria G, Valdez Taubas J. A novel yeast-based high-throughput method for the identification of protein palmitoylation inhibitors. Open Biol 2021; 11:200415. [PMID: 34343464 PMCID: PMC8331233 DOI: 10.1098/rsob.200415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been linked to several types of cancers, diseases of the central nervous system and many infectious diseases where pathogens use the host cell machinery to palmitoylate their effectors. Despite the central importance of palmitoylation in cell physiology and disease, progress in the field has been hampered by the lack of potent-specific inhibitors of palmitoylation in general, and of individual PATs in particular. Herein, we present a yeast-based method for the high-throughput identification of small molecules that inhibit protein palmitoylation. The system is based on a reporter gene that responds to the acylation status of a palmitoylation substrate fused to a transcription factor. The method can be applied to heterologous PATs such as human DHHC20, mouse DHHC21 and also a PAT from the parasite Giardia lamblia. As a proof-of-principle, we screened for molecules that inhibit the palmitoylation of Yck2, a substrate of the yeast PAT Akr1. We tested 3200 compounds and were able to identify a candidate molecule, supporting the validity of our method.
Collapse
Affiliation(s)
- Consuelo Coronel Arrechea
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - María Luz Giolito
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Gastón Soria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
2
|
Kordyukova LV, Serebryakova MV, Khrustalev VV, Veit M. Differential S-Acylation of Enveloped Viruses. Protein Pept Lett 2019; 26:588-600. [PMID: 31161979 DOI: 10.2174/0929866526666190603082521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Post-translational modifications often regulate protein functioning. Covalent attachment of long chain fatty acids to cysteine residues via a thioester linkage (known as protein palmitoylation or S-acylation) affects protein trafficking, protein-protein and protein-membrane interactions. This post-translational modification is coupled to membrane fusion or virus assembly and may affect viral replication in vitro and thus also virus pathogenesis in vivo. In this review we outline modern methods to study S-acylation of viral proteins and to characterize palmitoylproteomes of virus infected cells. The palmitoylation site predictor CSS-palm is critically tested against the Class I enveloped virus proteins. We further focus on identifying the S-acylation sites directly within acyl-peptides and the specific fatty acid (e.g, palmitate, stearate) bound to them using MALDI-TOF MS-based approaches. The fatty acid heterogeneity/ selectivity issue attracts now more attention since the recently published 3D-structures of two DHHC-acyl-transferases gave a hint how this might be achieved.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, Minsk 220116, Belarus
| | - Michael Veit
- Institut für Virologie, Vet.-Med. Faculty, Free University Berlin, Berlin 14163, Germany
| |
Collapse
|
3
|
Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 2018; 53:420-451. [DOI: 10.1080/10409238.2018.1488804] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María-Eugenia Zaballa
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Rodenburg RNP, Snijder J, van de Waterbeemd M, Schouten A, Granneman J, Heck AJR, Gros P. Stochastic palmitoylation of accessible cysteines in membrane proteins revealed by native mass spectrometry. Nat Commun 2017; 8:1280. [PMID: 29097667 PMCID: PMC5668376 DOI: 10.1038/s41467-017-01461-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023] Open
Abstract
Palmitoylation affects membrane partitioning, trafficking and activities of membrane proteins. However, how specificity of palmitoylation and multiple palmitoylations in membrane proteins are determined is not well understood. Here, we profile palmitoylation states of three human claudins, human CD20 and cysteine-engineered prokaryotic KcsA and bacteriorhodopsin by native mass spectrometry. Cysteine scanning of claudin-3, KcsA, and bacteriorhodopsin shows that palmitoylation is independent of a sequence motif. Palmitoylations are observed for cysteines exposed on the protein surface and situated up to 8 Å into the inner leaflet of the membrane. Palmitoylation on multiple sites in claudin-3 and CD20 occurs stochastically, giving rise to a distribution of palmitoylated membrane-protein isoforms. Non-native sites in claudin-3 indicate that membrane-protein function imposed evolutionary restraints on native palmitoylation sites. These results suggest a generic, stochastic membrane-protein palmitoylation process that is determined by the accessibility of palmitoyl-acyl transferases to cysteines on membrane-embedded proteins, and not by a preferred substrate-sequence motif.
Collapse
Affiliation(s)
- Remco N P Rodenburg
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Dept. of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Arie Schouten
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Dept. of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Joke Granneman
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Dept. of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Dept. of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Kordyukova L. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Virus Res 2017; 227:183-199. [DOI: 10.1016/j.virusres.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
6
|
Khanal N, Pejaver V, Li Z, Radivojac P, Clemmer DE, Mukhopadhyay S. Position of Proline Mediates the Reactivity of S-Palmitoylation. ACS Chem Biol 2015; 10:2529-36. [PMID: 26255674 DOI: 10.1021/acschembio.5b00429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Palmitoylation, a post-translational modification in which a saturated 16-carbon chain is added predominantly to a cysteine residue, participates in various biological functions. The position of proline relative to other residues being post-translationally modified has been previously reported as being important. We determined that proline is statistically enriched around cysteines known to be S-palmitoylated. The goal of this work was to determine how the position of proline influences the palmitoylation of the cysteine residue. We established a mass spectrometry-based approach to investigate time- and temperature-dependent kinetics of autopalmitoylation in vitro and to derive the thermodynamic parameters of the transition state associated with palmitoylation; to the best of our knowledge, our work is the first to study the kinetics and activation properties of the palmitoylation process. We then used these thermochemical parameters to determine if the position of proline relative to the modified cysteine is important for palmitoylation. Our results show that peptides with proline at the -1 position of cysteine in their sequence (PC) have lower enthalpic barriers and higher entropic barriers in comparison to the same peptides with proline at the +1 position of cysteine (CP); interestingly, the free-energy barriers for both pairs are almost identical. Molecular dynamics studies demonstrate that the flexibility of the cysteine backbone in the PC-containing peptide when compared to the CP-containing peptide explains the increased entropic barrier and decreased enthalpic barrier observed experimentally.
Collapse
Affiliation(s)
- Neelam Khanal
- Departments of †Chemistry, ‡Computer Science and Informatics, and §Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Vikas Pejaver
- Departments of †Chemistry, ‡Computer Science and Informatics, and §Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhiyu Li
- Departments of †Chemistry, ‡Computer Science and Informatics, and §Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Predrag Radivojac
- Departments of †Chemistry, ‡Computer Science and Informatics, and §Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Departments of †Chemistry, ‡Computer Science and Informatics, and §Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Suchetana Mukhopadhyay
- Departments of †Chemistry, ‡Computer Science and Informatics, and §Biology, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Dual lipidation of the brain-specific Cdc42 isoform regulates its functional properties. Biochem J 2015; 456:311-22. [PMID: 24059268 DOI: 10.1042/bj20130788] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cdc42 (cell division cycle 42) is a member of the Rho GTPase family which regulates a variety of cellular activities by controlling actin cytoskeleton and gene expression. Cdc42 is expressed in the form of two splice variants. The canonical Cdc42 isoform is prenylated (Cdc42-prenyl), whereas the brainspecific isoform can be palmitoylated (Cdc42-palm). In the present study we have demonstrated palmitoylation of endogenous Cdc42 in rodent and human brains and identified Cys(188) and Cys(189) as acylation sites of Cdc42-palm. Moreover, we have shown that Cys(188) can also be prenylated. Analysis of acylation-deficient mutants revealed that lipidation of Cys(188) is essential for proper membrane binding of Cdc42-palm as well as for Cdc42-mediated regulation of gene transcription and induction of densely packed filopodia in neuroblastoma cells. We also found that Cdc42-prenyl is a dominant splice variant in a wide range of commonly used cell lines as well as in the cerebellum, whereas Cdc42-palm is the main Cdc42 isoform in hippocampus, where it is critically involved in the formation of dendritic filopodia and spines. Replacement of endogenous Cdc42 by its acylation-deficient mutants revealed the importance of Cdc42-palm lipidation for its morphogenic and synaptogenic effects in neurons. These findings demonstrate that dual lipidation of Cdc42-palm represents an important regulator of morphogenic signalling in hippocampal neurons.
Collapse
|
8
|
Protein palmitoylation and pathogenesis in apicomplexan parasites. J Biomed Biotechnol 2012; 2012:483969. [PMID: 23093847 PMCID: PMC3470895 DOI: 10.1155/2012/483969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 01/02/2023] Open
Abstract
Apicomplexan parasites comprise a broad variety of protozoan parasites, including Toxoplasma gondii, Plasmodium, Eimeria, and Cryptosporidium species. Being intracellular parasites, the success in establishing pathogenesis relies in their ability to infect a host-cell and replicate within it. Protein palmitoylation is known to affect many aspects of cell biology. Furthermore, palmitoylation has recently been shown to affect important processes in T. gondii such as replication, invasion, and gliding. Thus, this paper focuses on the importance of protein palmitoylation in the pathogenesis of apicomplexan parasites.
Collapse
|
9
|
Abstract
The article summarises the results of more than 30 years of research on palmitoylation (S‐acylation) of viral proteins, the post‐translational attachment of fatty acids to cysteine residues of integral and peripheral membrane proteins. Analysing viral proteins is not only important to characterise the cellular pathogens but also instrumental to decipher the palmitoylation machinery of cells. This comprehensive review describes methods to identify S‐acylated proteins and covers the fundamental biochemistry of palmitoylation: the location of palmitoylation sites in viral proteins, the fatty acid species found in S‐acylated proteins, the intracellular site of palmitoylation and the enzymology of the reaction. Finally, the functional consequences of palmitoylation are discussed regarding binding of proteins to membranes or membrane rafts, entry of enveloped viruses into target cells by spike‐mediated membrane fusion as well as assembly and release of virus particles from infected cells. The topics are described mainly for palmitoylated proteins of influenza virus, but proteins of other important pathogens, such as the causative agents of AIDS and severe acute respiratory syndrome, and of model viruses are discussed.
Collapse
Affiliation(s)
- Michael Veit
- Department of Immunology and Molecular Biology, Free University, Berlin, Germany.
| |
Collapse
|
10
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
11
|
A novel motif at the C-terminus of palmitoyltransferases is essential for Swf1 and Pfa3 function in vivo. Biochem J 2009; 419:301-8. [DOI: 10.1042/bj20080921] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
S-acylation (commonly known as palmitoylation) is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of a protein through a thioester bond. This modification is predominantly mediated by a family of proteins referred to as PATs (palmitoyltransferases). Most PATs are polytopic membrane proteins, with four to six transmembrane domains, a conserved DHHC motif and variable C-and N-terminal regions, that are probably responsible for conferring localization and substrate specificity. There is very little additional information on the structure–function relationship of PATs. Swf1 and Pfa3 are yeast members of the DHHC family of proteins. Swf1 is responsible for the S-acylation of several transmembrane SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) and other integral membrane proteins. Pfa3 is required for the palmitoylation of Vac8, a protein involved in vacuolar fusion. In the present study we describe a novel 16-amino-acid motif present at the cytosolic C-terminus of PATs, that is required for Swf1 and Pfa3 function in vivo. Within this motif, we have identified a single residue in Swf1, Tyr323, as essential for function, and this is correlated with lack of palmitoylation of Tlg1, a SNARE that is a substrate of Swf1. The equivalent mutation in Pfa3 also affects its function. These mutations are the first phenotype-affecting mutations uncovered that do not lie within the DHHC domain, for these or any other PATs. The motif is conserved in 70% of PATs from all eukaryotic organisms analysed, and may have once been present in all PATs. We have named this motif PaCCT (‘Palmitoyltransferase Conserved C-Terminus’).
Collapse
|
12
|
Abstract
S-Palmitoylation is a reversible post-translational modification that results in the addition of a C16-carbon saturated fatty acyl chain to cytoplasmic cysteine residues. This modification is mediated by Palmitoyl-acyl Transferases that are starting to be investigated, and reversed by Protein Palmitoyl Thioesterases, which remain enigmatic. Palmitoylation of cytoplasmic proteins has been well described to regulate the interaction of these soluble proteins with specific membranes or membrane domains. Less is known about the consequences of palmitoylation in transmembrane proteins not only due to the dual difficulty of following a lipid modification and dealing with membrane proteins, but also due to the complexity of the palmitoylation-induced behavior. Moreover, possibly because the available data set is limited, the change in behavior induced by palmitoylation of a transmembrane protein is currently not predictable. We here review the various consequences reported for the palmitoylation of membrane proteins, which include improper folding in the endoplasmic reticulum, retention in the Golgi, inability to assemble into protein platforms, altered signaling capacity, premature endocytosis and missorting in the endocytic pathway. We then discuss the possible underlying mechanisms, in particular the ability of palmitoylation to control the conformation of transmembrane segments, to modify the affinity of a membrane protein for specific membrane domains and to control protein-protein interactions.
Collapse
Affiliation(s)
- Julie Charollais
- Global Health Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
13
|
Abstract
Coronavirus envelope (E) proteins play an important, not fully understood role(s) in the virus life cycle. All E proteins have conserved cysteine residues located on the carboxy side of the long hydrophobic domain, suggesting functional significance. In this study, we confirmed that mouse hepatitis coronavirus A59 E protein is palmitoylated. To understand the role of the conserved residues and the necessity of palmitoylation, three cysteines at positions 40, 44, and 47 were changed singly and in various combinations to alanine. Double- and triple-mutant E proteins resulted in decreased virus-like particle output when coexpressed with the membrane (M) protein. Mutant E proteins were also studied in the context of a full-length infectious clone. Single-substitution viruses exhibited growth characteristics virtually identical to those of the wild-type virus, while the double-substitution mutations gave rise to viruses with less robust growth phenotypes indicated by smaller plaques and decreased virus yields. In contrast, replacement of all three cysteines resulted in crippled virus with significantly reduced yields. Triple-mutant viruses did not exhibit impairment in entry. Mutant E proteins localized properly in infected cells. A comparison of intracellular and extracellular virus yields suggested that release is only slightly impaired. E protein lacking all three cysteines exhibited an increased rate of degradation compared to that of the wild-type protein, suggesting that palmitoylation is important for the stability of the protein. Altogether, the results indicate that the conserved cysteines and presumably palmitoylation are functionally important for virus production.
Collapse
|
14
|
Mach M, Osinski K, Kropff B, Schloetzer-Schrehardt U, Krzyzaniak M, Britt W. The carboxy-terminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis. J Virol 2007; 81:5212-24. [PMID: 17229708 PMCID: PMC1900226 DOI: 10.1128/jvi.01463-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins M and N (gM and gN, respectively) are among the few proteins that are conserved across the herpesvirus family. The function of the complex is largely unknown. Whereas deletion from most alphaherpesviruses has marginal effects on the replication of the respective viruses, both proteins are essential for replication of human cytomegalovirus (HCMV). We have constructed a series of mutants in gN to study the function of this protein. gN of HCMV is a type I glycoprotein containing a short carboxy-terminal domain of 14 amino acids, including two cysteine residues directly adjacent to the predicted transmembrane anchor at positions 125 and 126. Deletion of the entire carboxy-terminal domain as well as substitution with the corresponding region from alpha herpesviruses or mutations of both cysteine residues resulted in a replication-incompetent virus. Recombinant viruses containing point mutations of either cysteine residue could be generated. These viruses were profoundly defective for replication. Complex formation of the mutant gNs with gM and transport of the complex to the viral assembly compartment appeared unaltered compared to the wild type. However, in infected cells, large numbers of capsids accumulated in the cytoplasm that failed to acquire an envelope. Transiently expressed gN was shown to be modified by palmitic acid at both cysteine residues. In summary, our data suggest that the carboxy-terminal domain of gN plays a critical role in secondary envelopment of HCMV and that palmitoylation of gN appears to be essential for function in secondary envelopment of HCMV and virus replication.
Collapse
Affiliation(s)
- Michael Mach
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Touz MC, Conrad JT, Nash TE. A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity inGiardia lamblia. Mol Microbiol 2005; 58:999-1011. [PMID: 16262786 DOI: 10.1111/j.1365-2958.2005.04891.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intestinal protozoan parasite Giardia lamblia undergoes surface antigenic variation whereby one of a family of structurally related variant-specific surface proteins (VSPs) is replaced in a regulated process by another antigenically distinct VSP. All VSPs are type I membrane proteins that have a conserved hydrophobic sequence terminated by the invariant hydrophilic amino acids, CRGKA. Using transfected Giardia constitutively expressing HA-tagged VSPH7 and incubated with radioactive [3H]palmitate, we demonstrate that the palmitate is attached to the Cys in the conserved CRGKA tail. Surface location of mutant VSPs lacking either the CRGKA tail or its Cys is identical to that of wild-type VSPH7 but non-palmitoylated mutants fail to undergo complement-independent antibody specific cytotoxicity. In addition, membrane localization of non-palmitoylated mutant VSPH7 changes from a pattern similar to rafts to non-rafts. Palmitoyl transferases (PAT), responsible for protein palmitoylation in other organisms, often possess a cysteine-rich domain containing a conserved DHHC motif (DHHC-CRD). An open reading frame corresponding to a putative 50 kDa Giardia PAT (gPAT) containing a DHHC-CRD motif was found in the Giardia genome database. Expression of epitope-tagged gPAT using a tetracycline inducible vector localized gPAT to the plasma membrane, a pattern similar to that of VSPs. Transfection with gPAT antisense producing vectors inhibits gPAT expression and palmitoylation of VSPs in vitro confirming the function of gPAT. These results show that VSPs are palmitoylated at the cysteine within the conserved tail by gPAT and indicate an essential function of palmitoylation in control of VSP-mediated signalling and processing.
Collapse
Affiliation(s)
- María C Touz
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
16
|
Valdez-Taubas J, Pelham H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J 2005; 24:2524-32. [PMID: 15973437 PMCID: PMC1176453 DOI: 10.1038/sj.emboj.7600724] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/01/2005] [Indexed: 11/08/2022] Open
Abstract
Protein palmitoylation is a post-translational modification that affects a great number of proteins. In most cases, the enzymes responsible for this modification have not been identified. Some proteins use palmitoylation to attach themselves to membranes; however, palmitoylation also occurs in transmembrane proteins, and the function of this palmitoylation is less clear. Here we identify Swf1, a member of the DHHC-CDR family of palmitoyltransferases, as the protein responsible for modifying the yeast SNAREs Snc1, Syn8 and Tlg1, at cysteine residues close to the cytoplasmic end of their single transmembrane domains (TMDs). In an swf1Delta mutant, Tlg1 is mis-sorted to the vacuole. This occurs because unpalmitoylated Tlg1 is recognised by the ubiquitin ligase Tul1, resulting in its targeting to the multivesicular body pathway. Our results suggest that one role of palmitoylation is to protect TMDs from the cellular quality control machinery, and that Swf1 may be the enzyme responsible for most, if not all, TMD-associated palmitoylation in yeast.
Collapse
Affiliation(s)
| | - Hugh Pelham
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402290; Fax: +44 1223 412142; E-mail:
| |
Collapse
|
17
|
Zhang SX, Han Y, Blissard GW. Palmitoylation of the Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64: mapping, functional studies, and lipid rafts. J Virol 2003; 77:6265-73. [PMID: 12743283 PMCID: PMC155031 DOI: 10.1128/jvi.77.11.6265-6273.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Budded virions (BV) of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) contain a major envelope glycoprotein known as GP64, which was previously shown to be palmitoylated. In the present study, we used truncation and amino acid substitution mutations to map the palmitoylation site to cysteine residue 503. Palmitoylation of GP64 was not detected when Cys503 was replaced with alanine or serine. Palmitoylation-minus forms of GP64 were used to replace wild-type GP64 in AcMNPV, and these viruses were used to examine potential functions of GP64 palmitoylation in the context of the infection cycle. Analysis by immunoprecipitation and cell surface studies revealed that palmitoylation of GP64 did not affect GP64 synthesis or its transport to the cell surface in Sf9 cells. GP64 proteins lacking palmitoylation also mediated low-pH-triggered membrane fusion in a manner indistinguishable from that of wild-type GP64. Cells infected with viruses expressing palmitoylation-minus forms of GP64 produced infectious virions at levels similar to those from cells infected with wild-type AcMNPV. In combination, these data suggest that virus entry and exit in Sf9 cells were not significantly affected by GP64 palmitoylation. To determine whether GP64 palmitoylation affected the association of GP64 with membrane microdomains, the potential association of GP64 with lipid raft microdomains was examined. These experiments showed that: (i) AcMNPV-infected Sf9 cell membranes contain lipid raft microdomains, (ii) GP64 association with lipid rafts was not detected in infected Sf9 cells, and (iii) GP64 palmitoylation did not affect the apparent exclusion of GP64 from lipid raft microdomains.
Collapse
|
18
|
Yik JHN, Weigel PH. The position of cysteine relative to the transmembrane domain is critical for palmitoylation of H1, the major subunit of the human asialoglycoprotein receptor. J Biol Chem 2002; 277:47305-12. [PMID: 12370180 DOI: 10.1074/jbc.m208751200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian hepatic asialoglycoprotein receptor (ASGP-R) is an endocytic recycling receptor that mediates the internalization of desialylated glycoproteins and their delivery to lysosomes where they are degraded. The human ASGP-R is a hetero-oligomeric complex composed of two subunits designated H1 and H2. Both subunits are palmitoylated at the cytoplasmic Cys residues near their transmembrane domains (TMD). The cytoplasmic Cys(36) in H1 is located at a position that is five amino acids from the transmembrane junction. Because the sequences of subunits in all mammalian ASGP-R species are highly conserved especially at the region near the palmitoylated Cys, we sought to identify a recognition signal for the palmitoylation of H1. Various types of H1 mutants were created by site-directed or deletion mutagenesis including alteration of the amino acids surrounding Cys(36), replacing portions of the TMD with that of a different protein and partial deletion of the cytoplasmic domain as well as transposing the palmitoylated Cys to positions further away from the TMD. Mutant H1 cDNAs were transiently expressed in COS-7 cells, and the H1 proteins were analyzed after metabolic labeling with [(3)H]palmitate. The results indicate that neither the native amino acid sequence surrounding Cys(36) nor the majority of the cytoplasmic domain sequence is critical for palmitoylation. Palmitoylation was also not dependent on the native TMD of H1. In contrast, the attachment of palmitate was abolished if the Cys residue was transposed to a position that was 30 amino acids away from the transmembrane border. We conclude that the spacing of a Cys residue relative to the TMD in the primary protein sequence of H1 is the major determinant for successful palmitoylation.
Collapse
Affiliation(s)
- Jasper H N Yik
- Department of Biochemistry & Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | |
Collapse
|
19
|
Abstract
Membrane-proximal cysteines 259 and 260 in the cytoplasmic tail of the coxsackievirus and adenovirus receptor (CAR) are known to be essential for the tumor suppression activity of CAR. We demonstrate that these residues provide an S-acylation motif for modification of CAR with the fatty acid palmitate. Substitution of alanine for cysteines 259 and 260 results in the additional localization of CAR in perinuclear compartments with no effect on the efficiency of adenovirus infection. The results indicate that palmitylation is important for stable plasma membrane expression and biological activity of CAR but is not critical for adenovirus receptor performance.
Collapse
Affiliation(s)
- Wouter van't Hof
- Institute of Genetic Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
20
|
ten Brinke A, Vaandrager AB, Haagsman HP, Ridder ANJA, van Golde LMG, Batenburg JJ. Structural requirements for palmitoylation of surfactant protein C precursor. Biochem J 2002; 361:663-71. [PMID: 11802797 PMCID: PMC1222350 DOI: 10.1042/0264-6021:3610663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulmonary surfactant protein C (SP-C) propeptide (proSP-C) is a type II transmembrane protein that is palmitoylated on two cysteines adjacent to its transmembrane domain. To study the structural requirements for palmitoylation of proSP-C, His-tagged human proSP-C and mutant forms were expressed in Chinese hamster ovary cells and analysed by metabolic labelling with [3H]palmitate. Mutations were made in the amino acid sequence representing mature SP-C, as deletion of the N- and C-terminal propeptide parts showed that this sequence by itself could already be palmitoylated. Substitution of the transmembrane domain by an artificial transmembrane domain had no effect on palmitoylation. However, an inverse correlation was found between palmitoylation of proSP-C and the number of amino acids present between the cysteines and the transmembrane domain. Moreover, substitution by alanines of amino acids localized on the N-terminal side of the cysteines had drastic effects on palmitoylation, probably as a result of the removal of hydrophobic amino acids. These data, together with the observation that substitution by alanines of the amino acids localized between the cysteines and the transmembrane domain had no effect on palmitoylation, suggest that the palmitoylation of proSP-C depends not on specific sequence motifs, but more on the probability that the cysteine is in the vicinity of the membrane surface. This is probably determined not only by the number of amino acids between the cysteines and the transmembrane domain, but also by the hydrophobic interaction of the N-terminus with the membrane. This may also be the case for the palmitoylation of other transmembrane proteins.
Collapse
Affiliation(s)
- Anja ten Brinke
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Ponimaskin EG, Heine M, Joubert L, Sebben M, Bickmeyer U, Richter DW, Dumuis A. The 5-hydroxytryptamine(4a) receptor is palmitoylated at two different sites, and acylation is critically involved in regulation of receptor constitutive activity. J Biol Chem 2002; 277:2534-46. [PMID: 11706023 DOI: 10.1074/jbc.m106529200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported recently that the mouse 5-hydroxytryptamine(4a) (5-HT(4(a))) receptor undergoes dynamic palmitoylation (Ponimaskin, E. G., Schmidt, M. F., Heine, M., Bickmeyer, U., and Richter, D. W. (2001) Biochem. J. 353, 627-663). In the present study, conserved cysteine residues 328/329 in the carboxyl terminus of the 5-HT(4(a)) receptor were identified as potential acylation sites. In contrast to other palmitoylated G-protein-coupled receptors, the additional cysteine residue 386 positioned close to the COOH-terminal end of the receptor was also found to be palmitoylated. Using pulse and pulse-chase labeling techniques, we demonstrated that palmitoylation of individual cysteines is a reversible process and that agonist stimulation of the 5-HT(4(a)) receptor independently increases the rate of palmitate turnover for both acylation sites. Analysis of acylation-deficient mutants revealed that non-palmitoylated 5-HT(4(a)) receptors were indistinguishable from the wild type in their ability to interact with G(s), to stimulate the adenylyl cyclase activity and to activate cyclic nucleotide-sensitive cation channels after agonist stimulation. The most distinctive finding of the present study was the ability of palmitoylation to modulate the agonist-independent constitutive 5-HT(4(a)) receptor activity. We demonstrated that mutation of the proximal palmitoylation site (Cys(328) --> Ser/Cys(329) --> Ser) significantly increases the capacity of receptors to convert from the inactive (R) to the active (R*) form in the absence of agonist. In contrast, the rate of isomerization from R to R* for the Cys(386) --> Ser as well as for the triple, non-palmitoylated mutant (Cys(328) --> Ser/Cys(329) --> Ser/Cys(386) -->Ser) was similar to that obtained for the wild type.
Collapse
Affiliation(s)
- Evgeni G Ponimaskin
- Abteilung Neuro- und Sinnesphysiologie, Physiologisches Institut, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Ochsenbauer-Jambor C, Miller DC, Roberts CR, Rhee SS, Hunter E. Palmitoylation of the Rous sarcoma virus transmembrane glycoprotein is required for protein stability and virus infectivity. J Virol 2001; 75:11544-54. [PMID: 11689636 PMCID: PMC114741 DOI: 10.1128/jvi.75.23.11544-11554.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Rous sarcoma virus (RSV) transmembrane (TM) glycoprotein is modified by the addition of palmitic acid. To identify whether conserved cysteines within the hydrophobic anchor region are the site(s) of palmitoylation, and to determine the role of acylation in glycoprotein function, cysteines at residues 164 and 167 of the TM protein were mutated to glycine (C164G, C167G, and C164G/C167G). In CV-1 cells, palmitate was added to env gene products containing single mutations but was absent in the double-mutant Env. Although mutant Pr95 Env precursors were synthesized with wild-type kinetics, the phenotypes of the mutants differed markedly. Env-C164G had properties similar to those of the wild type, while Env-C167G was degraded faster, and Env containing the double mutant C164G/C167G was very rapidly degraded. Degradation occurred after transient plasma membrane expression. The decrease in steady-state surface expression and increased rate of internalization into endosomes and lysosomes paralleled the decrease in palmitoylation observed for the mutants. The phenotypes of mutant viruses were assessed in avian cells in the context of the pATV8R proviral genome. Virus containing the C164G mutation replicated with wild-type kinetics but exhibited reduced peak reverse transcriptase levels. In contrast, viruses containing either the C167G or the C164G/C167G mutation were poorly infectious or noninfectious, respectively. These phenotypes correlated with different degrees of glycoprotein incorporation into virions. Infectious revertants of the double mutant demonstrated the importance of cysteine-167 for efficient plasma membrane expression and Env incorporation. The observation that both cysteines within the membrane-spanning domain are accessible for acylation has implications for the topology of this region, and a model is proposed.
Collapse
Affiliation(s)
- C Ochsenbauer-Jambor
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
23
|
Veit M, Schmidt MF. Enzymatic depalmitoylation of viral glycoproteins with acyl-protein thioesterase 1 in vitro. Virology 2001; 288:89-95. [PMID: 11543661 DOI: 10.1006/viro.2001.1063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many glycoproteins of enveloped viruses as well as cellular proteins are covalently modified with fatty acids. Palmitoylation is often reversible, but the enzymology of this hydrophobic protein modification is not understood. Recently a cytosolic enzyme designated acyl-protein thioesterase 1 (APT1) was purified, which depalmitoylates several cellular proteins. Since hitherto no transmembrane proteins have been tested as substrates for APT1 we have investigated whether palmitoylated viral membrane glycoproteins can be deacylated by use of this enzyme. Recombinant APT1 was purified from Escherichia coli, and depalmitoylation of [3H]palmitate-labeled glycoproteins present in virus particles was measured by SDS-PAGE, fluorography, and scanning densitometry. We find that APT1 causes rapid and almost complete cleavage of fatty acids from the G-protein of vesicular stomatitis virus, hemagglutinin proteins of influenza A and C virus, and E2 of Semliki Forest virus (SFV). In contrast, E1 of SFV is largely resistant against APT1 activity. This substrate specificity of APT1 was also observed using microsomes prepared from SFV-infected cells. Our data emphasize the potential of APT1 as a tool for functional analysis of protein-bound fatty acids.
Collapse
Affiliation(s)
- M Veit
- Department of Immunology and Molecular Biology, Faculty of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | | |
Collapse
|
24
|
ten Brinke A, Batenburg JJ, Gadella BM, Haagsman HP, Vaandrager AB, van Golde LM. The juxtamembrane lysine and arginine residues of surfactant protein C precursor influence palmitoylation via effects on trafficking. Am J Respir Cell Mol Biol 2001; 25:156-63. [PMID: 11509324 DOI: 10.1165/ajrcmb.25.2.4423] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surfactant protein (SP)-C propeptide (proSP-C) becomes palmitoylated on cysteines 5 and 6 before mature SP-C is formed by several proteolytic steps. To study the structural requirements for the palmitoylation of proSP-C, his-tagged human proSP-C (his-proSP-C) and his-proSP-C mutants were expressed in Chinese hamster ovary cells and analyzed by metabolic labeling with [(3)H]palmitate and immunocytochemistry. Substitution of cysteines 5 and 6 by serines showed that these were the only two cysteine residues palmitoylated in his-proSP-C. Substitution of the juxtamembrane basic residues lysine and arginine by uncharged glutamines led to a large decrease in palmitoylation level of proSP-C. The addition of brefeldin A nearly abolished this decrease for the lysine and double mutant; the palmitoylation of the arginine mutant increased also, but not to wild-type (WT) levels. Fluorescence immunocytochemistry showed that WT proSP-C was localized in punctate vesicles throughout the cell, whereas the mutant lacking the juxtamembrane positive charges was found more perinuclear, probably in the endoplasmic reticulum (ER). This indicates that the two basic juxtamembrane residues influence palmitoylation of proSP-C by preventing the transport of proSP-C out of the ER, implying that proSP-C becomes palmitoylated normally in a compartment distal to the ER.
Collapse
Affiliation(s)
- A ten Brinke
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Ponimaskin EG, Schmidt MF, Heine M, Bickmeyer U, Richter DW. 5-Hydroxytryptamine 4(a) receptor expressed in Sf9 cells is palmitoylated in an agonist-dependent manner. Biochem J 2001; 353:627-34. [PMID: 11171060 PMCID: PMC1221609 DOI: 10.1042/0264-6021:3530627] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mouse 5-hydroxytryptamine 4(a) receptor [5-HT(4(a))] was expressed with a baculovirus system in insect cells and analysed for acylation. [(3)H]Palmitic acid was effectively incorporated into 5-HT(4(a)) and label was sensitive to the treatment with reducing agents indicating a thioester-type bond. Analysis of protein-bound fatty acids revealed that 5-HT(4(a)) contains predominantly palmitic acid. Treatment of infected Sf9 (Spodoptera frugiperda) cells with BIMU8 [(endo-N-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-2,3-dehydro-2-oxo-3-(prop-2-yl)-1H-benzimid-azole-1-carboxamide], a 5-HT(4) receptor-selective agonist, generated a dose-dependent increase in [(3)H]palmitate incorporation into 5-HT(4(a)) with an EC(50) of approx. 10 nM. The change in receptor labelling after stimulation with agonist was receptor-specific and did not result from general metabolic effects. We also used both pulse labelling and pulse-chase labelling to address the dynamics of 5-HT(4(a)) palmitoylation. Incorporation studies revealed that the rate of palmitate incorporation was increased approx. 3-fold after stimulation with agonist. Results of pulse-chase experiments show that activation with BIMU8 promoted the release of radiolabel from 5-HT(4(a)), thereby reducing the levels of receptor-bound palmitate to approximately one-half. Taken together, our results demonstrate that palmitoylation of 5-HT(4(a)) is a reversible process and that stimulation of 5-HT(4(a)) with agonist increases the turnover rate for receptor-bound palmitate. This provides evidence for a regulated cycling of receptor-bound palmitate and suggests a functional role for palmitoylation/depalmitoylation in 5-hydroxytryptamine-mediated signalling.
Collapse
Affiliation(s)
- E G Ponimaskin
- Abteilung Neuro- und Sinnesphysiologie, Physiologisches Institut, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
26
|
8 Reversible modification of proteins with thioester-linked fatty acids. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-6047(01)80021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Kozerski C, Ponimaskin E, Schroth-Diez B, Schmidt MF, Herrmann A. Modification of the cytoplasmic domain of influenza virus hemagglutinin affects enlargement of the fusion pore. J Virol 2000; 74:7529-37. [PMID: 10906206 PMCID: PMC112273 DOI: 10.1128/jvi.74.16.7529-7537.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion activity of chimeras of influenza virus hemagglutinin (HA) (from A/fpv/Rostock/34; subtype H7) with the transmembrane domain (TM) and/or cytoplasmic tail (CT) either from the nonviral, nonfusogenic T-cell surface protein CD4 or from the fusogenic Sendai virus F-protein was studied. Wild-type or chimeric HA was expressed in CV-1 cells by the transient T7-RNA-polymerase vaccinia virus expression system. Subsequently, the fusion activity of the expression products was monitored with red blood cells or ghosts as target cells. To assess the different steps of fusion, target cells were labeled with the fluorescent membrane label octadecyl rhodamine B-chloride (R18) (membrane fusion) and with the cytoplasmic fluorophores calcein (molecular weight [MW], 623; formation of small aqueous fusion pore) and tetramethylrhodamine-dextran (MW, 10,000; enlargement of fusion pore). All chimeric HA/F-proteins, as well as the chimera with the TM of CD4 and the CT of HA, were able to mediate the different steps of fusion very similarly to wild-type HA. Quite differently, chimeric proteins with the CT of CD4 were strongly impaired in mediating pore enlargement. However, membrane fusion and formation of small pores were similar to those of wild-type HA, indicating that the conformational change of the ectodomain and earlier fusion steps were not inhibited. Various properties of the CT which may affect pore enlargement are considered. We surmise that the hydrophobicity of the sequence adjacent to the transmembrane domain is important for pore dilation.
Collapse
Affiliation(s)
- C Kozerski
- Institut für Biologie/Biophysik, Mathematisch-Naturwissenschaftliche Fakultät I, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
28
|
Faergeman NJ, Ballegaard T, Knudsen J, Black PN, DiRusso C. Possible roles of long-chain fatty Acyl-CoA esters in the fusion of biomembranes. Subcell Biochem 2000; 34:175-231. [PMID: 10808334 DOI: 10.1007/0-306-46824-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- N J Faergeman
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208, USA
| | | | | | | | | |
Collapse
|
29
|
Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:1-16. [PMID: 10446384 DOI: 10.1016/s0167-4889(99)00075-0] [Citation(s) in RCA: 968] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Covalent attachment of myristate and/or palmitate occurs on a wide variety of viral and cellular proteins. This review will highlight the latest advances in our understanding of the enzymology of N-myristoylation and palmitoylation as well as the functional consequences of fatty acylation of key signaling proteins. The role of myristate and palmitate in promoting membrane binding as well as specific membrane targeting will be reviewed, with emphasis on the Src family of tyrosine protein kinases and alpha subunits of heterotrimeric G proteins. The use of myristoyl switches and regulated depalmitoylation as mechanisms for achieving reversible membrane binding and regulated signaling will also be explored.
Collapse
Affiliation(s)
- M D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10021, USA.
| |
Collapse
|