1
|
Wrzesińska-Krupa B, Obrępalska-Stęplowska A. Small non-coding satellite RNAs - the 'game changers' at the virus-host plant interaction? Biol Rev Camb Philos Soc 2025; 100:19-34. [PMID: 39054260 DOI: 10.1111/brv.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Satellite RNAs (satRNAs) are RNA molecules associated with many plant viruses and fully dependent on them for replication, encapsidation, and movement within the plant or transmission from plant to plant. Their classification is based on their length, functional protein-coding capacity, and RNA structure (whether linear or circular). They have been of interest for a long time as some of them, in particular systems, cause significant changes in the pathogenesis and epidemiology of plant viruses. The outcomes of how satRNAs affect pathogenesis depend on the components of the pathosystem: host plant species or variety, virus species or even strain, and the sequence of satRNA. These can be additionally affected by biotic and abiotic factors, for example, environmental conditions such as the presence of their vectors or ambient temperature. satRNAs may interfere with primary metabolism, signalling, plant defence [including post-transcriptional gene silencing (PTGS)], as well as the efficiency of virus transmission from plant to plant. In recent years, due to wider access to high-throughput technologies and the extension of studies on satRNAs to include the involvement of external factors in plant-virus-satRNA systems, we are gaining a broader view of the consequences of the presence of these small molecules in viral infections. This review presents the state of the art of satRNA interactions with the helper virus and host plant as well as the influence of satRNAs on the insect vector's behaviour. Moreover, areas requiring further research are identified and knowledge gaps indicated.
Collapse
Affiliation(s)
- Barbara Wrzesińska-Krupa
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, Poznań, 60-318, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, Poznań, 60-318, Poland
| |
Collapse
|
2
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
3
|
Eiras M, Aragonés V, Marqués J, Gómez MD, Daròs JA. Eggplant latent viroid is located in the chloroplasts and nuclei of eggplant infected cells. Virol J 2024; 21:254. [PMID: 39407314 PMCID: PMC11476940 DOI: 10.1186/s12985-024-02530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Viroids that belong to genera Avsunviroid and Pelamovirod (family Avsunviroidae) replicate and accumulate in the chloroplasts of infected cells. In this report, we confirmed by RNA in situ hybridization using digoxigenin-UTP-labelled riboprobes that the positive strands of eggplant latent viroid (ELVd), the only member of genus Elaviroid within the family Avsunviroidae, also accumulate in the chloroplasts of infected cells. However, comparison of ELVd in situ hybridization signals with those from bona fide chloroplastic and nuclear non-coding RNAs, such as chloroplast 5S rRNA and U1 small nuclear RNA, supports the notion that this viroid is also present in the nuclei of infected cells. These results suggest that the subcellular localization of viroids within the family Avsunviroidae may be more complex than previously assumed with dynamic presence in several compartments during the infectious cycle.
Collapse
Affiliation(s)
- Marcelo Eiras
- Lab. Fitovirologia e Fisiopatologia, Centro de Pesquisa de Sanidade Vegetal, Instituto Biológico, São Paulo, CEP 04014-002, SP, Brazil.
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
| | - Jorge Marqués
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
- Azzur Group, Hatboro, USA
| | - María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, 46022, Spain.
| |
Collapse
|
4
|
Hao J, Ma J, Wang Y. Understanding viroids, endogenous circular RNAs, and viroid-like RNAs in the context of biogenesis. PLoS Pathog 2024; 20:e1012299. [PMID: 38935625 PMCID: PMC11210808 DOI: 10.1371/journal.ppat.1012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Affiliation(s)
- Jie Hao
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Junfei Ma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Ying Wang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- Plant Molecular and Cell Biology Program, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
5
|
Zhang Y, Nie Y, Wang L, Wu J. Viroid Replication, Movement, and the Host Factors Involved. Microorganisms 2024; 12:565. [PMID: 38543616 PMCID: PMC10974841 DOI: 10.3390/microorganisms12030565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 12/10/2024] Open
Abstract
Viroids represent distinctive infectious agents composed solely of short, single-stranded, circular RNA molecules. In contrast to viruses, viroids do not encode for proteins and lack a protective coat protein. Despite their apparent simplicity, viroids have the capacity to induce diseases in plants. Currently, extensive research is being conducted on the replication cycle of viroids within both the Pospiviroidae and Avsunviroidae families, shedding light on the intricacies of the associated host factors. Utilizing the potato spindle tuber viroid as a model, investigations into the RNA structural motifs involved in viroid trafficking between different cell types have been thorough. Nevertheless, our understanding of the host factors responsible for the intra- and inter-cellular movement of viroids remains highly incomplete. This review consolidates our current knowledge of viroid replication and movement within both families, emphasizing the structural basis required and the identified host factors involved. Additionally, we explore potential host factors that may mediate the intra- and inter-cellular movement of viroids, addressing gaps in our understanding. Moreover, the potential application of viroids and the emergence of novel viroid-like cellular parasites are also discussed.
Collapse
Affiliation(s)
| | | | | | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Y.Z.); (Y.N.); (L.W.)
| |
Collapse
|
6
|
Ma J, Dissanayaka Mudiyanselage SD, Hao J, Wang Y. Cellular roadmaps of viroid infection. Trends Microbiol 2023; 31:1179-1191. [PMID: 37349206 PMCID: PMC10592528 DOI: 10.1016/j.tim.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. According to the International Committee on Taxonomy of Viruses, there are 44 viroids known to date. Notably, more than 20 000 distinct viroid-like RNA sequences have recently been identified in existing sequencing datasets, suggesting an unprecedented complexity in biological roles of viroids and viroid-like RNAs. Interestingly, a human pathogen, hepatitis delta virus (HDV), also replicates via a rolling circle mechanism like viroids. Therefore, knowledge of viroid infection is informative for research on HDV and other viroid-like RNAs reported from various organisms. Here, we summarize recent advancements in understanding viroid shuttling among subcellular compartments for completing replication cycles, emphasizing regulatory roles of RNA motifs and structural dynamics in diverse biological processes. We also compare the knowledge of viroid intracellular trafficking with known pathways governing cellular RNA movement in cells. Future investigations on regulatory RNA structures and cognate factors in regulating viroid subcellular trafficking and replication will likely provide new insights into RNA structure-function relationships and facilitate the development of strategies controlling RNA localization and function in cells.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Jie Hao
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Chaudhary S, Selvaraj V, Awasthi P, Bhuria S, Purohit R, Kumar S, Hallan V. Small Heat Shock Protein (sHsp22.98) from Trialeurodes vaporariorum Plays Important Role in Apple Scar Skin Viroid Transmission. Viruses 2023; 15:2069. [PMID: 37896846 PMCID: PMC10611230 DOI: 10.3390/v15102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Trialeurodes vaporariorum, commonly known as the greenhouse whitefly, severely infests important crops and serves as a vector for apple scar skin viroid (ASSVd). This vector-mediated transmission may cause the spread of infection to other herbaceous crops. For effective management of ASSVd, it is important to explore the whitefly's proteins, which interact with ASSVd RNA and are thereby involved in its transmission. In this study, it was found that a small heat shock protein (sHsp) from T. vaporariorum, which is expressed under stress, binds to ASSVd RNA. The sHsp gene is 606 bp in length and encodes for 202 amino acids, with a molecular weight of 22.98 kDa and an isoelectric point of 8.95. Intermolecular interaction was confirmed through in silico analysis, using electrophoretic mobility shift assays (EMSAs) and northwestern assays. The sHsp22.98 protein was found to exist in both monomeric and dimeric forms, and both forms showed strong binding to ASSVd RNA. To investigate the role of sHsp22.98 during ASSVd infection, transient silencing of sHsp22.98 was conducted, using a tobacco rattle virus (TRV)-based virus-induced gene silencing system. The sHsp22.98-silenced whiteflies showed an approximate 50% decrease in ASSVd transmission. These results suggest that sHsp22.98 from T. vaporariorum is associated with viroid RNA and plays a significant role in transmission.
Collapse
Affiliation(s)
- Savita Chaudhary
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| | - Vijayanandraj Selvaraj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Preshika Awasthi
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Swati Bhuria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Plant Molecular Virology Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
- Bioinformatics Lab, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Surender Kumar
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vipin Hallan
- Plant Virology Laboratory, Division of Biotechnology, CSIR—Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India (R.P.)
| |
Collapse
|
8
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Migheli Q, Vloutoglou I, Maiorano A, Pautasso M, Reignault PL. Pest categorisation of the avocado sunblotch viroid. EFSA J 2023; 21:e08116. [PMID: 37485255 PMCID: PMC10357502 DOI: 10.2903/j.efsa.2023.8116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
The EFSA Panel on Plant Health conducted a pest categorisation of the avocado sunblotch viroid (ASBVd) for the EU. The identity of ASBVd, a member of the genus Avsunviroid (family Avsunviroidae) is clearly defined and detection and identification methods are available. The pathogen is not included in the EU Commission Implementing Regulation 2019/2072. ASBVd has been reported in Australia, Ghana, Guatemala, Israel, Mexico, Peru, South Africa, USA (California, Florida) and Venezuela. In the EU, it has been reported in Greece (Crete Island) and Spain. The pathogen could establish in the EU wherever avocado (Persea americana) is grown. The only known natural host of ASBVd is avocado to which it causes the severe 'avocado sunblotch' disease, characterised by white, yellow, red or necrotic depressed areas or scars on the fruit surface, bleached veins and petioles of the leaf, and rectangular cracking patterns in the bark of the old branches. Fruit yield and quality are severely diminished. ASBVd infects under experimental conditions a few more species in the family Lauraceae. The viroid is naturally transmitted at an extremely high rate by seeds (up to 100% in asymptomatically infected trees), but with a low efficiency by pollen (only to the produced seeds), and possibly through root grafts. Plants for planting, including seeds, and fresh avocado fruits were identified as the most relevant pathways for further entry of ASBVd into the EU. Avocado crops are cultivated in southern EU countries. Should the pest further enter and establish in the EU, impact on the production of avocado is expected. Phytosanitary measures are available to prevent entry and spread of the viroid in the EU. ASBVd fulfils the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
9
|
Lee BD, Neri U, Roux S, Wolf YI, Camargo AP, Krupovic M, Simmonds P, Kyrpides N, Gophna U, Dolja VV, Koonin EV. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell 2023; 186:646-661.e4. [PMID: 36696902 PMCID: PMC9911046 DOI: 10.1016/j.cell.2022.12.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Viroids and viroid-like covalently closed circular (ccc) RNAs are minimal replicators that typically encode no proteins and hijack cellular enzymes for replication. The extent and diversity of viroid-like agents are poorly understood. We developed a computational pipeline to identify viroid-like cccRNAs and applied it to 5,131 metatranscriptomes and 1,344 plant transcriptomes. The search yielded 11,378 viroid-like cccRNAs spanning 4,409 species-level clusters, a 5-fold increase compared to the previously identified viroid-like elements. Within this diverse collection, we discovered numerous putative viroids, satellite RNAs, retrozymes, and ribozy-like viruses. Diverse ribozyme combinations and unusual ribozymes within the cccRNAs were identified. Self-cleaving ribozymes were identified in ambiviruses, some mito-like viruses and capsid-encoding satellite virus-like cccRNAs. The broad presence of viroid-like cccRNAs in diverse transcriptomes and ecosystems implies that their host range is far broader than currently known, and matches to CRISPR spacers suggest that some cccRNAs replicate in prokaryotes.
Collapse
Affiliation(s)
- Benjamin D Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015 Paris, France
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
10
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
11
|
Wang Y, Wang Y, Zhu X, Ren Y, Dong H, Duan E, Teng X, Zhao H, Chen R, Chen X, Lei J, Yang H, Tian Y, Chen L, Liu X, Liu S, Jiang L, Wang H, Wan J. Tetrapyrrole biosynthesis pathway regulates plastid-to-nucleus signaling by controlling plastid gene expression in plants. PLANT COMMUNICATIONS 2023; 4:100411. [PMID: 35836377 PMCID: PMC9860167 DOI: 10.1016/j.xplc.2022.100411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 05/26/2023]
Abstract
Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants. Previous studies have established that tetrapyrrole biosynthesis (TPB) and plastid gene expression (PGE) play essential roles in plastid retrograde signaling during early chloroplast biogenesis; however, their functional relationship remains unknown. In this study, we generated a series of rice TPB-related gun (genome uncoupled) mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon (NF; a noncompetitive inhibitor of carotenoid biosynthesis) and/or lincomycin (Lin; a specific inhibitor of plastid translation). We show that under NF treatment, expression of plastid-encoded polymerase (PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants. We further demonstrate that the derepressed expression of PEP-transcribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome. In addition, we show that expression of photosynthesis-associated nuclear genes (PhANGs) and PEP-transcribed genes is correlated in the rice TPB-related gun mutants, with or without NF or Lin treatment. A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants. Moreover, we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants. Further, we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling. Taken together, our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.
Collapse
Affiliation(s)
- Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huanhuan Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Rongbo Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaoli Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Lei
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Hang Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China; National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China.
| |
Collapse
|
12
|
Gómez G, Marquez-Molins J, Martinez G, Pallas V. Plant epigenome alterations: an emergent player in viroid-host interactions. Virus Res 2022; 318:198844. [DOI: 10.1016/j.virusres.2022.198844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
|
13
|
Ma J, Mudiyanselage SDD, Wang Y. Emerging value of the viroid model in molecular biology and beyond. Virus Res 2022; 313:198730. [PMID: 35263622 PMCID: PMC8976779 DOI: 10.1016/j.virusres.2022.198730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. Research in the past five decades has deciphered the viroid genome structures, viroid replication cycles, numerous host factors for viroid infection, viroid motifs for intracellular and intercellular trafficking, interactions with host defense machinery, etc. In this review, we mainly focus on some significant questions that remain to be tackled, centered around (1) how the RNA polymerase II machinery performs transcription on RNA templates of nuclear-replicating viroids, (2) how viroid RNAs coordinate multiple structural elements for diverse functions, and (3) how viroid RNAs activate plant immunity. Research on viroids has led to seminal discoveries in biology, and we expect the research directions outlined in this review to continue providing key knowledge inspiring other areas of biology.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, MS 39762, USA
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, MS 39762, USA.
| |
Collapse
|
14
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
15
|
In Memoriam of Ricardo Flores: The Career, Achievements, and Legacy of an inspirational plant virologist. Virus Res 2022. [DOI: 10.1016/j.virusres.2022.198718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Flores R, Navarro B, Serra P, Di Serio F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 2022; 8:veab107. [PMID: 35223083 PMCID: PMC8865084 DOI: 10.1093/ve/veab107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
17
|
Hadidi A, Randles JW. Viroids, and the Legacy of Ricardo Flores (1947-2020). Cells 2021; 10:cells10102570. [PMID: 34685550 PMCID: PMC8533772 DOI: 10.3390/cells10102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids were discovered by Diener in 1971 [...].
Collapse
Affiliation(s)
- Ahmed Hadidi
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
- Correspondence: (A.H.); (J.W.R.)
| | - John W. Randles
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (A.H.); (J.W.R.)
| |
Collapse
|
18
|
Abstract
Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| | - Ricardo Flores
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| |
Collapse
|
19
|
Wang Y. Current view and perspectives in viroid replication. Curr Opin Virol 2021; 47:32-37. [PMID: 33460914 DOI: 10.1016/j.coviro.2020.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. The noncoding nature indicates that viroids must harness their RNA genomes to redirect host machinery for infection. Therefore, the viroid model provides invaluable opportunities for delineating fundamental principles of RNA structure-function relationships and for dissecting the composition and mechanism of RNA-related cellular machinery. There are two viroid families, Pospiviroidae and Avsunviroidae. Members of both families replicate via the RNA-based rolling-circle mechanism with some variations. Viroid replication is generally divided into three steps: transcription, cleavage, and ligation. Decades of studies have uncovered numerous viroid RNA structures with a regulatory role in replication and multiple enzymes critical for the three replication steps. This review discusses these findings and highlights the latest discoveries. Future studies will continue to elucidate regulatory factors and mechanism of host machinery exploited by viroids and provide new insights into host-viroid interactions in the context of pathogenesis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA.
| |
Collapse
|
20
|
Wu J, Bisaro DM. Biased Pol II fidelity contributes to conservation of functional domains in the Potato spindle tuber viroid genome. PLoS Pathog 2020; 16:e1009144. [PMID: 33351860 PMCID: PMC7787683 DOI: 10.1371/journal.ppat.1009144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Accurate calculation of mutation rates for viruses and viroids is necessary for evolutionary studies and to evaluate adaptation potential. However, estimation of in vivo mutation rates is complicated by selection, which leads to loss or proliferation of certain mutations. To minimize this concern, lethal mutations, including nonsense and non-synonymous mutations, have been used to determine mutation rates for several viruses and viroids, including Potato spindle tuber viroid (PSTVd). However, this approach has limitations, including focus on a relatively small number of genome sites and the possibility that mutations may not actually be lethal or may be maintained by wild type individuals. To avoid selection bias altogether, we sequenced minus-strand PSTVd dimers from concatemeric replication intermediates. The underlying rationale is that mutations found in only one of the monomers were likely generated de novo during RNA polymerase II (Pol II) transcription of the circular plus-strand RNA genome. This approach yielded an apparent Pol II error rate of ~1/1837 nucleotides per transcription cycle, and an estimated mutation rate of ~1/919 nucleotides for a single replication cycle. Remarkably, de novo mutations were nearly absent from the most conserved, replication-critical regions of the PSTVd genome, suggesting that sequence conservation is a consequence of both essential function and template optimization for greater Pol II fidelity. Such biased fidelity may constitute a novel strategy to ensure population success while allowing abundant sampling of sequence space in other genome regions. Comparison with variants in progeny populations derived from a cloned, wild type PSTVd master sequence revealed that most de novo mutations were lost through selection. Polymerase errors are the major source of variation in virus and viroid genomes, and as a consequence polymerase error rates are major determinants of adaptation potential. Accurate calculation of in vivo mutation rates is complicated by selection. To circumvent this issue, dimeric PSTVd minus-strand replication intermediates generated in vivo by host RNA polymerase II (Pol II) were sequenced to identify de novo mutations. This analysis revealed a very high error rate for Pol II transcribing genomic PSTVd RNA, leading to an extremely high mutation rate. Remarkably, however, de novo mutations were rare in the most highly conserved, replication-critical genome regions, suggesting these sequences are selected for both function and enhanced transcription fidelity. This biased fidelity may reveal a novel strategy to ensure population survival while maximizing adaptation potential. Further, comparison of mutations identified by minus-strand dimer sequencing with mutations observed in progeny variants derived from wild type PSTVd showed that most de novo mutations were lost through selection.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
Shrestha N, Bujarski JJ. Long Noncoding RNAs in Plant Viroids and Viruses: A Review. Pathogens 2020; 9:E765. [PMID: 32961969 PMCID: PMC7559573 DOI: 10.3390/pathogens9090765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious long-noncoding (lnc) RNAs related to plants can be of both viral and non-viral origin. Viroids are infectious plant lncRNAs that are not related to viruses and carry the circular, single-stranded, non-coding RNAs that replicate with host enzymatic activities via a rolling circle mechanism. Viroids interact with host processes in complex ways, emerging as one of the most productive tools for studying the functions of lncRNAs. Defective (D) RNAs, another category of lnc RNAs, are found in a variety of plant RNA viruses, most of which are noncoding. These are derived from and are replicated by the helper virus. D RNA-virus interactions evolve into mutually beneficial combinations, enhancing virus fitness via competitive advantages of moderated symptoms. Yet the satellite RNAs are single-stranded and include either large linear protein-coding ss RNAs, small linear ss RNAs, or small circular ss RNAs (virusoids). The satellite RNAs lack sequence homology to the helper virus, but unlike viroids need a helper virus to replicate and encapsidate. They can attenuate symptoms via RNA silencing and enhancement of host defense, but some can be lethal as RNA silencing suppressor antagonists. Moreover, selected viruses produce lncRNAs by incomplete degradation of genomic RNAs. They do not replicate but may impact viral infection, gene regulation, and cellular functions. Finally, the host plant lncRNAs can also contribute during plant-virus interactions, inducing plant defense and the regulation of gene expression, often in conjunction with micro and/or circRNAs.
Collapse
Affiliation(s)
- Nipin Shrestha
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| | - Józef J. Bujarski
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
22
|
Jain N, Blauch LR, Szymanski MR, Das R, Tang SKY, Yin YW, Fire AZ. Transcription polymerase-catalyzed emergence of novel RNA replicons. Science 2020; 368:eaay0688. [PMID: 32217750 PMCID: PMC7445081 DOI: 10.1126/science.aay0688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Transcription polymerases can exhibit an unusual mode of regenerating certain RNA templates from RNA, yielding systems that can replicate and evolve with RNA as the information carrier. Two classes of pathogenic RNAs (hepatitis delta virus in animals and viroids in plants) are copied by host transcription polymerases. Using in vitro RNA replication by the transcription polymerase of T7 bacteriophage as an experimental model, we identify hundreds of new replicating RNAs, define three mechanistic hallmarks of replication (subterminal de novo initiation, RNA shape-shifting, and interrupted rolling-circle synthesis), and describe emergence from DNA seeds as a mechanism for the origin of novel RNA replicons. These results inform models for the origins and replication of naturally occurring RNA genetic elements and suggest a means by which diverse RNA populations could be propagated as hereditary material in cellular contexts.
Collapse
Affiliation(s)
- Nimit Jain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lucas R Blauch
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michal R Szymanski
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Evidence Supporting That RNA Polymerase II Catalyzes De Novo Transcription Using Potato Spindle Tuber Viroid Circular RNA Templates. Viruses 2020; 12:v12040371. [PMID: 32230827 PMCID: PMC7232335 DOI: 10.3390/v12040371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription is a fundamental process that mediates the interplay between genetic information and phenotype. Emerging evidence indicates that RNA polymerase II (Pol II) can catalyze transcription using both DNA and RNA templates. It is well established that Pol II initiates de novo transcription on DNA templates. However, it is unclear whether Pol II performs de novo transcription or relies on primers for initiation (primed transcription) on RNA templates. Using potato spindle tuber viroid (PSTVd) as a model, we presented evidence showing that circular PSTVd templates are critical for the synthesis of longer-than-unit-length (-)-strand products, which supports the de novo transcription based on the asymmetric rolling circle model of PSTVd replication. We further showed that the crucial factor for primed transcription, transcription factor IIS (TFIIS), is dispensable for PSTVd replication in cells. Together, our data support the de novo transcription on PSTVd RNA templates catalyzed by Pol II. This result has significant implications in understanding the mechanism and machinery underlying Pol II-catalyzed transcription using other RNA templates.
Collapse
|
24
|
Weinberg CE, Weinberg Z, Hammann C. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Nucleic Acids Res 2019; 47:9480-9494. [PMID: 31504786 PMCID: PMC6765202 DOI: 10.1093/nar/gkz737] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Small endonucleolytic ribozymes promote the self-cleavage of their own phosphodiester backbone at a specific linkage. The structures of and the reactions catalysed by members of individual families have been studied in great detail in the past decades. In recent years, bioinformatics studies have uncovered a considerable number of new examples of known catalytic RNA motifs. Importantly, entirely novel ribozyme classes were also discovered, for most of which both structural and biochemical information became rapidly available. However, for the majority of the new ribozymes, which are found in the genomes of a variety of species, a biological function remains elusive. Here, we concentrate on the different approaches to find catalytic RNA motifs in sequence databases. We summarize the emerging principles of RNA catalysis as observed for small endonucleolytic ribozymes. Finally, we address the biological functions of those ribozymes, where relevant information is available and common themes on their cellular activities are emerging. We conclude by speculating on the possibility that the identification and characterization of proteins that we hypothesize to be endogenously associated with catalytic RNA might help in answering the ever-present question of the biological function of the growing number of genomically encoded, small endonucleolytic ribozymes.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Hammann
- Ribogenetics & Biochemistry, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
25
|
Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 2019; 46:10563-10576. [PMID: 30304486 PMCID: PMC6237808 DOI: 10.1093/nar/gky903] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Viroids were described 47 years ago as the smallest RNA molecules capable of infecting plants and autonomously self-replicating without an encoded protein. Work on viroids initiated the development of a number of innovative methods. Novel chromatographic and gelelectrophoretic methods were developed for the purification and characterization of viroids; these methods were later used in molecular biology, gene technology and in prion research. Theoretical and experimental studies of RNA folding demonstrated the general biological importance of metastable structures, and nuclear magnetic resonance spectroscopy of viroid RNA showed the partially covalent nature of hydrogen bonds in biological macromolecules. RNA biochemistry and molecular biology profited from viroid research, such as in the detection of RNA as template of DNA-dependent polymerases and in mechanisms of gene silencing. Viroids, the first circular RNA detected in nature, are important for studies on the much wider spectrum of circular RNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Gerhard Steger
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Wei S, Bian R, Andika IB, Niu E, Liu Q, Kondo H, Yang L, Zhou H, Pang T, Lian Z, Liu X, Wu Y, Sun L. Symptomatic plant viroid infections in phytopathogenic fungi. Proc Natl Acad Sci U S A 2019; 116:13042-13050. [PMID: 31182602 PMCID: PMC6600922 DOI: 10.1073/pnas.1900762116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Viroids are pathogenic agents that have a small, circular noncoding RNA genome. They have been found only in plant species; therefore, their infectivity and pathogenicity in other organisms remain largely unexplored. In this study, we investigate whether plant viroids can replicate and induce symptoms in filamentous fungi. Seven plant viroids representing viroid groups that replicate in either the nucleus or chloroplast of plant cells were inoculated to three plant pathogenic fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum By transfection of fungal spheroplasts with viroid RNA transcripts, each of the three, hop stunt viroid (HSVd), iresine 1 viroid, and avocado sunblotch viroid, can stably replicate in at least one of those fungi. The viroids are horizontally transmitted through hyphal anastomosis and vertically through conidia. HSVd infection severely debilitates the growth of V. mali but not that of the other two fungi, while in F. graminearum and C. parasitica, with deletion of dicer-like genes, the primary components of the RNA-silencing pathway, HSVd accumulation increases. We further demonstrate that HSVd can be bidirectionally transferred between F. graminearum and plants during infection. The viroids also efficiently infect fungi and induce disease symptoms when the viroid RNAs are exogenously applied to the fungal mycelia. These findings enhance our understanding of viroid replication, host range, and pathogenicity, and of their potential spread to other organisms in nature.
Collapse
Affiliation(s)
- Shuang Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, 266109 Qingdao, China
| | - Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, 710-0046 Kurashiki, Japan
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Ziqian Lian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 712100 Yangling, China;
| |
Collapse
|
27
|
The Avocado Sunblotch Viroid: An Invisible Foe of Avocado. Viruses 2019; 11:v11060491. [PMID: 31146409 PMCID: PMC6631365 DOI: 10.3390/v11060491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/05/2023] Open
Abstract
This review collects information about the history of avocado and the economically important disease, avocado sunblotch, caused by the avocado sunblotch viroid (ASBVd). Sunblotch symptoms are variable, but the most common in fruits are irregular sunken areas of white, yellow, or reddish color. On severely affected fruits, the sunken areas may become necrotic. ASBVd (type species Avocado sunblotch viroid, family Avsunviroidae) replicates and accumulates in the chloroplast, and it is the smallest plant pathogen. This pathogen is a circular single-stranded RNA of 246-251 nucleotides. ASBVd has a restricted host range and only few plant species of the family Lauraceae have been confirmed experimentally as additional hosts. The most reliable method to detect ASBVd in the field is to identify symptomatic fruits, complemented in the laboratory with reliable and sensitive molecular techniques to identify infected but asymptomatic trees. This pathogen is widely distributed in most avocado-producing areas and causes significant reductions in yield and fruit quality. Infected asymptomatic trees play an important role in the epidemiology of this disease, and avocado nurseries need to be certified to ensure they provide pathogen-free avocado material. Although there is no cure for infected trees, sanitation practices may have a significant impact on avoiding the spread of this pathogen.
Collapse
|
28
|
Jiang J, Ma J, Liu B, Wang Y. Combining a Simple Method for DNA/RNA/Protein Co-Purification and Arabidopsis Protoplast Assay to Facilitate Viroid Research. Viruses 2019; 11:v11040324. [PMID: 30987196 PMCID: PMC6521142 DOI: 10.3390/v11040324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Plant–viroid interactions represent a valuable model for delineating structure–function relationships of noncoding RNAs. For various functional studies, it is desirable to minimize sample variations by using DNA, RNA, and proteins co-purified from the same samples. Currently, most of the co-purification protocols rely on TRI Reagent (Trizol as a common representative) and require protein precipitation and dissolving steps, which render difficulties in experimental handling and high-throughput analyses. Here, we established a simple and robust method to minimize the precipitation steps and yield ready-to-use RNA and protein in solutions. This method can be applied to samples in small quantities, such as protoplasts. Given the ease and the robustness of this new method, it will have broad applications in virology and other disciplines in molecular biology.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
29
|
Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as Therapeutic Agents and Targets. Front Physiol 2018; 9:1262. [PMID: 30356745 PMCID: PMC6189416 DOI: 10.3389/fphys.2018.01262] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
It has recently been reported that thousands of covalently linked circular RNAs (circRNAs) are expressed from human genomes. circRNAs emerge during RNA splicing. circRNAs are circularized in a reaction termed "backsplicing," whereby the spliceosome fuses a splice donor site in a downstream exon to a splice acceptor site in an upstream exon. Although a young field of research, first studies indicate that backsplicing is not an erroneous reaction of the spliceosome. Instead, circRNAs are produced in cells with high cell-type specificity and can exert biologically meaningful and specific functions. These observations and the finding that circRNAs are stable against exonucleolytic decay are raising the question whether circRNAs may be relevant as therapeutic agents and targets. In this review, we start out with a short introduction into classification, biogenesis and general molecular mechanisms of circRNAs. We then describe reports, where manipulating circRNA abundance has been shown to have therapeutic value in animal disease models in vivo, with a focus on cardiovascular disease (CVD). Starting from existing approaches, we outline particular challenges and opportunities for future circRNA-based therapeutic approaches that exploit stability and molecular effector functions of native circRNAs. We end with considerations which designer functions could be engineered into artificial therapeutic circular RNAs.
Collapse
Affiliation(s)
| | | | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| |
Collapse
|
30
|
Potato Spindle Tuber Viroid RNA-Templated Transcription: Factors and Regulation. Viruses 2018; 10:v10090503. [PMID: 30227597 PMCID: PMC6164485 DOI: 10.3390/v10090503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022] Open
Abstract
Viroids are circular noncoding RNAs that infect plants. Without encoding any protein, these noncoding RNAs contain the necessary genetic information for propagation in hosts. Nuclear-replicating viroids employ DNA-dependent RNA polymerase II (Pol II) for replication, a process that makes a DNA-dependent enzyme recognize RNA templates. Recently, a splicing variant of transcription factor IIIA (TFIIIA-7ZF) was identified as essential for Pol II to replicate potato spindle tuber viroid (PSTVd). The expression of TFIIIA-7ZF, particularly the splicing event, is regulated by a ribosomal protein (RPL5). PSTVd modulates its expression through a direct interaction with RPL5 resulting in optimized expression of TFIIIA-7ZF. This review summarizes the recent discoveries of host factors and regulatory mechanisms underlying PSTVd-templated transcription processes and raises new questions that may help future exploration in this direction. In addition, it briefly compares the machinery and the regulatory mechanism for PSTVd with the replication/transcription system of human hepatitis delta virus.
Collapse
|
31
|
Cordero T, Ortolá B, Daròs JA. Mutational Analysis of Eggplant Latent Viroid RNA Circularization by the Eggplant tRNA Ligase in Escherichia coli. Front Microbiol 2018; 9:635. [PMID: 29675002 PMCID: PMC5895719 DOI: 10.3389/fmicb.2018.00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Eggplant latent viroid (ELVd) is a relatively small non-coding circular RNA that induces asymptomatic infections in eggplants (Solanum melongena L.). Like other viroid species that belong to the family Avsunviroidae, ELVd contains hammerhead ribozymes in the strands of both polarities that self-cleave RNAs producing terminal 5'-hydroxyl and 2',3'-cyclic phosphodiester groups. Available experimental data indicate that ELVd replicates in the chloroplasts of infected cells through a symmetric rolling-circle mechanism, in which RNA circularization is catalyzed by the chloroplastic isoform of the tRNA ligase. In this work, a mutational analysis was performed to gain insight into the sequence and structural requirements of the tRNA ligase-mediated circularization of ELVd RNAs. In the predicted minimum free energy conformation of the monomeric linear ELVd RNA intermediate of plus (+) polarity, the ligation site is located in the lower part of an opened internal loop, which is present in a quasi-rod-like structure that occupies the center of the molecule. The mutations analyzed herein consisted of punctual nucleotide substitutions and deletions surrounding the ligation site on the upper and lower strands of the ELVd quasi-double-stranded structure. Computational predictions of the mutated ELVd conformations indicated different degrees of distortions compared to the minimum free energy conformation of the wild-type ELVd linear monomer of + polarity. When these mutant RNAs were expressed in Escherichia coli, they were all circularized by the eggplant tRNA ligase with approximately the same efficiency as the wild-type ELVd, except for those that directly affected the ribozyme domain. These results suggest that the viroid ribozyme domains, in addition to self-cleavage, are also involved in the tRNA ligase-mediated circularization of the monomeric linear replication intermediates.
Collapse
Affiliation(s)
- Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| | - Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
32
|
Daròs JA, Aragonés V, Cordero T. A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli. Sci Rep 2018; 8:1904. [PMID: 29382906 PMCID: PMC5789856 DOI: 10.1038/s41598-018-20314-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/17/2018] [Indexed: 11/12/2022] Open
Abstract
Viruses have been engineered into useful biotechnological tools for gene therapy or to induce the synthesis of products of interest, such as therapeutic proteins and vaccines, in animal and fungal cells, bacteria or plants. Viroids are a particular class of infectious agents of higher plants that exclusively consist of a small non-protein-coding circular RNA molecule. In the same way as viruses have been transformed into useful biotechnological devices, can viroids be converted into beneficial tools? We show herein that, by expressing Eggplant latent viroid (ELVd) derived RNAs in Escherichia coli together with the eggplant tRNA ligase, this being the enzyme involved in viroid circularization in the infected plant, RNAs of interest like aptamers, extended hairpins, or other structured RNAs are produced in amounts of tens of milligrams per liter of culture. Although ELVd fails to replicate in E. coli, ELVd precursors self-cleave through the embedded hammerhead ribozymes and the resulting monomers are, in part, circularized by the co-expressed enzyme. The mature viroid forms and the protein likely form a ribonucleoprotein complex that transitorily accumulates in E. coli cells at extraordinarily amounts.
Collapse
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain.
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| |
Collapse
|
33
|
Budziszewska M, Obrępalska-Stęplowska A. The Role of the Chloroplast in the Replication of Positive-Sense Single-Stranded Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2018; 9:1776. [PMID: 30542365 PMCID: PMC6278097 DOI: 10.3389/fpls.2018.01776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Positive-sense single-stranded plant RNA viruses are obligate intracellular parasites that infect many agriculturally important crops. Most known plant RNA viruses are characterized by small genomes encoding a limited number of multifunctional viral proteins. Viral pathogens are considered to be absolutely dependent on their hosts, and viruses must recruit numerous host proteins and other factors for genomic RNA replication. Overall, the replication process depends on virus-plant protein-protein, RNA-protein and protein-lipid interactions. Recent publications provide strong evidence for the important role of chloroplasts in viral RNA synthesis. The chloroplast is considered to be a multifunctional organelle responsible for photosynthesis and for the generation of plant defense signaling molecules. High-throughput technologies (genomics and proteomics), and electron microscopy, including three-dimensional tomography, have revealed that several groups of plant RNA viruses utilize chloroplast membranes to assemble viral replication complexes (VRCs). Moreover, some chloroplast-related proteins reportedly interact with both viral proteins and their genomic RNAs and participate in trafficking these molecules to the chloroplast, where replication occurs. Here, we present the current knowledge on the important role of chloroplasts in the viral replication process.
Collapse
|
34
|
Processing of Potato Spindle Tuber Viroid RNAs in Yeast, a Nonconventional Host. J Virol 2017; 91:JVI.01078-17. [PMID: 28978701 DOI: 10.1128/jvi.01078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/23/2017] [Indexed: 11/20/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a circular, single-stranded, noncoding RNA plant pathogen that is a useful model for studying the processing of noncoding RNA in eukaryotes. Infective PSTVd circles are replicated via an asymmetric rolling circle mechanism to form linear multimeric RNAs. An endonuclease cleaves these into monomers, and a ligase seals these into mature circles. All eukaryotes may have such enzymes for processing noncoding RNA. As a test, we investigated the processing of three PSTVd RNA constructs in the yeast Saccharomyces cerevisiae Of these, only one form, a construct that adopts a previously described tetraloop-containing conformation (TL), produces circles. TL has 16 nucleotides of the 3' end duplicated at the 5' end and a 3' end produced by self-cleavage of a delta ribozyme. The other two constructs, an exact monomer flanked by ribozymes and a trihelix-forming RNA with requisite 5' and 3' duplications, do not produce circles. The TL circles contain nonnative nucleotides resulting from the 3' end created by the ribozyme and the 5' end created from an endolytic cleavage by yeast at a site distinct from where potato enzymes cut these RNAs. RNAs from all three transcripts are cleaved in places not on path for circle formation, likely representing RNA decay. We propose that these constructs fold into distinct RNA structures that interact differently with host cell RNA metabolism enzymes, resulting in various susceptibilities to degradation versus processing. We conclude that PSTVd RNA is opportunistic and may use different processing pathways in different hosts.IMPORTANCE In higher eukaryotes, the majority of transcribed RNAs do not encode proteins. These noncoding RNAs are responsible for mRNA regulation, control of the expression of regulatory microRNAs, sensing of changes in the environment by use of riboswitches (RNAs that change shape in response to environmental signals), catalysis, and more roles that are still being uncovered. Some of these functions may be remnants from the RNA world and, as such, would be part of the evolutionary past of all forms of modern life. Viroids are noncoding RNAs that can cause disease in plants. Since they encode no proteins, they depend on their own RNA and on host proteins for replication and pathogenicity. It is likely that viroids hijack critical host RNA pathways for processing the host's own noncoding RNA. These pathways are still unknown. Elucidating these pathways should reveal new biological functions of noncoding RNA.
Collapse
|
35
|
López-Carrasco A, Ballesteros C, Sentandreu V, Delgado S, Gago-Zachert S, Flores R, Sanjuán R. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathog 2017; 13:e1006547. [PMID: 28910391 PMCID: PMC5614642 DOI: 10.1371/journal.ppat.1006547] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/26/2017] [Accepted: 07/22/2017] [Indexed: 01/19/2023] Open
Abstract
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses. Spontaneous mutations are the ultimate source of genetic variation and their characterization provides fundamental information about evolutionary processes. The highest mutation rate so far described corresponds to a hammerhead viroid infecting plant chloroplasts. Viroids are plant-exclusive parasites constituted by 250–400 nt-long, non-protein-coding RNAs, and are divided into two families with distinct mechanisms of replication and localization: chloroplastic (Avsunviroidae), and nuclear (Pospiviroidae). Here, we have used high-fidelity ultra-deep sequencing to compare side by side the mutation rates of one representative member of each viroid family in the same host. We found that the mutation rate of the nuclear viroid was several fold lower than that of the chloroplastic viroid.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Cristina Ballesteros
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| | | | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Selma Gago-Zachert
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
- Department of Molecular Signal Processing, Leibniz Institute for Plant Biochemistry, Halle (Saale), Germany
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
- Departamento de Genética, Universitat de València, València, Spain
- * E-mail:
| |
Collapse
|
36
|
López-Carrasco A, Flores R. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. J Gen Virol 2017; 98:1913-1922. [PMID: 28699864 DOI: 10.1099/jgv.0.000846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
37
|
Modelling the three-dimensional structure of the right-terminal domain of pospiviroids. Sci Rep 2017; 7:711. [PMID: 28386073 PMCID: PMC5429643 DOI: 10.1038/s41598-017-00764-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Viroids, the smallest know plant pathogens, consist solely of a circular, single-stranded, non-coding RNA. Thus for all of their biological functions, like replication, processing, and transport, they have to present sequence or structural features to exploit host proteins. Viroid binding protein 1 (Virp1) is indispensable for replication of pospiviroids, the largest genus of viroids, in a host plant as well as in protoplasts. Virp1 is known to bind at two sites in the terminal right (TR) domain of pospiviroids; each site consists of a purine- (R-) and a pyrimidine- (Y-)rich motif that are partially base-paired to each other. Here we model the important structural features of the domain and show that it contains an internal loop of two Y · Y cis Watson-Crick/Watson-Crick (cWW) pairs, an asymmetric internal loop including a cWW and a trans Watson/Hoogsteen pair, and a thermodynamically quite stable hairpin loop with several stacking interactions. These features are discussed in connection to the known biological functions of the TR domain.
Collapse
|
38
|
López-Carrasco A, Gago-Zachert S, Mileti G, Minoia S, Flores R, Delgado S. The transcription initiation sites of eggplant latent viroid strands map within distinct motifs in their in vivo RNA conformations. RNA Biol 2016; 13:83-97. [PMID: 26618399 DOI: 10.1080/15476286.2015.1119365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Eggplant latent viroid (ELVd), like other members of family Avsunviroidae, replicates in plastids through a symmetric rolling-circle mechanism in which elongation of RNA strands is most likely catalyzed by a nuclear-encoded polymerase (NEP) translocated to plastids. Here we have addressed where NEP initiates transcription of viroid strands. Because this step is presumably directed by sequence/structural motifs, we have previously determined the conformation of the monomeric linear (+) and (-) RNAs of ELVd resulting from hammerhead-mediated self-cleavage. In silico predictions with 3 softwares led to similar bifurcated conformations for both ELVd strands. In vitro examination by non-denaturing PAGE showed that they migrate as prominent single bands, with the ELVd (+) RNA displaying a more compact conformation as revealed by its faster electrophoretic mobility. In vitro SHAPE analysis corroborated the ELVd conformations derived from thermodynamics-based predictions in silico. Moreover, sequence analysis of 94 full-length natural ELVd variants disclosed co-variations, and mutations converting canonical into wobble pairs or vice versa, which confirmed in vivo most of the stems predicted in silico and in vitro, and additionally helped to introduce minor structural refinements. Therefore, results from the 3 experimental approaches were essentially consistent among themselves. Application to RNA preparations from ELVd-infected tissue of RNA ligase-mediated rapid amplification of cDNA ends, combined with pretreatments to modify the 5' ends of viroid strands, mapped the transcription initiation sites of ELVd (+) and (-) strands in vivo at different sequence/structural motifs, in contrast with the situation previously observed in 2 other members of the family Avsunviroidae.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Selma Gago-Zachert
- b Department of Molecular Signal Processing , Leibniz Institute of Plant Biochemistry , Halle ( Saale ), Germany
| | - Giuseppe Mileti
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Sofia Minoia
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Ricardo Flores
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| | - Sonia Delgado
- a Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas , Valencia , Spain
| |
Collapse
|
39
|
Daròs JA. Eggplant latent viroid: a friendly experimental system in the family Avsunviroidae. MOLECULAR PLANT PATHOLOGY 2016; 17:1170-7. [PMID: 26696449 PMCID: PMC6638527 DOI: 10.1111/mpp.12358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/24/2015] [Accepted: 12/10/2015] [Indexed: 05/22/2023]
Abstract
TAXONOMY Eggplant latent viroid (ELVd) is the only species of the genus Elaviroid (family Avsunviroidae). All the viroids in the family Avsunviroidae contain hammerhead ribozymes in the strands of both polarities, and are considered to replicate in the chloroplasts of infected cells. This family includes two other genera: Avsunviroid and Pelamoviroid. PHYSICAL PROPERTIES ELVd consists of a single-stranded, circular, non-coding RNA of 332-335 nucleotides that folds in a branched quasi-rod-like minimum free-energy conformation. RNAs of complementary polarity exist in infected cells and are considered to be replication intermediates. Plus (+) polarity is assigned arbitrarily to the strand that accumulates at a higher concentration in infected tissues. HOST: To date, ELVd has only been shown to infect eggplant (Solanum melongena L.), the species in which it was discovered. A very narrow host range seems to be a common property in members of the family Avsunviroidae. SYMPTOMS ELVd infections of eggplants are apparently symptomless. TRANSMISSION ELVd is transmitted mechanically and by seed. USEFUL WEBSITE http://subviral.med.uottawa.ca.
Collapse
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
40
|
Castellano M, Pallas V, Gomez G. A pathogenic long noncoding RNA redesigns the epigenetic landscape of the infected cells by subverting host Histone Deacetylase 6 activity. THE NEW PHYTOLOGIST 2016; 211:1311-22. [PMID: 27174164 DOI: 10.1111/nph.14001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Viroids - ancient plant-pathogenic long noncoding RNAs - have developed a singular evolutionary strategy based on reprogramming specific phases of host-metabolism to ensure that their infection cycle can be completed in infected cells. However, the molecular aspects governing this transregulatory phenomenon remain elusive. Here, we use immunoprecipitation assays and bisulfite sequencing of rDNA to shown that, in infected cucumber and Nicotiana benthamina plants, Hop stunt viroid (HSVd) recruits and functionally subverts Histone Deacetylase 6 (HDA6) to promote host-epigenetic alterations that trigger the transcriptional alterations observed during viroid pathogenesis. This notion is supported by the demonstration that, during infection, the HSVd-HDA6 complex occurs in vivo and that endogenous HDA6 expression is increased in HSVd-infected cells. Moreover, transient overexpression of recombinant HDA6 reverts the hypomethylation status of rDNA observed in HSVd-infected plants and reduces viroid accumulation. We hypothesize that the host-transcriptional alterations induced as a consequence of viroid-mediated HDA6 recruitment favor spurious recognition of HSVd-RNA as an RNA Pol II template, thereby improving viroid replication. Our results constitute the first description of a physical and functional interaction between a pathogenic RNA and a component of the host RNA silencing mechanism, providing novel evidence of the potential of these pathogenic lncRNAs to physically redesign the host-cell environment and reprogram their regulatory mechanisms.
Collapse
Affiliation(s)
- Mayte Castellano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia (UPV), CPI, Edificio 8 E, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia (UPV), CPI, Edificio 8 E, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Gustavo Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia (UPV), CPI, Edificio 8 E, Av. de los Naranjos s/n, Valencia, 46022, Spain
| |
Collapse
|
41
|
Gago-Zachert S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 2015; 212:12-24. [PMID: 26319312 DOI: 10.1016/j.virusres.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Transcriptome deep-sequencing studies performed during the last years confirmed that the vast majority of the RNAs transcribed in higher organisms correspond to several types of non-coding RNAs including long non-coding RNAs (lncRNAs). The study of lncRNAs and the identification of their functions, is still an emerging field in plants but the characterization of some of them indicate that they play an important role in crucial regulatory processes like flowering regulation, and responses to abiotic stress and plant hormones. A second group of lncRNAs present in plants is formed by viroids, exogenous infectious subviral plant pathogens well known since many years. Viroids are composed of circular RNA genomes without protein-coding capacity and subvert enzymatic activities of their hosts to complete its own biological cycle. Different aspects of viroid biology and viroid-host interactions have been elucidated in the last years and some of them are the main topic of this review together with the analysis of the state-of-the-art about the growing field of endogenous lncRNAs in plants.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
42
|
Avina-Padilla K, Martinez de la Vega O, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP. In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene 2015; 564:197-205. [DOI: 10.1016/j.gene.2015.03.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/13/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
|
43
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
44
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
45
|
What has been happening with viroids? Virus Genes 2014; 49:175-84. [DOI: 10.1007/s11262-014-1110-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
|
46
|
Abstract
Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario--the so-called RNA world--existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G + C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), 46022 València, Spain;
| | | | | | | | | |
Collapse
|
47
|
Martinez G, Castellano M, Tortosa M, Pallas V, Gomez G. A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Res 2013; 42:1553-62. [PMID: 24178032 PMCID: PMC3919566 DOI: 10.1093/nar/gkt968] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viroids are plant-pathogenic non-coding RNAs able to interfere with as yet poorly known host-regulatory pathways and to cause alterations recognized as diseases. The way in which these RNAs coerce the host to express symptoms remains to be totally deciphered. In recent years, diverse studies have proposed a close interplay between viroid-induced pathogenesis and RNA silencing, supporting the belief that viroid-derived small RNAs mediate the post-transcriptional cleavage of endogenous mRNAs by acting as elicitors of symptoms expression. Although the evidence supporting the role of viroid-derived small RNAs in pathogenesis is robust, the possibility that this phenomenon can be a more complex process, also involving viroid-induced alterations in plant gene expression at transcriptional levels, has been considered. Here we show that plants infected with the ‘Hop stunt viroid’ accumulate high levels of sRNAs derived from ribosomal transcripts. This effect was correlated with an increase in the transcription of ribosomal RNA (rRNA) precursors during infection. We observed that the transcriptional reactivation of rRNA genes correlates with a modification of DNA methylation in their promoter region and revealed that some rRNA genes are demethylated and transcriptionally reactivated during infection. This study reports a previously unknown mechanism associated with viroid (or any other pathogenic RNA) infection in plants providing new insights into aspects of host alterations induced by the viroid infectious cycle.
Collapse
Affiliation(s)
- German Martinez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-UPV, CPI, Edificio 8 E, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
48
|
Gómez G, Pallás V. Viroids: a light in the darkness of the lncRNA-directed regulatory networks in plants. THE NEW PHYTOLOGIST 2013; 198:10-15. [PMID: 23397958 DOI: 10.1111/nph.12196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Gustavo Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, CPI - Av. Fausto Elio s/n, 46022, Valencia, Spain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, CPI - Av. Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
49
|
Nohales MÁ, Molina-Serrano D, Flores R, Daròs JA. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 2012; 86:8269-76. [PMID: 22623792 PMCID: PMC3421689 DOI: 10.1128/jvi.00629-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/15/2012] [Indexed: 11/20/2022] Open
Abstract
Avocado sunblotch viroid, peach latent mosaic viroid, chrysanthemum chlorotic mottle viroid, and eggplant latent viroid (ELVd), the four recognized members of the family Avsunviroidae, replicate through the symmetric pathway of an RNA-to-RNA rolling-circle mechanism in chloroplasts of infected cells. Viroid oligomeric transcripts of both polarities contain embedded hammerhead ribozymes that, during replication, mediate their self-cleavage to monomeric-length RNAs with 5'-hydroxyl and 2',3'-phosphodiester termini that are subsequently circularized. We report that a recombinant version of the chloroplastic isoform of the tRNA ligase from eggplant (Solanum melongena L.) efficiently catalyzes in vitro circularization of the plus [(+)] and minus [(-)] monomeric linear replication intermediates from the four Avsunviroidae. We also show that while this RNA ligase specifically recognizes the genuine monomeric linear (+) ELVd replication intermediate, it does not do so with five other monomeric linear (+) ELVd RNAs with their ends mapping at different sites along the molecule, despite containing the same 5'-hydroxyl and 2',3'-phosphodiester terminal groups. Moreover, experiments involving transient expression of a dimeric (+) ELVd transcript in Nicotiana benthamiana Domin plants preinoculated with a tobacco rattle virus-derived vector to induce silencing of the plant endogenous tRNA ligase show a significant reduction of ELVd circularization. In contrast, circularization of a viroid replicating in the nucleus occurring through a different pathway is unaffected. Together, these results support the conclusion that the chloroplastic isoform of the plant tRNA ligase is the host enzyme mediating circularization of both (+) and (-) monomeric linear intermediates during replication of the viroids belonging to the family Avsunviroidae.
Collapse
Affiliation(s)
- María-Ángeles Nohales
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | | | | | | |
Collapse
|
50
|
Flores R, Serra P, Minoia S, Di Serio F, Navarro B. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front Microbiol 2012; 3:217. [PMID: 22719735 PMCID: PMC3376415 DOI: 10.3389/fmicb.2012.00217] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) Valencia, Spain
| | | | | | | | | |
Collapse
|