1
|
Choi UY, Lee SH. Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus. J Microbiol Biotechnol 2024; 34:2143-2152. [PMID: 39403716 PMCID: PMC11637867 DOI: 10.4014/jmb.2407.07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 11/29/2024]
Abstract
Gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are key contributors to the development of various cancers through their ability to manipulate host cellular pathways. This review explores the intricate ways these viruses rewire host metabolic pathways to sustain viral persistence and promote tumorigenesis. We look into how EBV and KSHV induce glycolytic reprogramming, alter mitochondrial function, and remodel nucleotide and amino acid metabolism, highlighting the crucial role of lipid metabolism in these oncogenic processes. By understanding these metabolic alterations, which confer proliferative and survival advantages to the virus-infected cells, we can identify potential therapeutic targets and develop innovative treatment strategies for gamma herpesvirus-associated malignancies. Ultimately, this review underscores the critical role of metabolic reprogramming in gamma herpesvirus oncogenesis and its implications for precision medicine in combating virus-driven cancers.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| |
Collapse
|
2
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
3
|
Cell-Derived Viral Genes Evolve under Stronger Purifying Selection in Rhadinoviruses. J Virol 2018; 92:JVI.00359-18. [PMID: 29997213 DOI: 10.1128/jvi.00359-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Like many other large double-stranded DNA (dsDNA) viruses, herpesviruses are known to capture host genes to evade host defenses. Little is known about the detailed natural history of such genes, nor do we fully understand their evolutionary dynamics. A major obstacle is that they are often highly divergent, maintaining very low sequence similarity to host homologs. Here we use the herpesvirus genus Rhadinovirus as a model system to develop an analytical approach that combines complementary evolutionary and bioinformatic techniques, offering results that are both detailed and robust for a range of genes. Using a systematic phylogenetic strategy, we identify the original host lineage of viral genes with high confidence. We show that although host immunomodulatory genes evolve rapidly compared to other host genes, they undergo a clear increase in purifying selection once captured by a virus. To characterize this shift in detail, we developed a novel technique to identify changes in selection pressure that can be attributable to particular domains. These findings will inform us on how viruses develop strategies to evade the immune system, and our synthesis of techniques can be reapplied to other viruses or biological systems with similar analytical challenges.IMPORTANCE Viruses and hosts have been shown to capture genes from one another as part of the evolutionary arms race. Such genes offer a natural experiment on the effects of evolutionary pressure, since the same gene exists in vastly different selective environments. However, sequences of viral homologs often bear little similarity to the original sequence, complicating the reconstruction of their shared evolutionary history with host counterparts. In this study, we use a genus of herpesviruses as a model system to comprehensively investigate the evolution of host-derived viral genes, using a synthesis of genomics, phylogenetics, selection analysis, and nucleotide and amino acid modeling.
Collapse
|
4
|
Koch S, Schulz TF. Rhadinoviral interferon regulatory factor homologues. Biol Chem 2017; 398:857-870. [PMID: 28455950 DOI: 10.1515/hsz-2017-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 01/17/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8 (HHV8) is a gammaherpesvirus and the etiological agent of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman disease. The KSHV genome contains genes for a unique group of proteins with homology to cellular interferon regulatory factors, termed viral interferon regulatory factors (vIRFs). This review will give an overview over the oncogenic, antiapoptotic and immunomodulatory characteristics of KSHV and related vIRFs.
Collapse
|
5
|
Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 2014; 10:e1003847. [PMID: 24453964 PMCID: PMC3894221 DOI: 10.1371/journal.ppat.1003847] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/20/2013] [Indexed: 01/08/2023] Open
Abstract
Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV), we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs), and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus. Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing agent in immunocompromised patients that establishes long-lasting infections in its hosts. Initially described in 1994 and extensively studied ever since, KSHV molecular biology is understood in broad outline, but many detailed questions are still to be resolved. After almost two decades, specific aspects pertaining to the organization of the KSHV genome as well as the fate of the viral transcripts during the productive stages of infection remain unexplored. Here we use a systematic genome-wide approach to investigate changes in gene and protein expression during the productive stage of infection known as the lytic cycle. We found that the viral genome has a large coding capacity, capable of generating at least 45% more products than initially anticipated by bioinformatic analyses alone, and that it uses multiple strategies to expand its coding capacity well beyond what is determined solely by the DNA sequence of its genome. We also provide an expanded and highly detailed annotation of known and new genomic features in KSHV. We have termed this new architectural and functional annotation KSHV 2.0. Our results indicate that viral genomes are more complex than anticipated, and that they are subject to tight mechanisms of regulation to ensure correct gene expression.
Collapse
Affiliation(s)
- Carolina Arias
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
- * E-mail:
| | - Ben Weisburd
- Novartis Vaccines and Diagnostics, Bioinformatics, Emeryville, California, United States of America
| | - Noam Stern-Ginossar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexandre Mercier
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Alexis S. Madrid
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Priya Bellare
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Meghan Holdorf
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Don Ganem
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| |
Collapse
|
6
|
Jochmann R, Pfannstiel J, Chudasama P, Kuhn E, Konrad A, Stürzl M. O-GlcNAc transferase inhibits KSHV propagation and modifies replication relevant viral proteins as detected by systematic O-GlcNAcylation analysis. Glycobiology 2013; 23:1114-30. [PMID: 23580777 DOI: 10.1093/glycob/cwt028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
O-GlcNAcylation is an inducible, highly dynamic and reversible post-translational modification, mediated by a unique enzyme named O-linked N-acetyl-d-glucosamine (O-GlcNAc) transferase (OGT). In response to nutrients, O-GlcNAc levels are differentially regulated on many cellular proteins involved in gene expression, translation, immune reactions, protein degradation, protein-protein interaction, apoptosis and signal transduction. In contrast to eukaryotic cells, little is known about the role of O-GlcNAcylation in the viral life cycle. Here, we show that the overexpression of the OGT reduces the replication efficiency of Kaposi's sarcoma-associated herpesvirus (KSHV) in a dose-dependent manner. In order to investigate the global impact of O-GlcNAcylation in the KSHV life cycle, we systematically analyzed the 85 annotated KSHV-encoded open reading frames for O-GlcNAc modification. For this purpose, an immunoprecipitation (IP) strategy with three different approaches was carried out and the O-GlcNAc signal of the identified proteins was properly controlled for specificity. Out of the 85 KSHV-encoded proteins, 18 proteins were found to be direct targets for O-GlcNAcylation. Selected proteins were further confirmed by mass spectrometry for O-GlcNAc modification. Correlation of the functional annotation and the O-GlcNAc status of KSHV proteins showed that the predominant targets were proteins involved in viral DNA synthesis and replication. These results indicate that O-GlcNAcylation plays a major role in the regulation of KSHV propagation.
Collapse
Affiliation(s)
- Ramona Jochmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Constitutive expression of thymidylate synthase from LCDV-C induces a transformed phenotype in fish cells. Virology 2008; 372:118-26. [DOI: 10.1016/j.virol.2007.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/03/2007] [Accepted: 10/20/2007] [Indexed: 11/19/2022]
|
8
|
Boulanger E, Daniel MT, Agbalika F, Oksenhendler E. Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol 2003; 73:143-8. [PMID: 12827649 DOI: 10.1002/ajh.10341] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Primary effusion lymphoma (PEL) is a rare KSHV/HHV8-associated high-grade non-Hodgkin's lymphoma (NHL) of B-cell origin, characterized by serous effusions in body cavities. Most patients are HIV-infected homosexual men with severe immunosuppression and other KSHV/HHV8-associated diseases such as Kaposi's sarcoma (KS). The prognosis is poor with a median survival of less than 6 months in most cohorts. The achievement of a sustained complete remission is rare. High-dose chemotherapy regimens are warranted to improve complete remission rate and survival. Seven patients with AIDS-associated PEL were treated with a combined chemotherapy including high-dose methotrexate followed by leucovorin rescue. In all cases, KSHV/HHV8 sequences were detected in the effusion samples using quantitative PCR assays. Five patients had a pre-existing KS, associated in three cases with multicentric Castleman's disease (MCD). Upon diagnosis, 6 patients received antiretroviral therapy, which was maintained during chemotherapy in 5 of them. At time of analysis, 3 out of 7 patients were in complete remission 18, 26, and 78 months after PEL diagnosis. Three patients died with a progressive PEL at 22, 67, and 153 days after diagnosis, and 1 patient died 9 months after PEL diagnosis with a MCD-associated plasmablastic NHL. Complete remission was obtained in 3 out of 7 patients treated for AIDS-associated PEL with combined chemotherapy containing high-dose methotrexate.
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/complications
- Acquired Immunodeficiency Syndrome/drug therapy
- Adult
- Antigens, CD/blood
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antiretroviral Therapy, Highly Active
- DNA, Viral/isolation & purification
- France
- HIV Infections/complications
- HIV Infections/drug therapy
- Herpesviridae Infections/blood
- Herpesviridae Infections/drug therapy
- Herpesviridae Infections/immunology
- Herpesvirus 8, Human/isolation & purification
- Homosexuality, Male
- Humans
- Immunophenotyping
- Male
- Methotrexate/therapeutic use
- Middle Aged
- Pleural Effusion/pathology
- Prognosis
- RNA, Viral/blood
- Sarcoma, Kaposi/blood
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/mortality
- Sarcoma, Kaposi/pathology
- Treatment Outcome
- Viral Load
- White People
Collapse
Affiliation(s)
- Emmanuelle Boulanger
- Department of Clinical Immunopathology, Hôpital Saint-Louis, AP-HP, Paris, France.
| | | | | | | |
Collapse
|
9
|
Gáspár G, De Clercq E, Neyts J. Gammaherpesviruses encode functional dihydrofolate reductase activity. Biochem Biophys Res Commun 2002; 297:756-9. [PMID: 12359216 DOI: 10.1016/s0006-291x(02)02286-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We overexpressed and purified from Escherichia coli the dihydrofolate reductase (DHFR) of the gammaherpesviruses human herpesvirus 8 (HHV-8), herpesvirus saimiri (HVS), and rhesus rhadinovirus (RRV). All three enzymes proved catalytically active. The K(m) value of HHV-8 DHFR for dihydrofolate (DHF) was 2.02+/-0.44 microM, that of HVS DHFR was 4.31+/-0.56 microM, and that of RRV DHFR is 7.09+/-0.11 microM. These values are approximately 5-15-fold higher than the K(m) value reported for the human DHFR. The K(m) value of HHV-8 DHFR for NADPH was 1.31+/-0.23 microM, that of HVS DHFR was 3.78+/-0.61 microM, and that of RRV DHFR was 7.47+/-0.59 microM. These values are similar or slightly higher than the corresponding K(m) value of the human enzyme. Methotrexate, aminopterin, trimethoprim, pyrimethamine, and N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (PT523), all well-known folate antagonists, inhibited the DHFR activity of the three gammaherpesviruses competitively with respect to DHF but proved markedly less inhibitory to the viral than towards the human enzyme.
Collapse
Affiliation(s)
- Gábor Gáspár
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
10
|
Abstract
We demonstrate that human herpesvirus 8, obtained from the lymphoma cell line BC-3 as well as from Kaposi's sarcoma lesions, carries a gene that encodes a functional thymidylate synthase (TS). The particular characteristics of this enzyme are studied and compared to the characteristics of TSs encoded by other organisms.
Collapse
Affiliation(s)
- Gábor Gáspár
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
11
|
Curreli F, Cerimele F, Muralidhar S, Rosenthal LJ, Cesarman E, Friedman-Kien AE, Flore O. Transcriptional downregulation of ORF50/Rta by methotrexate inhibits the switch of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 from latency to lytic replication. J Virol 2002; 76:5208-19. [PMID: 11967335 PMCID: PMC136151 DOI: 10.1128/jvi.76.10.5208-5219.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Francesca Curreli
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Jenner RG, Boshoff C. The molecular pathology of Kaposi's sarcoma-associated herpesvirus. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:1-22. [PMID: 11960692 DOI: 10.1016/s0304-419x(01)00040-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.
Collapse
Affiliation(s)
- Richard G Jenner
- Wohl Virion Centre, Windeyer Institute for Medical Research, Cleveland Street, UCL (University College London), London, UK.
| | | |
Collapse
|
13
|
Moore PS, Chang Y. Molecular virology of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 2001; 356:499-516. [PMID: 11313008 PMCID: PMC1088441 DOI: 10.1098/rstb.2000.0777] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the most recently discovered human tumour virus, is the causative agent of Kaposi's sarcoma, primary effusion lymphoma and some forms of Castleman's disease. KSHV is a rhadinovirus, and like other rhadinoviruses, it has an extensive array of regulatory genes obtained from the host cell genome. These pirated KSHV proteins include homologues to cellular CD21, three different beta-chemokines, IL-6, BCL-2, several different interferon regulatory factor homologues, Fas-ligand ICE inhibitory protein (FLIP), cyclin D and a G-protein-coupled receptor, as well as DNA synthetic enzymes including thymidylate synthase, dihydrofolate reductase, DNA polymerase, thymidine kinase and ribonucleotide reductases. Despite marked differences between KSHV and Epstein-Barr virus, both viruses target many of the same cellular pathways, but use different strategies to achieve the same effects. KSHV proteins have been identified which inhibit cell-cycle regulation checkpoints, apoptosis control mechanisms and the immune response regulatory machinery. Inhibition of these cellular regulatory networks app ears to be a defensive means of allowing the virus to escape from innate antiviral immune responses. However, due to the overlapping nature of innate immune and tumour-suppressor pathways, inhibition of these regulatory networks can lead to unregulated cell proliferation and may contribute to virus-induced tumorigenesis.
Collapse
Affiliation(s)
- P S Moore
- School of Public Health and Department of Pathology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|