1
|
Atabekova AK, Lazareva EA, Lezzhov AA, Solovieva AD, Golyshev SA, Skulachev BI, Solovyev ID, Savitsky AP, Heinlein M, Morozov SY, Solovyev AG. Interaction between Movement Proteins of Hibiscus green spot virus. Viruses 2022; 14:v14122742. [PMID: 36560746 PMCID: PMC9780815 DOI: 10.3390/v14122742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. Hibiscus green spot virus encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport. BMB1, representing an NTPase/helicase domain-containing RNA-binding protein, localizes to the cytoplasm and the nucleoplasm. BMB2 is a small hydrophobic protein that interacts with the endoplasmic reticulum (ER) membranes and induces local constrictions of the ER tubules. In plant cells, BMB2 localizes to PD-associated membrane bodies (PAMBs) consisting of modified ER tubules and directs BMB1 to PAMBs. Here, we demonstrate that BMB1 and BMB2 interact in vitro and in vivo, and that their specific interaction is essential for BMB2-directed targeting of BMB1 to PAMBs. Using mutagenesis, we show that the interaction involves the C-terminal BMB1 region and the N-terminal region of BMB2.
Collapse
Affiliation(s)
- Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A. Lazareva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Boris I. Skulachev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Ilya D. Solovyev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexander P. Savitsky
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Manfred Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, 67000 Strasbourg, France
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-939-3198
| |
Collapse
|
2
|
Jiang C, Shan S, Huang Y, Mao C, Zhang H, Li Y, Chen J, Wei Z, Sun Z. The C-Terminal Transmembrane Domain of Cowpea Mild Mottle Virus TGBp2 Is Critical for Plasmodesmata Localization and for Its Interaction With TGBp1 and TGBp3. Front Microbiol 2022; 13:860695. [PMID: 35495691 PMCID: PMC9051516 DOI: 10.3389/fmicb.2022.860695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The movement of some plant RNA viruses is mediated by triple gene block (TGB) proteins, which cooperate to transfer the viral genome from cell to cell through plasmodesmata. Here, we investigated the function of the TGB proteins of cowpea mild mottle virus (CPMMV; genus Carlavirus, family Betaflexiviridae), which causes severe damage to soybean production. Subcellular localization experiments demonstrated that TGBp1 and TGBp3 were localized to the endoplasmic reticulum (ER), plasmodesmata (PD) and nucleus in Nicotiana benthamiana leaves. TGBp2 was unusually localized to PD. In protein interaction assays TGBp2 significantly enhanced the interaction between TGBp3 and TGBp1. Interaction assays using deletion mutants showed that the C-terminal transmembrane (TM) domain of TGBp2 is critical for its localization to PD and for its interaction with TGBp1 and TGBp3.
Collapse
|
3
|
Lazareva EA, Lezzhov AA, Chergintsev DA, Golyshev SA, Dolja VV, Morozov SY, Heinlein M, Solovyev AG. Reticulon-like properties of a plant virus-encoded movement protein. THE NEW PHYTOLOGIST 2021; 229:1052-1066. [PMID: 32866987 DOI: 10.1111/nph.16905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.
Collapse
Affiliation(s)
- Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Denis A Chergintsev
- Department of Plant Physiology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Sergei A Golyshev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Manfred Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, Strasbourg, 67000, France
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow, 127550, Russia
| |
Collapse
|
4
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Ur Rehman A, Li Z, Yang Z, Waqas M, Wang G, Xu W, Li F, Hong N. The Coat Protein of Citrus Yellow Vein Clearing Virus Interacts with Viral Movement Proteins and Serves as an RNA Silencing Suppressor. Viruses 2019; 11:E329. [PMID: 30959816 PMCID: PMC6520955 DOI: 10.3390/v11040329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/29/2023] Open
Abstract
Citrus yellow vein clearing virus is a newly accepted member of the genus Mandarivirus in the family Alphaflexiviridae. The triple gene block proteins (TGBp1, TGBp2 and TGBp3) encoded by plant viruses in this family function on facilitating virus movement. However, the protein function of citrus yellow vein clearing virus (CYVCV) have never been explored. Here, we showed in both yeast two-hybrid (Y2H) and bimolecular fluorescence (BiFC) assays that the coat protein (CP), TGBp1 and TGBp2 of CYVCV are self-interacting. Its CP also interacts with all three TGB proteins, and TGBp1 and TGBp2 interact with each other but not with TGBp3. Furthermore, the viral CP colocalizes with TGBp1 and TGBp3 at the plasmodesmata (PD) of epidermal cells of Nicotiana benthamiana leaves, and TGBp1 can translocate TGBp2 from granular-like structures embedded within ER networks to the PD. The results suggest that these proteins could coexist at the PD of epidermal cells of N. benthamiana. Using Agrobacterium infiltration-mediated RNA silencing assays, we show that CYVCV CP is a strong RNA silencing suppressor (RSS) triggered by positive-sense green fluorescent protein (GFP) RNA. The presented results provide insights for further revealing the mechanism of the viral movement and suppression of RNA silencing.
Collapse
Affiliation(s)
- Atta Ur Rehman
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
- Plant Pathology Section, Central Cotton Research Institute, Sakrand, Sindh 67210, Pakistan.
| | - Zhuoran Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Muhammad Waqas
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Wenxing Xu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| |
Collapse
|
6
|
Wu X, Liu J, Chai M, Wang J, Li D, Wang A, Cheng X. The Potato Virus X TGBp2 Protein Plays Dual Functional Roles in Viral Replication and Movement. J Virol 2019; 93:e01635-18. [PMID: 30541845 PMCID: PMC6384063 DOI: 10.1128/jvi.01635-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
Plant viruses usually encode one or more movement proteins (MP) to accomplish their intercellular movement. A group of positive-strand RNA plant viruses requires three viral proteins (TGBp1, TGBp2, and TGBp3) that are encoded by an evolutionarily conserved genetic module of three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB). However, how these three viral movement proteins function cooperatively in viral intercellular movement is still elusive. Using a novel in vivo double-stranded RNA (dsRNA) labeling system, we showed that the dsRNAs generated by potato virus X (PVX) RNA-dependent RNA polymerase (RdRp) are colocalized with viral RdRp, which are further tightly covered by "chain mail"-like TGBp2 aggregates and localizes alongside TGBp3 aggregates. We also discovered that TGBp2 interacts with the C-terminal domain of PVX RdRp, and this interaction is required for the localization of TGBp3 and itself to the RdRp/dsRNA bodies. Moreover, we reveal that the central and C-terminal hydrophilic domains of TGBp2 are required to interact with viral RdRp. Finally, we demonstrate that knockout of the entire TGBp2 or the domain involved in interacting with viral RdRp attenuates both PVX replication and movement. Collectively, these findings suggest that TGBp2 plays dual functional roles in PVX replication and intercellular movement.IMPORTANCE Many plant viruses contain three partially overlapping open reading frames (ORFs), termed the triple gene block (TGB), for intercellular movement. However, how the corresponding three proteins coordinate their functions remains obscure. In the present study, we provided multiple lines of evidence supporting the notion that PVX TGBp2 functions as the molecular adaptor bridging the interaction between the RdRp/dsRNA body and TGBp3 by forming "chain mail"-like structures in the RdRp/dsRNA body, which can also enhance viral replication. Taken together, our results provide new insights into the replication and movement of PVX and possibly also other TGB-containing plant viruses.
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Jiahui Liu
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Mengzhu Chai
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Jinhui Wang
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Dalong Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Xiaofei Cheng
- College of Agriculture, Northeast Agriculture University, Harbin, China
| |
Collapse
|
7
|
DeBlasio SL, Xu Y, Johnson RS, Rebelo AR, MacCoss MJ, Gray SM, Heck M. The Interaction Dynamics of Two Potato Leafroll Virus Movement Proteins Affects Their Localization to the Outer Membranes of Mitochondria and Plastids. Viruses 2018; 10:E585. [PMID: 30373157 PMCID: PMC6265731 DOI: 10.3390/v10110585] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Luteoviridae is an agriculturally important family of viruses whose replication and transport are restricted to plant phloem. Their genomes encode for four proteins that regulate viral movement. These include two structural proteins that make up the capsid and two non-structural proteins known as P3a and P17. Little is known about how these proteins interact with each other and the host to coordinate virus movement within and between cells. We used quantitative, affinity purification-mass spectrometry to show that the P3a protein of Potato leafroll virus complexes with virus and that this interaction is partially dependent on P17. Bimolecular complementation assays (BiFC) were used to validate that P3a and P17 self-interact as well as directly interact with each other. Co-localization with fluorescent-based organelle markers demonstrates that P3a directs P17 to the mitochondrial outer membrane while P17 regulates the localization of the P3a-P17 heterodimer to plastids. Residues in the C-terminus of P3a were shown to regulate P3a association with host mitochondria by using mutational analysis and also varying BiFC tag orientation. Collectively, our work reveals that the PLRV movement proteins play a game of intracellular hopscotch along host organelles to transport the virus to the cell periphery.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Ana Rita Rebelo
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle WA 98109, USA.
| | - Stewart M Gray
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Michelle Heck
- United States Department of Agriculture, Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Lazareva EA, Lezzhov AA, Komarova TV, Morozov SY, Heinlein M, Solovyev AG. A novel block of plant virus movement genes. MOLECULAR PLANT PATHOLOGY 2017; 18:611-624. [PMID: 27118327 PMCID: PMC6638293 DOI: 10.1111/mpp.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 05/10/2023]
Abstract
Hibiscus green spot virus (HGSV) is a recently discovered and so far poorly characterized bacilliform plant virus with a positive-stranded RNA genome consisting of three RNA species. Here, we demonstrate that the proteins encoded by the ORF2 and ORF3 in HGSV RNA2 are necessary and sufficient to mediate cell-to-cell movement of transport-deficient Potato virus X in Nicotiana benthamiana. These two genes represent a specialized transport module called a 'binary movement block' (BMB), and ORF2 and ORF3 are termed BMB1 and BMB2 genes. In agroinfiltrated epidermal cells of N. benthamiana, green fluorescent protein (GFP)-BMB1 fusion protein was distributed diffusely in the cytoplasm and the nucleus. However, in the presence of BMB2, GFP-BMB1 was directed to cell wall-adjacent elongated bodies at the cell periphery, to cell wall-embedded punctate structures co-localizing with callose deposits at plasmodesmata, and to cells adjacent to the initially transformed cell. Thus, BMB2 can mediate the transport of BMB1 to and through plasmodesmata. In general, our observations support the idea that cell-to-cell trafficking of movement proteins involves an initial delivery to membrane compartments adjacent to plasmodesmata, subsequent entry of the plasmodesmata cavity and, finally, transport to adjacent cells. This process, as an alternative to tubule-based transport, has most likely evolved independently in triple gene block (TGB), double gene block (DGB), BMB and the single gene-coded transport system.
Collapse
Affiliation(s)
| | - Alexander A. Lezzhov
- Department of Virology, Biological FacultyMoscow State UniversityMoscow119234Russia
| | - Tatiana V. Komarova
- A. N. Belozersky Institute of Physico‐Chemical Biology, Moscow State UniversityMoscow119992Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of ScienceMoscow119991Russia
| | - Sergey Y. Morozov
- Department of Virology, Biological FacultyMoscow State UniversityMoscow119234Russia
- A. N. Belozersky Institute of Physico‐Chemical Biology, Moscow State UniversityMoscow119992Russia
| | - Manfred Heinlein
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des Plantes (IBMP)Strasbourg67084France
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico‐Chemical Biology, Moscow State UniversityMoscow119992Russia
| |
Collapse
|
9
|
Ho TL, Lee HC, Chou YL, Tseng YH, Huang WC, Wung CH, Lin NS, Hsu YH, Chang BY. The cysteine residues at the C-terminal tail of Bamboo mosaic virus triple gene block protein 2 are critical for efficient plasmodesmata localization of protein 1 in the same block. Virology 2017; 501:47-53. [PMID: 27863274 DOI: 10.1016/j.virol.2016.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
The movement of some plant viruses are accomplished by three proteins encoded by a triple gene block (TGB). The second protein (TGBp2) in the block is a transmembrane protein. This study was aimed to unravel the mechanism underlying the relatively inefficient cell-to-cell movement of Bamboo mosaic virus (BaMV) caused by amino acid substitutions for the three Cys residues, Cys-109, Cys-112 and Cys-119, at the C-terminal tail of TGBp2. Results from confocal microscopy revealed that substitutions of the three Cys residues of TGBp2, especially Cys-109 and Cys-112, would reduce the efficiency of TGBp2- and TGBp3-dependent PD localization of TGBp1. Moreover, there is an additive effect of the substitutions on reducing the efficiency of PD localization of TGBp1. These results indicate that the Cys residues in the C-terminal tail region of TGBp2 participate in the TGBp2- and TGBp3-dependent PD localization of TGBp1, and thus influence the cell-to-cell movement capability of BaMV.
Collapse
Affiliation(s)
- Tsai-Ling Ho
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Hsiang-Chi Lee
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China; Ph.D. Program in Microbial Genomics, National Chung-Hsing University and Academia Sinica, Taiwan, Republic of China
| | - Yuan-Lin Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Yang-Hao Tseng
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Wei-Cheng Huang
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Chiung-Hua Wung
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Ban-Yang Chang
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China.
| |
Collapse
|
10
|
Abstract
The symplastic communication network established by plasmodesmata (PD) and connected phloem provides an essential pathway for spatiotemporal intercellular signaling in plant development but is also exploited by viruses for moving their genomes between cells in order to infect plants systemically. Virus movement depends on virus-encoded movement proteins (MPs) that target PD and therefore represent important keys to the cellular mechanisms underlying the intercellular trafficking of viruses and other macromolecules. Viruses and their MPs have evolved different mechanisms for intracellular transport and interaction with PD. Some viruses move from cell to cell by interacting with cellular mechanisms that control the size exclusion limit of PD whereas other viruses alter the PD architecture through assembly of specialized transport structures within the channel. Some viruses move between cells in the form of assembled virus particles whereas other viruses may interact with nucleic acid transport mechanisms to move their genomes in a non-encapsidated form. Moreover, whereas several viruses rely on the secretory pathway to target PD, other viruses interact with the cortical endoplasmic reticulum and associated cytoskeleton to spread infection. This chapter provides an introduction into viruses and their role in studying the diverse cellular mechanisms involved in intercellular PD-mediated macromolecular trafficking.
Collapse
Affiliation(s)
- Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP), Centre National de la Recherche Scientifique (CNRS), 12 rue du Général Zimmer, 67084, Strasbourg, France,
| |
Collapse
|
11
|
Solovieva AD, Frolova OY, Solovyev AG, Morozov SY, Zamyatnin AA. Effect of mitochondria-targeted antioxidant SkQ1 on programmed cell death induced by viral proteins in tobacco plants. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:1006-12. [PMID: 24228922 DOI: 10.1134/s000629791309006x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Programmed cell death (PCD) is the main defense mechanism in plants to fight various pathogens including viruses. The best-studied example of virus-induced PCD in plants is Tobacco mosaic virus (TMV)-elicited hypersensitive response in tobacco plants containing the N resistance gene. It was previously reported that the animal mitochondrial protein Bcl-xL, which lacks a homolog in plants, effectively suppresses plant PCD induced by TMV p50 - the elicitor of hypersensitive response in Nicotiana tabacum carrying the N gene. Our studies show that the mitochondria-targeted antioxidant SkQ1 effectively suppresses p50-induced PCD in tobacco plants. On the other hand, SkQ1 did not affect Poa semilatent virus TGB3-induced endoplasmic reticulum stress, which is followed by PCD, in Nicotiana benthamiana epidermal cells. These data suggest that mitochondria-targeted antioxidant SkQ1 can be used to study molecular mechanisms of PCD suppression in plants.
Collapse
Affiliation(s)
- A D Solovieva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | | |
Collapse
|
12
|
Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 2013; 201:981-95. [PMID: 23798728 PMCID: PMC3691464 DOI: 10.1083/jcb.201304003] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/16/2013] [Indexed: 02/04/2023] Open
Abstract
Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum-derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5' end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Chou YL, Hung YJ, Tseng YH, Hsu HT, Yang JY, Wung CH, Lin NS, Meng M, Hsu YH, Chang BY. The stable association of virion with the triple-gene-block protein 3-based complex of Bamboo mosaic virus. PLoS Pathog 2013; 9:e1003405. [PMID: 23754943 PMCID: PMC3675025 DOI: 10.1371/journal.ppat.1003405] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/22/2013] [Indexed: 12/03/2022] Open
Abstract
The triple-gene-block protein 3 (TGBp3) of Bamboo mosaic virus (BaMV) is an integral endoplasmic reticulum (ER) membrane protein which is assumed to form a membrane complex to deliver the virus intracellularly. However, the virus entity that is delivered to plasmodesmata (PD) and its association with TGBp3-based complexes are not known. Results from chemical extraction and partial proteolysis of TGBp3 in membrane vesicles revealed that TGBp3 has a right-side-out membrane topology; i.e., TGBp3 has its C-terminal tail exposed to the outer surface of ER. Analyses of the TGBp3-specific immunoprecipitate of Sarkosyl-extracted TGBp3-based complex revealed that TGBp1, TGBp2, TGBp3, capsid protein (CP), replicase and viral RNA are potential constituents of virus movement complex. Substantial co-fractionation of TGBp2, TGBp3 and CP, but not TGBp1, in the early eluted gel filtration fractions in which virions were detected after TGBp3-specific immunoprecipitation suggested that the TGBp2- and TGBp3-based complex is able to stably associate with the virion. This notion was confirmed by immunogold-labeling transmission electron microscopy (TEM) of the purified virions. In addition, mutational and confocal microscopy analyses revealed that TGBp3 plays a key role in virus cell-to-cell movement by enhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. Taken together, our results suggested that the cell-to-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-based membrane complex and recruitment of TGBp1 to the PD by this complex.
Collapse
Affiliation(s)
- Yuan-Lin Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yi-Jing Hung
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yang-Hao Tseng
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Hsiu-Ting Hsu
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Chiung-Hua Wung
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Ban-Yang Chang
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
14
|
Jang C, Seo EY, Nam J, Bae H, Gim YG, Kim HG, Cho IS, Lee ZW, Bauchan GR, Hammond J, Lim HS. Insights into Alternanthera mosaic virus TGB3 Functions: Interactions with Nicotiana benthamiana PsbO Correlate with Chloroplast Vesiculation and Veinal Necrosis Caused by TGB3 Over-Expression. FRONTIERS IN PLANT SCIENCE 2013; 4:5. [PMID: 23386854 PMCID: PMC3560364 DOI: 10.3389/fpls.2013.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
Alternanthera mosaic virus (AltMV) triple gene block 3 (TGB3) protein is involved in viral movement. AltMV TGB3 subcellular localization was previously shown to be distinct from that of Potato virus X (PVX) TGB3, and a chloroplast binding domain identified; veinal necrosis and chloroplast vesiculation were observed in Nicotiana benthamiana when AltMV TGB3 was over-expressed from PVX. Plants with over-expressed TGB3 showed more lethal damage under dark conditions than under light. Yeast-two-hybrid analysis and bimolecular fluorescence complementation (BiFC) reveal that Arabidopsis thaliana PsbO1 has strong interactions with TGB3; N. benthamiana PsbO (NbPsbO) also showed obvious interaction signals with TGB3 through BiFC. These results demonstrate an important role for TGB3 in virus cell-to-cell movement and virus-host plant interactions. The Photosystem II oxygen-evolving complex protein PsbO interaction with TGB3 is presumed to have a crucial role in symptom development and lethal damage under dark conditions. In order to further examine interactions between AtPsbO1, NbPsbO, and TGB3, and to identify the binding domain(s) in TGB3 protein, BiFC assays were performed between AtPsbO1 or NbPsbO and various mutants of TGB3. Interactions with C-terminally deleted TGB3 were significantly weaker than those with wild-type TGB3, and both N-terminally deleted TGB3 and a TGB3 mutant previously shown to lose chloroplast interactions failed to interact detectably with PsbO in BiFC. To gain additional information about TGB3 interactions in AltMV-susceptible plants, we cloned 12 natural AltMV TGB3 sequence variants into a PVX expression vector to examine differences in symptom development in N. benthamiana. Symptom differences were observed on PVX over-expression, with all AltMV TGB3 variants showing more severe symptoms than the WT PVX control, but without obvious correlation to sequence differences.
Collapse
Affiliation(s)
- Chanyong Jang
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Eun-Young Seo
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Jiryun Nam
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Yeong Guk Gim
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - Hong Gi Kim
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
| | - In Sook Cho
- National Institute of Horticultural and Herbal Science, Rural Development AdministrationSuwon, South Korea
| | - Zee-Won Lee
- Division of Life Science, Korea Basic Science InstituteDaejeon, South Korea
| | - Gary R. Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, US National Arboretum, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- *Correspondence: John Hammond, Floral and Nursery Plants Research Unit, US National Arboretum, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, B-010A, Beltsville, MD 20705, USA. e-mail: ; Hyoun-Sub Lim, Department of Applied Biology, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764, South Korea. e-mail:
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National UniversityDaejeon, South Korea
- *Correspondence: John Hammond, Floral and Nursery Plants Research Unit, US National Arboretum, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, B-010A, Beltsville, MD 20705, USA. e-mail: ; Hyoun-Sub Lim, Department of Applied Biology, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764, South Korea. e-mail:
| |
Collapse
|
15
|
Sun X, Zhang C. A conserved C-terminal motif is essential for self-interaction of Barley stripe mosaic virus China strain TGB3 protein. Biochem Biophys Res Commun 2012; 426:153-7. [PMID: 22925891 DOI: 10.1016/j.bbrc.2012.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 10/28/2022]
Abstract
The triple gene block (TGB) 3 protein is essential for the cell-to-cell movement of Barley stripe mosaic virus (BSMV). Previous studies have shown that TGB3, together with TGB2, facilitates the movement of TGB1 to the plasma membrane. However, the interactions among the three proteins (i.e., TGB3, TGB1, and TGB2) have not been thoroughly understood. The interactions of BSMV China strain (BSMV-CH) TGB3 with itself and with other two TGB proteins were investigated using a Gal4-based yeast two-hybrid system and pull-down assays. The results show that neither TGB1 nor TGB2 interacts with TGB3. However, self-interaction was detected for TGB3. The C-terminal 37 amino acids (amino acids 87-123) containing a conserved C-terminal motif were found required for the self-interaction of TGB3. The roles of the novel property of BSMV-CH TGB3 in virus cell-to-cell movement were discussed.
Collapse
Affiliation(s)
- Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | | |
Collapse
|
16
|
Solovyev AG, Schiemann J, Morozov SY. Microscopic analysis of severe structural rearrangements of the plant endoplasmic reticulum and Golgi caused by overexpression of Poa semilatent virus movement protein. ScientificWorldJournal 2012; 2012:416076. [PMID: 22272174 PMCID: PMC3259505 DOI: 10.1100/2012/416076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/24/2011] [Indexed: 12/29/2022] Open
Abstract
Cell-to-cell transport of plant viruses is mediated by virus-encoded movement proteins and occurs through plasmodesmata interconnecting neighboring cells in plant tissues. Three movement proteins coded by the "triple gene block" (TGB) and named TGBp1, TGBp2 and TGBp3 have distinct functions in viral transport. TGBp1 binds viral genomic RNAs to form ribonucleoprotein complexes representing the transport form of viral genome, while TGBp2 and TGBp3 are necessary for intracellular delivery of such complexes to plasmodesmata. Recently, it was revealed that overexpression of Potato virus X TGBp3 triggers the unfolded protein response mitigating the endoplasmic reticulum (ER) stress leading to cell death if this protein reaches high levels in the ER. Here we report microscopic studies of the influence of the Poa semilatent hordeivirus TGBp3 overexpressed in Nicotiana benthamiana epidermal cells by particle bombardment on cell endomembranes and demonstrate that the protein C-terminal transmembrane segment contains a determinant responsible for vesiculation and coalescence of the endoplasmic reticulum and Golgi presumably accompanying the ER stress that can be induced upon high-level TGBp3 expression.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya 42, 127550 Moscow, Russia
| | - Joachim Schiemann
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety of Genetically Modified Plants, Erwin-Baur-Street 27, 06484 Quedlinburg, Germany
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
17
|
Lu Y, Yan F, Guo W, Zheng H, Lin L, Peng J, Adams MJ, Chen J. Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus. MOLECULAR PLANT PATHOLOGY 2011; 12:666-76. [PMID: 21726366 PMCID: PMC6640471 DOI: 10.1111/j.1364-3703.2010.00699.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The subcellular localization of the 11-kDa protein (p11) encoded by ORF3 of Garlic virus X (GarVX; genus Allexivirus, family Alphaflexiviridae) was examined by confocal microscopy. Granules with intense fluorescence were visible on the endoplasmic reticulum when p11 fused with green or red fluorescent protein (GFP or RFP) was expressed in epidermal cells of Nicotiana benthamiana. Moreover, the p11-RFP granules moved in the cytoplasm, along the cell periphery and through the cell membranes to adjacent cells. A 17-kDa protein (p17) of garlic interacting with p11 was identified by yeast two-hybridization and bimolecular fluorescence complementation assay. When p17 fused to GFP was expressed in epidermal cells of N. benthamiana, it localized to the nucleolus. However, in the presence of GarVX p11, the distribution of p17 changed to that of p11, but did not appear to affect the pattern of movement of p11.
Collapse
Affiliation(s)
- Yuwen Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MOA and Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. MOLECULAR PLANT 2011; 4:813-31. [PMID: 21896501 PMCID: PMC3183398 DOI: 10.1093/mp/ssr070] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/18/2011] [Indexed: 05/03/2023]
Abstract
Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Phillip A. Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA
| |
Collapse
|
19
|
Wu CH, Lee SC, Wang CW. Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. ACTA ACUST UNITED AC 2011; 193:521-35. [PMID: 21518793 PMCID: PMC3087015 DOI: 10.1083/jcb.201006023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sorting signal-mediated oligomerization and localization of the viral protein TGBp3 to curved ER tubules is essential for viral movement between cells in plants. Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants.
Collapse
Affiliation(s)
- Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
20
|
Shemyakina EA, Erokhina TN, Gorshkova EN, Schiemann J, Solovyev AG, Morozov SY. Formation of protein complexes containing plant virus movement protein TGBp3 is necessary for its intracellular trafficking. Biochimie 2011; 93:742-8. [PMID: 21251950 DOI: 10.1016/j.biochi.2011.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/11/2011] [Indexed: 12/11/2022]
Abstract
Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral 'triple gene block' (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.
Collapse
Affiliation(s)
- Elena A Shemyakina
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Tilsner J, Amari K, Torrance L. Plasmodesmata viewed as specialised membrane adhesion sites. PROTOPLASMA 2011; 248:39-60. [PMID: 20938697 DOI: 10.1007/s00709-010-0217-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/27/2010] [Indexed: 05/20/2023]
Abstract
A significant amount of work has been expended to identify the elusive components of plasmodesmata (PD) to help understand their structure, as well as how proteins are targeted to them. This review focuses on the role that lipid membranes may play in defining PD both structurally and as subcellular targeting addresses. Parallels are drawn to findings in other areas of research which focus on the lateral segregation of membrane domains and the generation of three-dimensional organellar shapes from flat lipid bilayers. We conclude that consideration of the protein-lipid interactions in cell biological studies of PD components and PD-targeted proteins may yield new insights into some of the many open questions regarding these unique structures.
Collapse
Affiliation(s)
- Jens Tilsner
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JH, UK.
| | | | | |
Collapse
|
22
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
23
|
Harries PA, Schoelz JE, Nelson RS. Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1381-93. [PMID: 20653412 DOI: 10.1094/mpmi-05-10-0121] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant viruses are obligate organisms that require host components for movement within and between cells. A mechanistic understanding of virus movement will allow the identification of new methods to control virus systemic spread and serve as a model system for understanding host macromolecule intra- and intercellular transport. Recent studies have moved beyond the identification of virus proteins involved in virus movement and their effect on plasmodesmal size exclusion limits to the analysis of their interactions with host components to allow movement within and between cells. It is clear that individual virus proteins and replication complexes associate with and, in some cases, traffic along the host cytoskeleton and membranes. Here, we review these recent findings, highlighting the diverse associations observed between these components and their trafficking capacity. Plant viruses operate individually, sometimes within virus species, to utilize unique interactions between their proteins or complexes and individual host cytoskeletal or membrane elements over time or space for their movement. However, there is not sufficient information for any plant virus to create a complete model of its intracellular movement; thus, more research is needed to achieve that goal.
Collapse
Affiliation(s)
- Phillip A Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | | | | |
Collapse
|
24
|
Wright KM, Cowan GH, Lukhovitskaya NI, Tilsner J, Roberts AG, Savenkov EI, Torrance L. The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1486-97. [PMID: 20923354 DOI: 10.1094/mpmi-05-10-0105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.
Collapse
Affiliation(s)
- Kathryn M Wright
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D. Varied movement strategies employed by triple gene block-encoding viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1231-47. [PMID: 20831404 DOI: 10.1094/mpmi-04-10-0086] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Lim HS, Vaira AM, Bae H, Bragg JN, Ruzin SE, Bauchan GR, Dienelt MM, Owens RA, Hammond J. Mutation of a chloroplast-targeting signal in Alternanthera mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement. J Gen Virol 2010; 91:2102-2115. [PMID: 20392901 DOI: 10.1099/vir.0.019448-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell-to-cell movement of potexviruses requires coordinated action of the coat protein and triple gene block (TGB) proteins. The structural properties of Alternanthera mosaic virus (AltMV) TGB3 were examined by methods differentiating between signal peptides and transmembrane domains, and its subcellular localization was studied by Agrobacterium-mediated transient expression and confocal microscopy. Unlike potato virus X (PVX) TGB3, AltMV TGB3 was not associated with the endoplasmic reticulum, and accumulated preferentially in mesophyll cells. Deletion and site-specific mutagenesis revealed an internal signal VL(17,18) of TGB3 essential for chloroplast localization, and either deletion of the TGB3 start codon or alteration of the chloroplast-localization signal limited cell-to-cell movement to the epidermis, yielding a virus that was unable to move into the mesophyll layer. Overexpression of AltMV TGB3 from either AltMV or PVX infectious clones resulted in veinal necrosis and vesiculation at the chloroplast membrane, a cytopathology not observed in wild-type infections. The distinctive mesophyll and chloroplast localization of AltMV TGB3 highlights the critical role played by mesophyll targeting in virus long-distance movement within plants.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Anna Maria Vaira
- CNR, Istituto di Virologia Vegetale, Strada delle Cacce 73, Torino 10135, Italy
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Geongsan 712-749, Republic of Korea
| | - Jennifer N Bragg
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Steven E Ruzin
- University of California-Berkeley, CNR, 381 Koshland Hall, Berkeley, CA 94720, USA
| | - Gary R Bauchan
- USDA-ARS, Plant Sciences Institute, Electron and Confocal Microscopy Unit, B-465, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Margaret M Dienelt
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Robert A Owens
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - John Hammond
- USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|
27
|
Lee SC, Wu CH, Wang CW. Traffic of a viral movement protein complex to the highly curved tubules of the cortical endoplasmic reticulum. Traffic 2010; 11:912-30. [PMID: 20374554 DOI: 10.1111/j.1600-0854.2010.01064.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracellular trafficking of the nonstructural movement proteins of plant viruses plays a crucial role in sequestering and targeting viral macromolecules in and between cells. Many of the movement proteins traffic in unconventional, yet mechanistically unknown, pathways to localize to the cell periphery. Here we study trafficking strategies associated with two integral membrane movement proteins TGBp2 and TGBp3 of Potexvirus in yeast. We demonstrate that this simple eukaryote recapitulates the targeting of TGBp2 to the peripheral bodies at the cell cortex by TGBp3. We found that these viral movement proteins traffic as an approximately 1:1 stoichiometric protein complex that further polymerizes to form punctate structures. Many punctate structures depart from the perinuclear endoplasmic reticulum (ER) and move along the tubular ER to the cortical ER, supporting that it involves a lateral sorting event via the ER network. Furthermore, the peripheral bodies are associated with cortical ER tubules that are marked by the ER shaping protein reticulon in both yeast and plants. Thus, our data support a model in which the peripheral bodies partition into and/or stabilize at highly curved membrane environments.
Collapse
Affiliation(s)
- Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
28
|
Tilsner J, Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov E, Torrance L. Plasmodesmal targeting and intercellular movement of potato mop-top pomovirus is mediated by a membrane anchored tyrosine-based motif on the lumenal side of the endoplasmic reticulum and the C-terminal transmembrane domain in the TGB3 movement protein. Virology 2010; 402:41-51. [PMID: 20350737 DOI: 10.1016/j.virol.2010.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/02/2009] [Accepted: 03/03/2010] [Indexed: 12/27/2022]
Abstract
Live-cell fluorescence microscopy was used to investigate the third triple gene block protein (TGB3) of potato mop-top pomovirus and its role in assisted targeting of TGB2 to plasmodesmata (PD). Wild-type and mutant TGB3 proteins were expressed under the control of the 35S promoter or from a virus reporter clone. Assisted targeting of TGB2 to PD was optimal when the proteins were expressed from a bicistronic plasmid in the relative ratios expected in a virus infection, suggesting that excess TGB3 inhibited PD localisation. Contrary to the generally accepted view, bimolecular fluorescence complementation showed that the TGB3 N terminus is located in the cytosol. Mutational analysis to dissect TGB3 sub domain functions showed that PD targeting was mediated by a composite signal comprising an ER-lumenal tyrosine-based motif and the C-terminal transmembrane domain. Mutation of either of these domains also abolished cell-to-cell movement of the virus. The results are discussed in the context of TGB3 membrane topology.
Collapse
Affiliation(s)
- J Tilsner
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Epel BL. Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host β-1,3-glucanases. Semin Cell Dev Biol 2009; 20:1074-81. [DOI: 10.1016/j.semcdb.2009.05.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/24/2009] [Accepted: 05/27/2009] [Indexed: 01/24/2023]
|
30
|
Tseng YH, Hsu HT, Chou YL, Hu CC, Lin NS, Hsu YH, Chang BY. The two conserved cysteine residues of the triple gene block protein 2 are critical for both cell-to-cell and systemic movement of Bamboo mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1379-88. [PMID: 19810807 DOI: 10.1094/mpmi-22-11-1379] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The triple gene block protein 2 (TGBp2) of Bamboo mosaic virus (BaMV) is a transmembrane protein which is known to be required for the cell-to-cell movement of potexviruses. This protein has two conserved Cys residues, Cys-109 and Cys-112, at its C-terminal tail, which is supposed to be exposed on the outer surface of the endoplasmic reticulum (ER) membrane and ER-derived granular vesicles. In this study, we investigated the importance of these two Cys residues on the cell-to-cell and systemic movement of BaMV. Our results indicate that the Cys-to-Ala substitutions in TGBp2 make the cell-to-cell movement of BaMV relatively inefficient and the systemic movement of BaMV severely inhibited. Moreover, the defect in systemic movement is attributed to the inefficient transport of viral RNA in the phloem of petiole. Clearly, TGBp2 is critical not only for the cell-to-cell but also for the systemic movement of BaMV. In addition, the conserved Cys residues are important for the functioning of TGBp2.
Collapse
Affiliation(s)
- Yang-Hao Tseng
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Lim HS, Bragg JN, Ganesan U, Ruzin S, Schichnes D, Lee MY, Vaira AM, Ryu KH, Hammond J, Jackson AO. Subcellular localization of the barley stripe mosaic virus triple gene block proteins. J Virol 2009; 83:9432-48. [PMID: 19570874 PMCID: PMC2738231 DOI: 10.1128/jvi.00739-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/22/2009] [Indexed: 02/07/2023] Open
Abstract
Barley stripe mosaic virus (BSMV) spreads from cell to cell through the coordinated actions of three triple gene block (TGB) proteins (TGB1, TGB2, and TGB3) arranged in overlapping open reading frames (ORFs). Our previous studies (D. M. Lawrence and A. O. Jackson, J. Virol. 75:8712-8723, 2001; D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001) have shown that each of these proteins is required for cell-to-cell movement in monocot and dicot hosts. We recently found (H.-S. Lim, J. N. Bragg, U. Ganesan, D. M. Lawrence, J. Yu, M. Isogai, J. Hammond, and A. O. Jackson, J. Virol. 82:4991-5006, 2008) that TGB1 engages in homologous interactions leading to the formation of a ribonucleoprotein complex containing viral genomic and messenger RNAs, and we have also demonstrated that TGB3 functions in heterologous interactions with TGB1 and TGB2. We have now used Agrobacterium tumefaciens-mediated protein expression in Nicotiana benthamiana leaf cells and site-specific mutagenesis to determine how TGB protein interactions influence their subcellular localization and virus spread. Confocal microscopy revealed that the TGB3 protein localizes at the cell wall (CW) in close association with plasmodesmata and that the deletion or mutagenesis of a single amino acid at the immediate C terminus can affect CW targeting. TGB3 also directed the localization of TGB2 from the endoplasmic reticulum to the CW, and this targeting was shown to be dependent on interactions between the TGB2 and TGB3 proteins. The optimal localization of the TGB1 protein at the CW also required TGB2 and TGB3 interactions, but in this context, site-specific TGB1 helicase motif mutants varied in their localization patterns. The results suggest that the ability of TGB1 to engage in homologous binding interactions is not essential for targeting to the CW. However, the relative expression levels of TGB2 and TGB3 influenced the cytosolic and CW distributions of TGB1 and TGB2. Moreover, in both cases, localization at the CW was optimal at the 10:1 TGB2-to-TGB3 ratios occurring in virus infections, and mutations reducing CW localization had corresponding effects on BSMV movement phenotypes. These data support a model whereby TGB protein interactions function in the subcellular targeting of movement protein complexes and the ability of BSMV to move from cell to cell.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Jennifer N. Bragg
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Uma Ganesan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Steven Ruzin
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Denise Schichnes
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Mi Yeon Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Anna Maria Vaira
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Ki Hyun Ryu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - John Hammond
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Andrew O. Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| |
Collapse
|
32
|
Rajamäki ML, Valkonen JPT. Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. THE PLANT CELL 2009; 21:2485-502. [PMID: 19700632 PMCID: PMC2751958 DOI: 10.1105/tpc.108.064147] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 07/15/2009] [Accepted: 07/31/2009] [Indexed: 05/19/2023]
Abstract
The multifunctional nuclear inclusion protein a (NIa) of potyviruses (genus Potyvirus; Potyviridae) accumulates in the nucleus of virus-infected cells for unknown reasons. In this study, two regions in the viral genome-linked protein (VPg) domain of NIa in Potato virus A (PVA) were found to constitute nuclear and nucleolar localization signals (NLS) in plant cells (Nicotiana spp). Amino acid substitutions in both NLS I (residues 4 to 9) and NLS II (residues 41 to 50) prevented nuclear localization, whereas mutations in either single NLS did not. Mutations in either NLS, however, prevented nucleolar localization and prevented or diminished virus replication in protoplasts, accumulation in infected plant tissues, and/or systemic movement in plants. One NLS mutant was partially complemented by the wild-type VPg expressed in transgenic plants. Furthermore, NLS I controlled NIa accumulation in Cajal bodies. The VPg domain interacted with fibrillarin, a nucleolar protein, and depletion of fibrillarin reduced PVA accumulation. Overexpression of VPg in leaf tissues interfered with cosuppression of gene expression (i.e., RNA silencing), whereas NLS I and NLS II mutants, which exhibited reduced nuclear and nucleolar localization, showed no such activity. These results demonstrate that some of the most essential viral functions required for completion of the infection cycle are tightly linked to regulation of the NIa nuclear and nucleolar localization.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Applied Biology, University of Helsinki, Helsinki FIN-00014, Finland.
| | | |
Collapse
|
33
|
Li W, Lewandowski DJ, Hilf ME, Adkins S. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 2009; 390:110-21. [PMID: 19481775 DOI: 10.1016/j.virol.2009.04.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/19/2009] [Accepted: 04/28/2009] [Indexed: 11/18/2022]
Abstract
Deletion and alanine-substitution mutants of the Tomato spotted wilt virus NSm protein were generated to identify domains involved in tubule formation, movement and symptomatology using a heterologous Tobacco mosaic virus expression system. Two regions of NSm, G(19)-S(159) and G(209)-V(283), were required for both tubule formation in protoplasts and cell-to-cell movement in plants, indicating a correlation between these activities. Three amino acid groups, D(154), EYKK(205-208) and EEEEE(284-288) were linked with long-distance movement in Nicotiana benthamiana. EEEEE(284-288) was essential for NSm-mediated long-distance movement, whereas D(154) was essential for tubule formation and cell-to-cell movement; indicating separate genetic controls for cell-to-cell and long-distance movement. The region I(57)-N(100) was identified as the determinant of foliar necrosis in Nicotiana benthamiana, and mutagenesis of HH(93-94) greatly reduced necrosis. These findings are likely applicable to other tospovirus species, especially those within the 'New World' group as NSm sequences are highly conserved.
Collapse
Affiliation(s)
- Weimin Li
- University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | | | | | |
Collapse
|
34
|
Hsu HT, Tseng YH, Chou YL, Su SH, Hsu YH, Chang BY. Characterization of the RNA-binding properties of the triple-gene-block protein 2 of Bamboo mosaic virus. Virol J 2009; 6:50. [PMID: 19422690 PMCID: PMC2689192 DOI: 10.1186/1743-422x-6-50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/07/2009] [Indexed: 11/10/2022] Open
Abstract
The triple-gene-block protein 2 (TGBp2) of Bamboo mosaic virus (BaMV) is a transmembrane protein which was proposed to be involved in viral RNA binding during virus transport. Here, we report on the RNA-binding properties of TGBp2. Using tyrosine fluorescence spectroscopy and UV-crosslinking assays, the TGBp2 solubilized with Triton X-100 was found to interact with viral RNA in a non-specific manner. These results raise the possibility that TGBp2 facilitates intracellular delivery of viral RNA through non-specific protein-RNA interaction.
Collapse
Affiliation(s)
- Hsiu-Ting Hsu
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, PR China.
| | | | | | | | | | | |
Collapse
|
35
|
Lukhovitskaya NI, Ignatovich IV, Savenkov EI, Schiemann J, Morozov SY, Solovyev AG. Role of the zinc-finger and basic motifs of chrysanthemum virus B p12 protein in nucleic acid binding, protein localization and induction of a hypersensitive response upon expression from a viral vector. J Gen Virol 2009; 90:723-733. [PMID: 19218219 DOI: 10.1099/vir.0.005025-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The genomes of carlaviruses encode cysteine-rich proteins (CRPs) of unknown function. The 12 kDa CRP of chrysanthemum virus B (CVB), p12, has been shown previously to induce a hypersensitive response (HR) when expressed from potato virus X (PVX). This study demonstrated that a p12-induced HR was preceded by induction of a number of genes related to pathogenesis, stress and systemic acquired resistance. p12 localized predominantly to the nucleus. Interestingly, it was found that p12 bound both RNA and DNA in vitro, but notably exhibited a preference for DNA in the presence of Zn(2+) ions. Mutational analysis of the p12 conserved sequence motifs demonstrated that the basic motif is required for p12 translocation to the nucleus, thus representing part of the protein nuclear localization signal, whereas the predicted zinc finger motif is needed for both Zn(2+)-dependent DNA binding and eliciting an HR in PVX-infected leaves. Collectively, these results link, for the first time, nuclear localization of the protein encoded by a cytoplasmically replicating virus and its DNA-binding capacity with HR induction. Furthermore, these data suggest that p12 may mediate induction of the host genes by binding to the plant genomic DNA, and emphasize that CVB p12 is functionally distinct from other known nuclear-localized proteins encoded by the plant positive-stranded RNA viruses.
Collapse
Affiliation(s)
- N I Lukhovitskaya
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), Box 7080, SE-750 07 Uppsala, Sweden
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - I V Ignatovich
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - E I Savenkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), Box 7080, SE-750 07 Uppsala, Sweden
| | - J Schiemann
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety of Genetically Modified Plants, Messeweg 11/12, D-38104 Braunschweig, Germany
| | - S Yu Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - A G Solovyev
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya 42, 127550 Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
36
|
Jackson AO, Lim HS, Bragg J, Ganesan U, Lee MY. Hordeivirus replication, movement, and pathogenesis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:385-422. [PMID: 19400645 DOI: 10.1146/annurev-phyto-080508-081733] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The last Hordeivirus review appearing in this series 20 years ago focused on the comparative biology, relationships, and genome organization of members of the genus ( 68 ). Prior to the 1989 review, useful findings about the origin, disease occurrence, host ranges, and general biological properties of Barley stripe mosaic virus (BSMV) were summarized in three comprehensive reviews ( 26, 67, 107 ). Several recent reviews emphasizing contemporary molecular genetic findings also may be of interest to various readers ( 15, 37, 42, 69, 70, 88, 113 ). In the current review, we briefly reiterate the biological properties of the four members of the Hordeivirus genus and describe advances in our understanding of organization and expression of the viral genomes. We also discuss the infection processes and pathogenesis of the most extensively characterized Hordeiviruses and frame these advances in the broader context of viruses in other families that have encoded triple gene block proteins. In addition, an overview of recent advances in the use of BSMV for virus-induced gene silencing is presented.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
37
|
Hsu HT, Chou YL, Tseng YH, Lin YH, Lin TM, Lin NS, Hsu YH, Chang BY. Topological properties of the triple gene block protein 2 of Bamboo mosaic virus. Virology 2008; 379:1-9. [PMID: 18639913 DOI: 10.1016/j.virol.2008.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 06/11/2008] [Accepted: 06/17/2008] [Indexed: 12/01/2022]
Abstract
The triple gene block protein 2 (TGBp2) of Bamboo mosaic virus (BaMV) has been proposed to be a transmembrane protein; however, its features remain unclear. Here, we used biochemical approaches to determine its topological properties. Our data reveal that TGBp2 is mainly associated with the endoplasmic reticulum membrane. The resistance of TGBp2 in proteoliposomes, prepared from both the BaMV-infected tissues and in vitro reconstitution system, to both chemical extraction and trypsin digestion confirmed that it is indeed an integral membrane protein. On the basis of the minor change in the size of the major stable TGBp2-derived tryptic fragment from the monomeric TGBp2, as well as the sensitivity of the cysteine residues at the C-terminal tail of TGBp2 to maleimide modification, we suggest that TGBp2 adopts a topology with both its short N- and C-terminal tails exposed to the outer surface of the endoplasmic reticulum. Moreover, TGBp2 is able to self-assemble as revealed by the significant increase in multimeric TGBp2 when the TGBp2-containing proteoliposomes were treated with chemical crosslinker or oxidation agent.
Collapse
Affiliation(s)
- Hsiu-Ting Hsu
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ju HJ, Ye CM, Verchot-Lubicz J. Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover. Virology 2008; 375:103-17. [PMID: 18289625 DOI: 10.1016/j.virol.2008.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/18/2007] [Accepted: 01/20/2008] [Indexed: 02/05/2023]
Abstract
Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus. Mutational analysis failed to identify a nuclear targeting domain. Mutations inhibiting TGBp3 association with the ER and inhibiting virus movement did not block TGBp3:GFP in the nucleoplasm. A mutation disrupting the N-terminal transmembrane domain of TGBp3 caused the fusion to accumulate in the nucleus indicating that nuclear import is regulated by ER interactions. Tunicamycin, an ER-stress inducing chemical, caused lower levels of GFP and TGBp3:GFP to accumulate in virus infected protoplasts. MG115 and MG132 were used to demonstrate that wild-type and mutant TGBp3:GFP fusions were degraded by the 26S proteasome. These observations are consistent with an ER-associated protein degradation (ERAD) pathway suggesting that PVX TGBp3, similar to aberrant ER proteins, is translocated to the cytoplasm for degradation. Nuclear accumulation of mutant and wild-type TGBp3:GFP is independent of other PVX proteins and may be another feature of an ERAD pathway.
Collapse
Affiliation(s)
- Ho-Jong Ju
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|
39
|
The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection. Virology 2008; 376:154-64. [PMID: 18440039 DOI: 10.1016/j.virol.2008.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/02/2008] [Accepted: 03/16/2008] [Indexed: 11/20/2022]
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport.
Collapse
|
40
|
Schepetilnikov MV, Solovyev AG, Gorshkova EN, Schiemann J, Prokhnevsky AI, Dolja VV, Morozov SY. Intracellular targeting of a hordeiviral membrane-spanning movement protein: sequence requirements and involvement of an unconventional mechanism. J Virol 2008; 82:1284-93. [PMID: 18032484 PMCID: PMC2224415 DOI: 10.1128/jvi.01164-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 11/12/2007] [Indexed: 12/14/2022] Open
Abstract
The membrane-spanning protein TGBp3 is one of the three movement proteins (MPs) of Poa semilatent virus. TGBp3 is thought to direct other viral MPs and genomic RNA to peripheral bodies located in close proximity to plasmodesmata. We used the ectopic expression of green fluorescent protein-fused TGBp3 in epidermal cells of Nicotiana benthamiana leaves to study the TGBp3 intracellular trafficking pathway. Treatment with inhibitors was used to reveal that the targeting of TGBp3 to plasmodesmata does not require a functional cytoskeleton or secretory system. In addition, the suppression of endoplasmic reticulum-derived vesicle formation by a dominant negative mutant of small GTPase Sar1 had no detectable effect on TGBp3 trafficking to peripheral bodies. Collectively, these results suggested the involvement of an unconventional pathway in the intracellular transport of TGBp3. The determinants of targeting to plasmodesmata were localized to the C-terminal region of TGBp3, including the conserved hydrophilic and terminal membrane-spanning domains.
Collapse
Affiliation(s)
- Mikhail V Schepetilnikov
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall 2082, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Plant viruses spread from the initially infected cells to the rest of the plant in several distinct stages. First, the virus (in the form of virions or nucleic acid protein complexes) moves intracellularly from the sites of replication to plasmodesmata (PD, plant-specific intercellular membranous channels), the virus then transverses the PD to spread intercellularly (cell-to-cell movement). Long-distance movement of virus occurs through phloem sieve tubes. The processes of plant virus movement are controlled by specific viral movement proteins (MPs). No extensive sequence similarity has been found in MPs belonging to different plant virus taxonomic groups. Moreover, different MPs were shown to use different pathways and mechanisms for virus transport. Some viral transport systems require a single MP while others require additional virus-encoded proteins to transport viral genomes. In this review, we focus on the functions and properties of different classes of MPs encoded by RNA containing plant viruses.
Collapse
|
43
|
Haupt S, Ziegler A, Torrance L. Localization of viral proteins in plant cells: protein tagging. Methods Mol Biol 2008; 451:463-73. [PMID: 18370274 DOI: 10.1007/978-1-59745-102-4_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
This chapter describes techniques for in vivo imaging of fluorescent fusion proteins in living cells by confocal laser scanning microscopy (CLSM). Methods are provided for (i) producing the constructs for transient expression from plasmids or virus-based vectors, (ii) introduction of constructs to plant epidermal cells; (iii) imaging of the expressed proteins by CLSM and image processing, and (iv) studying the expression in the presence of agents that affect the integrity or function of cytoskeletal elements. Notes are provided to aid comprehension and indicate problems.
Collapse
Affiliation(s)
- Sophie Haupt
- University of Dundee at SCRI, Invergowrie, DD2 5DA, UK
| | | | | |
Collapse
|
44
|
Samuels TD, Ju HJ, Ye CM, Motes CM, Blancaflor EB, Verchot-Lubicz J. Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 2007; 367:375-89. [PMID: 17610926 DOI: 10.1016/j.virol.2007.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 12/16/2022]
Abstract
Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts. GFP:TGBp2 and TGBp3:GFP were both seen in the ER, ER-associated granular vesicles, and perinuclear X-bodies suggesting that these proteins interact in the same subdomains of the endomembrane network. When plasmids expressing CFP:TGBp2 and TGBp3:GFP were co-delivered to tobacco leaf epidermal cells, the fluorescent signals overlapped in ER-associated granular vesicles indicating that these proteins colocalize in this subcellular compartment. GFP:TGBp1 was seen in the nucleus, cytoplasm, rod-like inclusion bodies, and in punctate sites embedded in the cell wall. The puncta were reminiscent of previous reports showing viral proteins in plasmodesmata. Experiments using CFP:TGBp1 and YFP:TGBp2 or TGBp3:GFP showed CFP:TGBp1 remained in the cytoplasm surrounding the endomembrane network. There was no evidence that the granular vesicles contained TGBp1. Yeast two hybrid experiments showed TGBp1 self associates but failed to detect interactions between TGBp1 and TGBp2 or TGBp3. These experiments indicate that the PVX TGB proteins have complex subcellular accumulation patterns and likely cooperate across subcellular compartments to promote virus infection.
Collapse
Affiliation(s)
- Timmy D Samuels
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ju HJ, Brown JE, Ye CM, Verchot-Lubicz J. Mutations in the central domain of potato virus X TGBp2 eliminate granular vesicles and virus cell-to-cell trafficking. J Virol 2007; 81:1899-911. [PMID: 17151124 PMCID: PMC1797549 DOI: 10.1128/jvi.02009-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 11/26/2006] [Indexed: 11/20/2022] Open
Abstract
Most RNA viruses remodel the endomembrane network to promote virus replication, maturation, or egress. Rearrangement of cellular membranes is a crucial component of viral pathogenesis. The PVX TGBp2 protein induces vesicles of the granular type to bud from the endoplasmic reticulum network. Green fluorescent protein (GFP) was fused to the PVX TGBp2 coding sequence and inserted into the viral genome and into pRTL2 plasmids to study protein subcellular targeting in the presence and absence of virus infection. Mutations were introduced into the central domain of TGBp2, which contains a stretch of conserved amino acids. Deletion of a 10-amino-acid segment (m2 mutation) overlapping the segment of conserved residues eliminated the granular vesicle and inhibited virus movement. GFP-TGBp2m2 proteins accumulated in enlarged vesicles. Substitution of individual conserved residues in the same region similarly inhibited virus movement and caused the mutant GFP-TGBp2 fusion proteins to accumulate in enlarged vesicles. These results identify a novel element in the PVX TGBp2 protein which determines vesicle morphology. In addition, the data indicate that vesicles of the granular type induced by TGBp2 are necessary for PVX plasmodesmata transport.
Collapse
Affiliation(s)
- Ho-Jong Ju
- Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
46
|
Navarro JA, Genovés A, Climent J, Saurí A, Martínez-Gil L, Mingarro I, Pallás V. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology 2006; 356:57-67. [PMID: 16950492 DOI: 10.1016/j.virol.2006.07.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/01/2006] [Accepted: 07/06/2006] [Indexed: 11/22/2022]
Abstract
Advances in structural and biochemical properties of carmovirus movement proteins (MPs) have only been obtained in p7 and p9 from Carnation mottle virus (CarMV). Alignment of carmovirus MPs revealed a low conservation of amino acid identity but interestingly, similarity was elevated in regions associated with the functional secondary structure elements reported for CarMV which were conserved in all studied proteins. Nevertheless, some differential features in relation with CarMV MPs were identified in those from Melon necrotic virus (MNSV) (p7A and p7B). p7A was a soluble non-sequence specific RNA-binding protein, but unlike CarMV p7, its central region alone could not account for the RNA-binding properties of the entire protein. In fact, a 22-amino acid synthetic peptide whose sequence corresponds to this central region rendered an apparent dissociation constant (K(d)) significantly higher than that of the corresponding entire protein (9 mM vs. 0.83-25.7 microM). This p7A-derived peptide could be induced to fold into an alpha-helical structure as demonstrated for other carmovirus p7-like proteins. Additionally, in vitro fractionation of p7B transcription/translation mixtures in the presence of ER-derived microsomal membranes strongly suggested that p7B is an integral membrane protein. Both characteristics of these two small MPs forming the double gene block (DGB) of MNSV are discussed in the context of the intra- and intercellular movement of carmovirus.
Collapse
Affiliation(s)
- J A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Lough TJ, Lee RH, Emerson SJ, Forster RLS, Lucas WJ. Functional analysis of the 5' untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 2006; 351:455-65. [PMID: 16697024 DOI: 10.1016/j.virol.2006.03.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/06/2006] [Accepted: 03/27/2006] [Indexed: 11/27/2022]
Abstract
Cell-to-cell movement of potexviruses requires cognate recognition between the viral RNA, the triple gene block proteins (TGBp1-3) and the coat protein (CP). cis-acting motifs required for recognition and translocation of viral RNA were identified using an artificial potexvirus defective RNA encoding a green fluorescent protein (GFP) reporter transcriptionally fused to the terminal viral sequences. Analysis of GFP fluorescence produced in vivo from these defective RNA constructs, referred to as chimeric RNA reporters, was used to identify viral cis-acting motifs required for RNA trafficking. Mapping experiments localized the cis-acting element to nucleotides 1-107 of the Potato virus X (PVX) genome. This sequence forms an RNA secondary structural element that has also been implicated in viral plus-strand accumulation [Miller, E.D., Plante, C.A., Kim, K.-H., Brown, J.W. and Hemenway, C. (1998) J. Mol. Biol. 284, 591-608]. While replication and movement functions associated with this region have not been separated, these results are consistent with sequence-specific recognition of RNA by the viral movement protein(s). This situation is unusual among viral movement proteins that typically function to translocate RNA between cells in a non-sequence-specific manner. These data support the concept of cis-acting elements specifying intercellular potexvirus RNA movement and thus provide a basis for dissection of RNA-mediated intercellular communication in plants.
Collapse
Affiliation(s)
- Tony J Lough
- Horticulture and Food Research Institute of New Zealand, Plant Health and Development Group, Private Bag 11030, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
48
|
Paape M, Solovyev AG, Erokhina TN, Minina EA, Schepetilnikov MV, Lesemann DE, Schiemann J, Morozov SY, Kellmann JW. At-4/1, an interactor of the Tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:874-83. [PMID: 16903353 DOI: 10.1094/mpmi-19-0874] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Tomato spotted wilt virus (TSWV) encoded NSm movement protein facilitates cell-to-cell spread of the viral genome through structurally modified plasmodesmata. NSm has been utilized as bait in yeast two-hybrid interaction trap screenings. As a result, a protein of unknown function, called At-4/1, was isolated from an Arabidopsis thaliana GAL4 activation domain-tagged cDNA library. Using polyclonal antibodies against bacterially expressed At-4/1, Western blot analysis of protein extracts isolated from different plant species as well as genome database screenings showed that homologues of At-4/1 seemed to be encoded by many vascular plants. For subcellular localization studies, At-4/1 was fused to green fluorescent protein, and corresponding expression vectors were used in particle bombardment and agroinfiltration assays. Confocal laser scannings revealed that At-4/1 assembled in punctate spots at the cell periphery. The protein accumulated intracellularly in a polarized fashion, appearing in only one-half of a bombarded epidermal cell, and, moreover, moved from cell to cell, forming twin-structured bodies seemingly located at both orifices of the plasmodesmatal pore. In coexpression studies, At-4/1 colocalized with a plant virus movement protein TGBp3 known to reside in endoplasmic reticulum-derived membrane structures located in close vicinity to plasmodesmata. Thus, At-4/1 belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking.
Collapse
Affiliation(s)
- Martina Paape
- University of Rostock, Biology Institute, Albert Einstein Str. 3, 18059 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vijaya Palani P, Kasiviswanathan V, Chen JCF, Chen W, Hsu YH, Lin NS. The arginine-rich motif of Bamboo mosaic virus satellite RNA-encoded P20 mediates self-interaction, intracellular targeting, and cell-to-cell movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:758-67. [PMID: 16838788 DOI: 10.1094/mpmi-19-0758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Satellite RNA of Bamboo mosaic virus (satBaMV) has a single open reading frame for a nonstructural, RNA-binding protein, P20, which facilitates the long-distance movement of satBaMV in Nicotiana benthamiana. Here, we elucidate various biological properties of P20 and the involvement of a single domain in its activities. P20 displayed a strong self-interaction in vitro and in vivo, and cross-linking assays demonstrated its oligomerization. Domain mapping, using the bacterial two-hybrid system, indicated that the self-interacting domain overlaps the RNA-binding domain in the N-terminal arginine-rich motif (ARM) of P20. The deletion of the ARM abolished the self-interaction of P20 in vitro and in vivo and impaired its intracellular targeting and efficient cell-to-cell movement in N. benthamiana leaves. Moreover, RNA and protein accumulation of the ARM deletion mutant of satBaMV was significantly reduced in leaves systemically coinfected with Bamboo mosaic potexvirus and satBaMV. This is the first report of the involvement of ARM in various biological activities of a satellite RNA-encoded protein during infection of its host.
Collapse
|
50
|
Lin MK, Hu CC, Lin NS, Chang BY, Hsu YH. Movement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system. J Gen Virol 2006; 87:1357-1367. [PMID: 16603539 DOI: 10.1099/vir.0.81625-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intra- and intercellular transport of potexviruses require interactions among viral RNA, coat protein and elements of the triple gene block proteins (TGBps). In this study, the requirement of bamboo mosaic virus (BaMV) TGBps for movement functions and the compatibilities with those of two potexviruses, Potato virus X (PVX) and Foxtail mosaic virus (FoMV), were examined using a satellite RNA-mediated trans-complementation assay system. Single or multiple TGBps of BaMV, PVX and FoMV were expressed from BaMV satellite RNA (satBaMV RNA) vectors to complement the functions of green fluorescent protein-tagged, movement-defective BaMV with mutation(s) in the matching gene(s). It was found that individual BaMV TGBps expressed from the satellite vector could function normally in trans, whereas bi-gene BaMV TGBp constructs in which the expression of TGBp3 might be impaired and individual TGBp genes from PVX or FoMV could not complement the movement functions of the defective helper viruses. Furthermore, alterations of the ratio among TGBps by ectopic expression of individual components of TGBps from satBaMV RNA vectors did not affect the cell-to-cell movement capabilities of wild-type BaMV significantly. The results indicate that species-specific interactions among movement proteins are obligatory for the cell-to-cell movement of BaMV and possibly other potexviruses.
Collapse
Affiliation(s)
- Ming-Kuem Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung City, Taiwan 402, ROC
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung City, Taiwan 402, ROC
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC
| | - Ban-Yang Chang
- Graduate Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung City, Taiwan 402, ROC
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung City, Taiwan 402, ROC
| |
Collapse
|