1
|
Zhao G, Zhang W, Fu X, Xie X, Bai S, Li X. Synthesis and Screening of Chemical Agents Targeting Viral Protein Genome-Linked Protein of Telosma Mosaic Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13645-13653. [PMID: 37676131 DOI: 10.1021/acs.jafc.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The viral protein genome-linked protein (VPg) of telosma mosaic virus (TeMV) plays an important role in viral reproduction. In this study, the expression conditions of TeMV VPg were explored. A series of novel benzenesulfonamide derivatives were synthesized. The binding sites of the target compounds and TeMV VPg were studied by molecular docking, and the interaction was verified by microscale thermophoresis. The study revealed that the optimal expression conditions for TeMV VPg were in Escherichia coli Rosetta with IPTG concentration of 0.8 mM and induction temperature of 25 °C. Compounds A4, A6, A9, A16, and A17 exhibited excellent binding affinity to TeMV VPg, with Kd values of 0.23, 0.034, 0.19, 0.086, and 0.22 μM, respectively. LYS 121 is the key amino acid site. Compounds A9 inhibited the expression of TeMV VPg in Nicotiana benthamiana. The results suggested that TeMV VPg is a potential antiviral target to screen anti-TeMV compounds.
Collapse
Affiliation(s)
- Guili Zhao
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wenjuan Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China
| | - Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Song Bai
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- Guizhou Industry Polytechnic College, Guiyang 550008, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Gnanasekaran P, Zhai Y, Kamal H, Smertenko A, Pappu HR. A plant virus protein, NIa-pro, interacts with Indole-3-acetic acid-amido synthetase, whose levels positively correlate with disease severity. FRONTIERS IN PLANT SCIENCE 2023; 14:1112821. [PMID: 37767296 PMCID: PMC10519798 DOI: 10.3389/fpls.2023.1112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
Potato virus Y (PVY) is an economically important plant pathogen that reduces the productivity of several host plants. To develop PVY-resistant cultivars, it is essential to identify the plant-PVY interactome and decipher the biological significance of those molecular interactions. We performed a yeast two-hybrid (Y2H) screen of Nicotiana benthamiana cDNA library using PVY-encoded NIa-pro as the bait. The N. benthamiana Indole-3-acetic acid-amido synthetase (IAAS) was identified as an interactor of NIa-pro protein. The interaction was confirmed via targeted Y2H and bimolecular fluorescence complementation (BiFC) assays. NIa-pro interacts with IAAS protein and consequently increasing the stability of IAAS protein. Also, the subcellular localization of both NIa-pro and IAAS protein in the nucleus and cytosol was demonstrated. By converting free IAA (active form) to conjugated IAA (inactive form), IAAS plays a crucial regulatory role in auxin signaling. Transient silencing of IAAS in N. benthamiana plants reduced the PVY-mediated symptom induction and virus accumulation. Conversely, overexpression of IAAS enhanced symptom induction and virus accumulation in infected plants. In addition, the expression of auxin-responsive genes was found to be downregulated during PVY infection. Our findings demonstrate that PVY NIa-pro protein potentially promotes disease development via modulating auxin homeostasis.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Zlobin N, Taranov V. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1041868. [PMID: 36844044 PMCID: PMC9950400 DOI: 10.3389/fpls.2023.1041868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potyviruses are the largest group of plant-infecting RNA viruses that affect a wide range of crop plants. Plant resistance genes against potyviruses are often recessive and encode translation initiation factors eIF4E. The inability of potyviruses to use plant eIF4E factors leads to the development of resistance through a loss-of-susceptibility mechanism. Plants have a small family of eIF4E genes that encode several isoforms with distinct but overlapping functions in cell metabolism. Potyviruses use distinct eIF4E isoforms as susceptibility factors in different plants. The role of different members of the plant eIF4E family in the interaction with a given potyvirus could differ drastically. An interplay exists between different members of the eIF4E family in the context of plant-potyvirus interactions, allowing different eIF4E isoforms to modulate each other's availability as susceptibility factors for the virus. In this review, possible molecular mechanisms underlying this interaction are discussed, and approaches to identify the eIF4E isoform that plays a major role in the plant-potyvirus interaction are suggested. The final section of the review discusses how knowledge about the interaction between different eIF4E isoforms can be used to develop plants with durable resistance to potyviruses.
Collapse
|
4
|
A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Commun Biol 2023; 6:28. [PMID: 36631662 PMCID: PMC9834402 DOI: 10.1038/s42003-023-04427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.
Collapse
|
5
|
Akhter MS, Nakahara KS, Masuta C. Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. Virol J 2021; 18:176. [PMID: 34454519 PMCID: PMC8400904 DOI: 10.1186/s12985-021-01647-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Viral diseases cause significant damage to crop yield and quality. While fungi- and bacteria-induced diseases can be controlled by pesticides, no effective approaches are available to control viruses with chemicals as they use the cellular functions of their host for their infection cycle. The conventional method of viral disease control is to use the inherent resistance of plants through breeding. However, the genetic sources of viral resistance are often limited. Recently, genome editing technology enabled the publication of multiple attempts to artificially induce new resistance types by manipulating host factors necessary for viral infection. MAIN BODY In this review, we first outline the two major (R gene-mediated and RNA silencing) viral resistance mechanisms in plants. We also explain the phenomenon of mutations of host factors to function as recessive resistance genes, taking the eIF4E genes as examples. We then focus on a new type of virus resistance that has been repeatedly reported recently due to the widespread use of genome editing technology in plants, facilitating the specific knockdown of host factors. Here, we show that (1) an in-frame mutation of host factors necessary to confer viral resistance, sometimes resulting in resistance to different viruses and that (2) certain host factors exhibit antiviral resistance and viral-supporting (proviral) properties. CONCLUSION A detailed understanding of the host factor functions would enable the development of strategies for the induction of a new type of viral resistance, taking into account the provision of a broad resistance spectrum and the suppression of the appearance of resistance-breaking strains.
Collapse
Affiliation(s)
- Md Shamim Akhter
- Plant Pathology Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur, 1701, Bangladesh
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
6
|
Khan MA. Phosphorylation of translation initiation factor eIFiso4E promotes translation through enhanced binding to potyvirus VPg. J Biochem 2019; 165:167-176. [PMID: 30371907 DOI: 10.1093/jb/mvy091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Interactions of phosphorylated eIFiso4E binding to VPg as a function of temperature and ionic strength were assessed employing fluorescence spectroscopic. Phosphorylation increased the binding affinity ∼3.5-fold between VPg and eIFiso4E under equilibrium conditions. Binding affinity of VPg for eIFiso4Ep correlates with the ability to enhance in vitro protein synthesis. Addition of VPg and eIFiso4Ep together to Dep WGE enhances the translation for both uncapped and capped mRNA. However, capped mRNA translation was inhibited with addition of eIFiso4Ep alone in dep WGE, suggesting that phosphorylation prevents the cap binding and favours the VPg binding to promotes translation. Temperature dependence showed that the phosphorylated form of the eIFiso4E is preferred for complex formation. A van't Hoff analysis reveals that eIFiso4Ep binding to VPg was enthalpy driven (ΔH = -43.9 ± 0.3 kJ.mol-1) and entropy-opposed (ΔS = -4.3 ± 0.1 J.mol-1K-1). Phosphorylation increased the enthalpic contributions ∼33% for eIFiso4Ep-VPg complex. The thermodynamic values and ionic strength dependence of binding data suggesting that phosphorylation increased hydrogen-bonding and decreased hydrophobic interactions, which leads to more stable complex formation and favour efficient viral translation. Overall these data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry & Biochemistry, Hunter College of the City University of New York, 695 Park Ave, New York, USA.,Department of Life Sciences, College of Science and General Studies, Alfaisal University, Takhasusi Street, P.O. Box-50927, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Schmitt-Keichinger C. Manipulating Cellular Factors to Combat Viruses: A Case Study From the Plant Eukaryotic Translation Initiation Factors eIF4. Front Microbiol 2019; 10:17. [PMID: 30804892 PMCID: PMC6370628 DOI: 10.3389/fmicb.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Genes conferring resistance to plant viruses fall in two categories; the dominant genes that mostly code for proteins with a nucleotide binding site and leucine rich repeats (NBS-LRR), and that directly or indirectly, recognize viral avirulence factors (Avr), and the recessive genes. The latter provide a so-called recessive resistance. They represent roughly half of the known resistance genes and are alleles of genes that play an important role in the virus life cycle. Conversely, all cellular genes critical for the viral infection virtually represent recessive resistance genes. Based on the well-documented case of recessive resistance mediated by eukaryotic translation initiation factors of the 4E/4G family, this review is intended to summarize the possible approaches to control viruses via their host interactors. Classically, resistant crops have been developed through introgression of natural variants of the susceptibility factor from compatible relatives or by random mutagenesis and screening. Transgenic methods have also been applied to engineer improved crops by overexpressing the translation factor either in its natural form or after directed mutagenesis. More recently, innovative approaches like silencing or genome editing have proven their great potential in model and crop plants. The advantages and limits of these different strategies are discussed. This example illustrates the need to identify and characterize more host factors involved in virus multiplication and to assess their application potential in the control of viral diseases.
Collapse
|
8
|
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:421-434. [PMID: 30019807 PMCID: PMC6335076 DOI: 10.1111/pbi.12987] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/27/2018] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-binding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9-mediated genome editing was employed to generate ncbp-1, ncbp-2, and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild-type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.
Collapse
Affiliation(s)
- Michael A. Gomez
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke Hayden
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | - Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Brian J. Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
9
|
Machado JPB, Calil IP, Santos AA, Fontes EPB. Translational control in plant antiviral immunity. Genet Mol Biol 2017; 40:292-304. [PMID: 28199446 PMCID: PMC5452134 DOI: 10.1590/1678-4685-gmb-2016-0092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023] Open
Abstract
Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP)-Interacting Kinase1), is discussed in this review.
Collapse
Affiliation(s)
- João Paulo B Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Iara P Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Anésia A Santos
- Department of General Biology, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| |
Collapse
|
10
|
Charon J, Theil S, Nicaise V, Michon T. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation. MOLECULAR BIOSYSTEMS 2016; 12:634-52. [PMID: 26699268 DOI: 10.1039/c5mb00677e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs.
Collapse
Affiliation(s)
- Justine Charon
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Sébastien Theil
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Valérie Nicaise
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Thierry Michon
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| |
Collapse
|
11
|
Li H, Kondo H, Kühne T, Shirako Y. Barley Yellow Mosaic Virus VPg Is the Determinant Protein for Breaking eIF4E-Mediated Recessive Resistance in Barley Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1449. [PMID: 27746794 PMCID: PMC5043020 DOI: 10.3389/fpls.2016.01449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 05/25/2023]
Abstract
In this study, we investigated the barley yellow mosaic virus (BaYMV, genus Bymovirus) factor(s) responsible for breaking eIF4E-mediated recessive resistance genes (rym4/5/6) in barley. Genome mapping analysis using chimeric infectious cDNA clones between rym5-breaking (JT10) and rym5-non-breaking (JK05) isolates indicated that genome-linked viral protein (VPg) is the determinant protein for breaking the rym5 resistance. Likewise, VPg is also responsible for overcoming the resistances of rym4 and rym6 alleles. Mutational analysis identified that amino acids Ser-118, Thr-120, and His-142 in JT10 VPg are the most critical residues for overcoming rym5 resistance in protoplasts. Moreover, the rym5-non-breaking JK05 could accumulate in the rym5 protoplasts when eIF4E derived from a susceptible barley cultivar was expressed from the viral genome. Thus, the compatibility between VPg and host eIF4E determines the ability of BaYMV to infect barley plants.
Collapse
Affiliation(s)
- Huangai Li
- Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
- Asian Natural Environmental Science Center, The University of TokyoTokyo, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Thomas Kühne
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-InstitutQuedlinburg, Germany
| | - Yukio Shirako
- Asian Natural Environmental Science Center, The University of TokyoTokyo, Japan
| |
Collapse
|
12
|
Lebaron C, Rosado A, Sauvage C, Gauffier C, German-Retana S, Moury B, Gallois JL. A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability. J Gen Virol 2016; 97:3063-3072. [PMID: 27655175 DOI: 10.1099/jgv.0.000609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Allele mining on susceptibility factors offers opportunities to find new sources of resistance among crop wild relatives for breeding purposes. As a proof of concept, we used available RNAseq data to investigate polymorphisms among the four tomato genes encoding translation initiation factors [eIF4E1 and eIF4E2, eIFiso4E and the related gene new cap-binding protein(nCBP)] to look for new potential resistance alleles to potyviruses. By analysing polymorphism among RNAseq data obtained for 20 tomato accessions, 10 belonging to the cultivated type Solanum lycopersicum and 10 belonging to the closest related wild species Solanum pimpinellifolium, we isolated one new eIF4E1 allele, in the S. pimpinellifolium LA0411 accession, which encodes a potential new resistance allele, mainly due to a polymorphism associated with an amino acid change within eIF4E1 region II. We confirmed that this new allele, pot12, is indeed associated with resistance to potato virus Y, although with a restricted resistance spectrum and a very low durability potential. This suggests that mutations occurring in eIF4E region II only may not be sufficient to provide efficient and durable resistance in plants. However, our study emphasizes the opportunity brought by RNAseq data to mine for new resistance alleles. Moreover, this approach could be extended to seek for putative new resistance alleles by screening for variant forms of susceptibility genes encoding plant host proteins known to interact with viral proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Benoît Moury
- Pathologie Végétale, INRA, 84140 Montfavet, France
| | | |
Collapse
|
13
|
Poulicard N, Pacios LF, Gallois JL, Piñero D, García-Arenal F. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. PLoS Genet 2016; 12:e1006214. [PMID: 27490800 PMCID: PMC4973933 DOI: 10.1371/journal.pgen.1006214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the diversity and the evolution of the resistance gene, resulting in the selection of resistance alleles.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Fernández Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) and Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jean-Luc Gallois
- Institut National de Recherche Agronomique (INRA), UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
14
|
Li Y, Xiong R, Bernards M, Wang A. Recruitment of Arabidopsis RNA Helicase AtRH9 to the Viral Replication Complex by Viral Replicase to Promote Turnip Mosaic Virus Replication. Sci Rep 2016; 6:30297. [PMID: 27456972 PMCID: PMC4960543 DOI: 10.1038/srep30297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 02/02/2023] Open
Abstract
Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly dependent on host components to fulfill their life cycle. Recent studies have suggested that DEAD-box RNA helicases play vital roles in many aspects of RNA metabolism. To explore the possible role of the RNA helicases in viral infection, we used the Turnip mosaic virus (TuMV)-Arabidopsis pathosystem. The Arabidopsis genome encodes more than 100 putative RNA helicases (AtRH). Over 41 Arabidopsis T-DNA insertion mutants carrying genetic lesions in the corresponding 26 AtRH genes were screened for their requirement in TuMV infection. TuMV infection assays revealed that virus accumulation significantly decreased in the Arabidopsis mutants of three genes, AtRH9, AtRH26, and PRH75. In the present work, AtRH9 was further characterized. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that AtRH9 interacted with the TuMV NIb protein, the viral RNA-dependent RNA polymerase. Moreover, the subcellular distribution of AtRH9 was altered in the virus-infected cells, and AtRH9 was recruited to the viral replication complex. These results suggest that Arabidopsis AtRH9 is an important component of the TuMV replication complex, possibly recruited via its interaction with NIb.
Collapse
Affiliation(s)
- Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Ruyi Xiong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Mark Bernards
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
15
|
Gauffier C, Lebaron C, Moretti A, Constant C, Moquet F, Bonnet G, Caranta C, Gallois JL. A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:717-29. [PMID: 26850324 DOI: 10.1111/tpj.13136] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 05/23/2023]
Abstract
Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING-induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh-eIF4E1(PI24)-pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re-establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss-of-function alleles to generate resistance may be counter-productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity.
Collapse
Affiliation(s)
- Camille Gauffier
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - Caroline Lebaron
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - André Moretti
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - Carole Constant
- Sakata Vegetables Europe, Domaine de Sablas Rue du Moulin, F-30620, Uchaud, France
| | - Frédéric Moquet
- Gautier Semences, Route d'Avignon, F-13630, Eyragues, France
| | - Grégori Bonnet
- Syngenta, 346 Route des Pasquiers, F-84260, Sarrians, France
| | - Carole Caranta
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - Jean-Luc Gallois
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| |
Collapse
|
16
|
Plant Translation Factors and Virus Resistance. Viruses 2015; 7:3392-419. [PMID: 26114476 PMCID: PMC4517107 DOI: 10.3390/v7072778] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B) that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.
Collapse
|
17
|
Di R, Tumer NE. Pokeweed antiviral protein: its cytotoxicity mechanism and applications in plant disease resistance. Toxins (Basel) 2015; 7:755-72. [PMID: 25756953 PMCID: PMC4379523 DOI: 10.3390/toxins7030755] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a 29 kDa type I ribosome inactivating protein (RIP) found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.
Collapse
Affiliation(s)
- Rong Di
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
18
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
19
|
Association of VPg and eIF4E in the host tropism at the cellular level of Barley yellow mosaic virus and Wheat yellow mosaic virus in the genus Bymovirus. Virology 2014; 476:159-167. [PMID: 25543966 DOI: 10.1016/j.virol.2014.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 11/22/2022]
Abstract
Barley yellow mosaic virus (BaYMV) and Wheat yellow mosaic virus (WYMV) are separate species in the genus Bymovirus with bipartite plus-sense RNA genomes. In fields, BaYMV infects only barley and WYMV infects only wheat. Here, we studied the replicative capability of the two viruses in barley and wheat mesophyll protoplasts. BaYMV replicated in both barley and wheat protoplasts, but WYMV replicated only in wheat protoplasts. The expression of wheat translation initiation factor 4E (eIF4E), a common host factor for potyviruses, from the WYMV genome enabled WYMV replication in barley protoplasts. Replacing the BaYMV VPg gene with that of WYMV abolished BaYMV replication in barley protoplasts, whereas the additional expression of wheat eIF4E from BaYMV genome restored the replication of the BaYMV mutant in barley protoplasts. These results indicate that both VPg and the host eIF4E are involved in the host tropism of BaYMV and WYMV at the replication level.
Collapse
|
20
|
Svanella-Dumas L, Verdin E, Faure C, German-Retana S, Gognalons P, Danet JL, Marais A, Candresse T. Adaptation of lettuce mosaic virus to Catharanthus roseus involves mutations in the central domain of the VPg. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:491-7. [PMID: 24400938 DOI: 10.1094/mpmi-10-13-0320-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An isolate of Lettuce mosaic virus (LMV, a Potyvirus) infecting Madagascar periwinckle (Catharanthus roseus) was identified and characterized by Illumina deep sequencing. LMV-Cr has no close affinities to previously sequenced LMV isolates and represents a novel, divergent LMV clade. Inoculation experiments with other representative LMV isolates showed that they are unable to infect C. roseus, which was not known to be a host for LMV. However, three C. roseus variants of one of these isolates, LMV-AF199, could be selected and partially or completely sequenced. These variants are characterized by the accumulation of mutations affecting the C-terminal part of the cylindrical inclusion (CI) helicase and the central part of the VPg. In particular, a serine to proline mutation at amino acid 143 of the VPg was observed in all three independently selected variants and is also present in the LMV-Cr isolate, making it a prime candidate as a host-range determinant. Other mutations at VPg positions 65 and 144 could also contribute to the ability to infect C. roseus. Inoculation experiments involving a recombinant LMV expressing a permissive lettuce eukaryotic translation initiation factor 4E (eIF4E) suggest that eIF4E does not contribute to the interaction of most LMV isolates with C. roseus.
Collapse
|
21
|
Moury B, Charron C, Janzac B, Simon V, Gallois JL, Palloix A, Caranta C. Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): a game of mirrors impacting resistance spectrum and durability. INFECTION GENETICS AND EVOLUTION 2013; 27:472-80. [PMID: 24309680 DOI: 10.1016/j.meegid.2013.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Polymorphism in the plant eukaryotic translation initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg) determine, in many cases, the outcome of the confrontation between these two organisms: compatibility (i.e. infection of the plant by the virus) or incompatibility (i.e. resistance of the plant to the virus). The two interacting proteins eIF4E and VPg show strikingly similar evolution patterns. Most codon positions in their coding sequences are highly constrained for nonsynonymous substitutions but a small number shows evidence for positive selection. Several of these latter positions were shown to be functionally important, conferring resistance to the host or pathogenicity to the virus. Determining the mutational pathways involved in pepper eIF4E diversification revealed a link between an increase of the pepper resistance spectrum towards a panel of potyvirus species and an increase of durability of the resistance towards Potato virus Y. This relationship questions the interest of using more generally the spectrum of action of a plant resistance gene as a predictor of its durability potential.
Collapse
Affiliation(s)
- B Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France.
| | - C Charron
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - B Janzac
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France; INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - V Simon
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - J L Gallois
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - A Palloix
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - C Caranta
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| |
Collapse
|
22
|
Nucleo-cytoplasmic shuttling of VPg encoded by Wheat yellow mosaic virus requires association with the coat protein. J Gen Virol 2013; 94:2790-2802. [DOI: 10.1099/vir.0.055830-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VPg (virus protein, genome-linked) is a multifunctional protein that plays important roles in viral multiplication in the cytoplasm. However, a number of VPgs encoded by plant viruses target the nucleus and this appears to be biologically significant. These VPgs may therefore be translocated between nuclear and cytoplasmic compartments during virus infection, but such nucleo-cytoplasmic transport has not been demonstrated. We report that VPg encoded by Wheat yellow mosaic virus (WYMV, genus Bymovirus, family Potyviridae) accumulated in both the nucleus and cytoplasm of infected cells, but localized exclusively in the nucleus when expressed alone in plants. Computational analyses predicted the presence of a nuclear localization signal (NLS) and a nuclear export signal (NES) in WYMV VPg. Mutational analyses showed that both the N-terminal and the NLS domains of VPg contribute to the efficiency of nuclear targeting. In vitro and in planta assays indicated that VPg interacts with WYMV coat protein (CP) and proteinase 1 (P1) proteins. Observation of VPg fused to a fluorescent protein and subcellular fractionation experiments showed that VPg was translocated to the cytoplasm when co-expressed with CP, but not with P1. Mutations in the NES domain or treatment with leptomycin B prevented VPg translocation to the cytoplasm when co-expressed with CP. Our results suggest that association with CP facilitates the nuclear export of VPg during WYMV infection.
Collapse
|
23
|
You Y, Shirako Y. Influence of amino acid at position 132 in VPg on replication and systemic infection of Barley yellow mosaic virus. Virus Res 2012; 166:121-4. [DOI: 10.1016/j.virusres.2012.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
|
24
|
Cavatorta J, Perez KW, Gray SM, Van Eck J, Yeam I, Jahn M. Engineering virus resistance using a modified potato gene. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1014-21. [PMID: 21668622 DOI: 10.1111/j.1467-7652.2011.00622.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Natural mutations in translation initiation factor eIF4E confer resistance to potyviruses in many plant species. Potato is a staple food crop plagued by several potyviruses, yet to date no known eIF4E-mediated resistance genes have been identified. In this study, we demonstrate that transgenic expression of the pvr1(2) gene from pepper confers resistance to Potato virus Y (PVY) in potato. We then use this information to convert the susceptible potato ortholog of this allele into a de novo allele for resistance to PVY using site-directed mutagenesis. Potato plants overexpressing the mutated potato allele are resistant to virus infection. Resistant lines expressed high levels of eIF4E mRNA and protein. The resistant plants showed growth similar to untransformed controls and produced phenotypically similar tubers. This technique disrupts a key step in the viral infection process and may potentially be used to engineer virus resistance in a number of economically important plant-viral pathosystems. Furthermore, the general public may be more amenable to the 'intragenic' nature of this approach because the transferred coding region is modified from a gene in the target crop rather than from a distant species.
Collapse
Affiliation(s)
- Jason Cavatorta
- Department of Plant Breeding, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
25
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
26
|
Jenner CE, Nellist CF, Barker GC, Walsh JA. Turnip mosaic virus (TuMV) is able to use alleles of both eIF4E and eIF(iso)4E from multiple loci of the diploid Brassica rapa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1498-505. [PMID: 20672877 DOI: 10.1094/mpmi-05-10-0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three copies of eIF4E and three copies of eIF(iso)4E have been identified and sequenced from a Turnip mosaic virus (TuMV)-susceptible, inbred, diploid Brassica rapa line, R-o-18. One of the copies of eIF4E lacked exons 2 and 3 and appeared to be a pseudogene. The two other copies of eIF4E and two of the three copies of eIF(iso)4E were isolated from a bacterial artificial chromosome library of R-o-18. Using an Arabidopsis line (Col-0::dSpm) with a transposon knock-out of the eIF(iso)4E gene which resulted in a change from complete susceptibility to complete resistance to TuMV, complementation experiments were carried out with the two versions of eIF4E and the two versions of eIF(iso)4E. When transformed into Col-0::dSpm, all four Brassica transgenes complemented the Arabidopsis eIF(iso)4E knock-out, conferring susceptibility to both mechanical and aphid challenge with TuMV. One of the copies of eIF4E did not appear to support viral replication as successfully as the other copy of eIF4E or the two copies of eIF(iso)4E. The results show that TuMV can use both eIF4E and eIF(iso)4E from B. rapa for replication and, for the first time, that a virus can use eIF4E and eIF(iso)4E from multiple loci of a single host plant.
Collapse
Affiliation(s)
- Carol E Jenner
- Warwick HRI, University of Warwick, Warwick, CV35 9EF, UK
| | | | | | | |
Collapse
|
27
|
Hébrard E, Poulicard N, Gérard C, Traoré O, Wu HC, Albar L, Fargette D, Bessin Y, Vignols F. Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF(iso)4G1 factor correlates with rice susceptibility and RYMV virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1506-13. [PMID: 20653414 DOI: 10.1094/mpmi-03-10-0073] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The adaptation of Rice yellow mottle virus (RYMV) to recessive resistance mediated by the rymv1-2 allele has been reported as a model to study the emergence and evolution of virulent variants. The resistance and virulence factors have been identified as eukaryotic translation initiation factor eIF(iso)4G1 and viral genome-linked protein (VPg), respectively, but the molecular mechanisms involved in their interaction are still unknown. In this study, we demonstrated a direct interaction between RYMV VPg and the central domain of rice eIF(iso)4G1 both in vitro, using recombinant proteins, and in vivo, using a yeast two-hybrid assay. Insertion of the E309K mutation in eIF(iso)4G1, conferring resistance in planta, strongly diminished the interaction with avirulent VPg. The efficiency of the major virulence mutations at restoring the interaction with the resistance protein was assessed. Our results explain the prevalence of virulence mutations fixed during experimental evolution studies and are consistent with the respective viral RNA accumulation levels of avirulent and virulent isolates. Our results also explain the origin of the residual multiplication of wild-type isolates in rymv1-2-resistant plants and the role of genetic context in the poor adaptability of the S2/S3 strain. Finally, the strategies of RYMV and members of family Potyviridae to overcome recessive resistance were compared.
Collapse
Affiliation(s)
- Eugénie Hébrard
- UMR186 Résistance des Plantes aux Bio-agresseurs, Institut de Recherche pour le Développement BP 64501, 34394 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Piron F, Nicolaï M, Minoïa S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 2010; 5:e11313. [PMID: 20593023 PMCID: PMC2892489 DOI: 10.1371/journal.pone.0011313] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS To investigate further the role of translation initiation factors in virus resistance we set up a TILLING platform in tomato, cloned genes encoding for translation initiation factors eIF4E and eIF4G and screened for induced mutations that lead to virus resistance. A splicing mutant of the eukaryotic translation initiation factor, S.l_eIF4E1 G1485A, was identified and characterized with respect to cap binding activity and resistance spectrum. Molecular analysis of the transcript of the mutant form showed that both the second and the third exons were miss-spliced, leading to a truncated mRNA. The resulting truncated eIF4E1 protein is also impaired in cap-binding activity. The mutant line had no growth defect, likely because of functional redundancy with others eIF4E isoforms. When infected with different potyviruses, the mutant line was immune to two strains of Potato virus Y and Pepper mottle virus and susceptible to Tobacco each virus. CONCLUSIONS/SIGNIFICANCE Mutation analysis of translation initiation factors shows that translation initiation factors of the eIF4E family are determinants of plant susceptibility to RNA viruses and viruses have adopted strategies to use different isoforms. This work also demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. We have also developed a complete tool that can be used for both forward and reverse genetics in tomato, for both basic science and crop improvement. By opening it to the community, we hope to fulfill the expectations of both crop breeders and scientists who are using tomato as their model of study.
Collapse
Affiliation(s)
- Florence Piron
- Unité de Recherche en Génomique Végétale, UMR INRA-CNRS-Uni. EVRY, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res 2010; 76:1-32. [PMID: 20965070 DOI: 10.1016/s0065-3527(10)76001-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Virus infection may damage the plant, and plant defenses are effective against viruses; thus, it is currently assumed that plants and viruses coevolve. However, and despite huge advances in understanding the mechanisms of pathogenicity and virulence in viruses and the mechanisms of virus resistance in plants, evidence in support of this hypothesis is surprisingly scant, and refers almost only to the virus partner. Most evidence for coevolution derives from the study of highly virulent viruses in agricultural systems, in which humans manipulate host genetic structure, what determines genetic changes in the virus population. Studies have focused on virus responses to qualitative resistance, either dominant or recessive but, even within this restricted scenario, population genetic analyses of pathogenicity and resistance factors are still scarce. Analyses of quantitative resistance or tolerance, which could be relevant for plant-virus coevolution, lag far behind. A major limitation is the lack of information on systems in which the host might evolve in response to virus infection, that is, wild hosts in natural ecosystems. It is presently unknown if, or under which circumstances, viruses do exert a selection pressure on wild plants, if qualitative resistance is a major defense strategy to viruses in nature, or even if characterized genes determining qualitative resistance to viruses did indeed evolve in response to virus infection. Here, we review evidence supporting plant-virus coevolution and point to areas in need of attention to understand the role of viruses in plant ecosystem dynamics, and the factors that determine virus emergence in crops.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
30
|
Naderpour M, Lund OS, Larsen R, Johansen E. Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele. MOLECULAR PLANT PATHOLOGY 2010; 11:255-63. [PMID: 20447274 PMCID: PMC6640476 DOI: 10.1111/j.1364-3703.2009.00602.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris, four recessive genes, bc-1, bc-2, bc-3 and bc-u, have been proposed to control resistance to the potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus. In order to identify molecular entities for these genes, we cloned and sequenced P. vulgaris homologues of genes encoding the eIF proteins eIF4E, eIF(iso)4E and nCBP. Bean genotypes reported to carry bc-3 resistance were found specifically to carry non-silent mutations at codons 53, 65, 76 and 111 in eIF4E. This set of mutations closely resembled a pattern of eIF4E mutations determining potyvirus resistance in other plant species. The segregation of BCMV resistance and eIF4E genotype was subsequently analysed in an F(2) population derived from the P. vulgaris all-susceptible genotype and a genotype carrying bc-3. F(2) plants homozygous for the eIF4E mutant allele were found to display at least the same level of resistance to BCMV as the parental resistant genotype. At 6 weeks after inoculation, all F(2) plants found to be BCMV negative by enzyme-linked immunosorbent assay were found to be homozygous for the mutant eIF4E allele. In F(3) plants homozygous for the mutated allele, virus resistance was subsequently found to be stably maintained. In conclusion, allelic eIF4E appears to be associated with a major component of potyvirus resistance present in bc-3 genotypes of bean.
Collapse
Affiliation(s)
- Masoud Naderpour
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
31
|
Hernández G, Altmann M, Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci 2010; 35:63-73. [DOI: 10.1016/j.tibs.2009.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 02/08/2023]
|
32
|
Abstract
About half of the approximately 200 known virus resistance genes in plants are recessively inherited, suggesting that this form of resistance is more common for viruses than for other plant pathogens. The use of such genes is therefore a very important tool in breeding programs to control plant diseases caused by pathogenic viruses. Over the last few years, the detailed analysis of many host/virus combinations has substantially advanced basic research on recessive resistance mechanisms in crop species. This type of resistance is preferentially expressed in protoplasts and inoculated leaves, influencing virus multiplication at the single-cell level as well as cell-to-cell movement. Importantly, a growing number of recessive resistance genes have been cloned from crop species, and further analysis has shown them all to encode translation initiation factors of the 4E (eIF4E) and 4G (eIF4G) families. However, not all of the loss-of-susceptibility mutants identified in collections of mutagenized hosts correspond to mutations in eIF4E and eIF4G. This, together with other supporting data, suggests that more extensive characterization of the natural variability of resistance genes may identify new host factors conferring recessive resistance. In this chapter, we discuss the recent work carried out to characterize loss-of-susceptibility and recessive resistance genes in crop and model species. We review actual and probable recessive resistance mechanisms, and bring the chapter to a close by summarizing the current state-of-the-art and offering perspectives on potential future developments.
Collapse
Affiliation(s)
- V Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo Correos 164, 30100 Espinardo (Murcia), Spain
| | | |
Collapse
|
33
|
Taliansky ME, Brown JWS, Rajamäki ML, Valkonen JPT, Kalinina NO. Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 2010; 77:119-58. [PMID: 20951872 PMCID: PMC7149663 DOI: 10.1016/b978-0-12-385034-8.00005-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleolus is a dynamic subnuclear body with roles in ribosome subunit biogenesis, mediation of cell-stress responses, and regulation of cell growth. An increasing number of reports reveal that similar to the proteins of animal viruses, many plant virus proteins localize in the nucleolus to divert host nucleolar proteins from their natural functions in order to exert novel role(s) in the virus infection cycle. This chapter will highlight studies showing how plant viruses recruit nucleolar functions to facilitate virus translation and replication, virus movement and assembly of virus-specific ribonucleoprotein (RNP) particles, and to counteract plant host defense responses. Plant viruses also provide a valuable tool to gain new insights into novel nucleolar functions and processes. Investigating the interactions between plant viruses and the nucleolus will facilitate the design of novel strategies to control plant virus infections.
Collapse
Affiliation(s)
- M E Taliansky
- Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Huang TS, Wei T, Laliberté JF, Wang A. A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. PLANT PHYSIOLOGY 2010; 152:255-66. [PMID: 19880609 PMCID: PMC2799361 DOI: 10.1104/pp.109.147983] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/27/2009] [Indexed: 05/17/2023]
Abstract
The viral genome-linked protein, VPg, of potyviruses is a multifunctional protein involved in viral genome translation and replication. Previous studies have shown that both eukaryotic translation initiation factor 4E (eIF4E) and eIF4G or their respective isoforms from the eIF4F complex, which modulates the initiation of protein translation, selectively interact with VPg and are required for potyvirus infection. Here, we report the identification of two DEAD-box RNA helicase-like proteins, PpDDXL and AtRH8 from peach (Prunus persica) and Arabidopsis (Arabidopsis thaliana), respectively, both interacting with VPg. We show that AtRH8 is dispensable for plant growth and development but necessary for potyvirus infection. In potyvirus-infected Nicotiana benthamiana leaf tissues, AtRH8 colocalizes with the chloroplast-bound virus accumulation vesicles, suggesting a possible role of AtRH8 in viral genome translation and replication. Deletion analyses of AtRH8 have identified the VPg-binding region. Comparison of this region and the corresponding region of PpDDXL suggests that they are highly conserved and share the same secondary structure. Moreover, overexpression of the VPg-binding region from either AtRH8 or PpDDXL suppresses potyvirus accumulation in infected N. benthamiana leaf tissues. Taken together, these data demonstrate that AtRH8, interacting with VPg, is a host factor required for the potyvirus infection process and that both AtRH8 and PpDDXL may be manipulated for the development of genetic resistance against potyvirus infections.
Collapse
Affiliation(s)
| | | | | | - Aiming Wang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada (T.-S.H., T.W., A.W.); Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada (T.-S.H., T.W., A.W.); and Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada (J.-F.L.)
| |
Collapse
|
35
|
Rajamäki ML, Valkonen JPT. Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. THE PLANT CELL 2009; 21:2485-502. [PMID: 19700632 PMCID: PMC2751958 DOI: 10.1105/tpc.108.064147] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 07/15/2009] [Accepted: 07/31/2009] [Indexed: 05/19/2023]
Abstract
The multifunctional nuclear inclusion protein a (NIa) of potyviruses (genus Potyvirus; Potyviridae) accumulates in the nucleus of virus-infected cells for unknown reasons. In this study, two regions in the viral genome-linked protein (VPg) domain of NIa in Potato virus A (PVA) were found to constitute nuclear and nucleolar localization signals (NLS) in plant cells (Nicotiana spp). Amino acid substitutions in both NLS I (residues 4 to 9) and NLS II (residues 41 to 50) prevented nuclear localization, whereas mutations in either single NLS did not. Mutations in either NLS, however, prevented nucleolar localization and prevented or diminished virus replication in protoplasts, accumulation in infected plant tissues, and/or systemic movement in plants. One NLS mutant was partially complemented by the wild-type VPg expressed in transgenic plants. Furthermore, NLS I controlled NIa accumulation in Cajal bodies. The VPg domain interacted with fibrillarin, a nucleolar protein, and depletion of fibrillarin reduced PVA accumulation. Overexpression of VPg in leaf tissues interfered with cosuppression of gene expression (i.e., RNA silencing), whereas NLS I and NLS II mutants, which exhibited reduced nuclear and nucleolar localization, showed no such activity. These results demonstrate that some of the most essential viral functions required for completion of the infection cycle are tightly linked to regulation of the NIa nuclear and nucleolar localization.
Collapse
Affiliation(s)
- Minna-Liisa Rajamäki
- Department of Applied Biology, University of Helsinki, Helsinki FIN-00014, Finland.
| | | |
Collapse
|
36
|
Wang Z, Treder K, Miller WA. Structure of a viral cap-independent translation element that functions via high affinity binding to the eIF4E subunit of eIF4F. J Biol Chem 2009; 284:14189-202. [PMID: 19276085 PMCID: PMC2682867 DOI: 10.1074/jbc.m808841200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/09/2009] [Indexed: 11/06/2022] Open
Abstract
RNAs of many positive strand RNA viruses lack a 5' cap structure and instead rely on cap-independent translation elements (CITEs) to facilitate efficient translation initiation. The mechanisms by which these RNAs recruit ribosomes are poorly understood, and for many viruses the CITE is unknown. Here we identify the first CITE of an umbravirus in the 3'-untranslated region of pea enation mosaic virus RNA 2. Chemical and enzymatic probing of the approximately 100-nucleotide PEMV RNA 2 CITE (PTE), and mutagenesis revealed that it forms a long, bulged helix that branches into two short stem-loops, with a possible pseudoknot interaction between a C-rich bulge at the branch point and a G-rich bulge in the main helix. The PTE inhibited translation in trans, and addition of eIF4F, but not eIFiso4F, restored translation. Filter binding assays revealed that the PTE binds eIF4F and its eIF4E subunit with high affinity. Tight binding required an intact cap-binding pocket in eIF4E. Among many PTE mutants, there was a strong correlation between PTE-eIF4E binding affinity and ability to stimulate cap-independent translation. We conclude that the PTE recruits eIF4F by binding eIF4E. The PTE represents a different class of translation enhancer element, as defined by its structure and ability to bind eIF4E in the absence of an m(7)G cap.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Plant Pathology and Biochemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
37
|
Hébrard E, Bessin Y, Michon T, Longhi S, Uversky VN, Delalande F, Van Dorsselaer A, Romero P, Walter J, Declerk N, Fargette D. Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses. Virol J 2009; 6:23. [PMID: 19220875 PMCID: PMC2649914 DOI: 10.1186/1743-422x-6-23] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/16/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND VPgs are viral proteins linked to the 5' end of some viral genomes. Interactions between several VPgs and eukaryotic translation initiation factors eIF4Es are critical for plant infection. However, VPgs are not restricted to phytoviruses, being also involved in genome replication and protein translation of several animal viruses. To date, structural data are still limited to small picornaviral VPgs. Recently three phytoviral VPgs were shown to be natively unfolded proteins. RESULTS In this paper, we report the bacterial expression, purification and biochemical characterization of two phytoviral VPgs, namely the VPgs of Rice yellow mottle virus (RYMV, genus Sobemovirus) and Lettuce mosaic virus (LMV, genus Potyvirus). Using far-UV circular dichroism and size exclusion chromatography, we show that RYMV and LMV VPgs are predominantly or partly unstructured in solution, respectively. Using several disorder predictors, we show that both proteins are predicted to possess disordered regions. We next extend theses results to 14 VPgs representative of the viral diversity. Disordered regions were predicted in all VPg sequences whatever the genus and the family. CONCLUSION Based on these results, we propose that intrinsic disorder is a common feature of VPgs. The functional role of intrinsic disorder is discussed in light of the biological roles of VPgs.
Collapse
Affiliation(s)
- Eugénie Hébrard
- UMR 1097 Résistance des Plantes aux Bio-agresseurs, IRD, CIRAD, Université de Montpellier II, BP 64501, 34394 Montpellier cedex 5, France
| | - Yannick Bessin
- Centre de Biochimie Structurale, UMR 5048, 29 rue de Navacelles, 34090 Montpellier, France
| | - Thierry Michon
- UMR1090 Génomique Diversité Pouvoir Pathogène, INRA, Université de Bordeaux 2, F-33883 Villenave D'Ornon, France
| | - Sonia Longhi
- UMR 6098 Architecture et Fonction des Macromolécules Biologiques, CNRS, Universités Aix-Marseille I et II, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, 67087 Strasbourg, France
| | - Pedro Romero
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jocelyne Walter
- UMR1090 Génomique Diversité Pouvoir Pathogène, INRA, Université de Bordeaux 2, F-33883 Villenave D'Ornon, France
| | - Nathalie Declerk
- Centre de Biochimie Structurale, UMR 5048, 29 rue de Navacelles, 34090 Montpellier, France
| | - Denis Fargette
- UMR 1097 Résistance des Plantes aux Bio-agresseurs, IRD, CIRAD, Université de Montpellier II, BP 64501, 34394 Montpellier cedex 5, France
| |
Collapse
|
38
|
Truniger V, Nieto C, González-Ibeas D, Aranda M. Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:716-27. [PMID: 18643998 DOI: 10.1111/j.1365-313x.2008.03630.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Translation initiation factors are universal determinants of plant susceptibility to RNA viruses, but the underlying mechanisms are poorly understood. Here, we show that a sequence in the 3' untranslated region (3'-UTR) of a viral genome that is responsible for overcoming plant eIF4E-mediated resistance (virulence determinant) functions as a 3' cap-independent translational enhancer (3'-CITE). The virus/plant pair studied here is Melon necrotic spot virus (MNSV) and melon, for which a recessive resistance controlled by melon eIF4E was previously described. Chimeric viruses between virulent and avirulent isolates enabled us to map the virulence and avirulence determinants to 49 and 26 nucleotides, respectively. The translational efficiency of a luc reporter gene flanked by 5'- and 3'-UTRs from virulent, avirulent and chimeric viruses was analysed in vitro, in wheatgerm extract, and in vivo, in melon protoplasts, showing that: (i) the virulence determinant mediates the efficient cap-independent translation in vitro and in vivo; (ii) the avirulence determinant was able to promote efficient cap-independent translation in vitro, but only when eIF4E from susceptible melon was added in trans, and, coherently, only in protoplasts of susceptible melon, but not in the protoplasts of resistant melon; (iii) these activities required the 5'-UTR of MNSV in cis. Thus, the virulence and avirulence determinants function as 3'-CITEs. The activity of these 3'-CITEs was host specific, suggesting that an inefficient interaction between the viral 3'-CITE of the avirulent isolate and eIF4E of resistant melon impedes the correct formation of the translation initiation complex at the viral RNA ends, thereby leading to resistance.
Collapse
Affiliation(s)
- Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain.
| | | | | | | |
Collapse
|
39
|
Cavatorta JR, Savage AE, Yeam I, Gray SM, Jahn MM. Positive Darwinian selection at single amino acid sites conferring plant virus resistance. J Mol Evol 2008; 67:551-9. [PMID: 18953590 DOI: 10.1007/s00239-008-9172-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 09/08/2008] [Accepted: 09/29/2008] [Indexed: 01/26/2023]
Abstract
Explicit evaluation of the accuracy and power of maximum likelihood and Bayesian methods for detecting site-specific positive Darwinian selection presents a challenge because selective consequences of single amino acid changes are generally unknown. We exploited extensive molecular and functional characterization of amino acid substitutions in the plant gene eIF4E to evaluate the performance of these methods in detecting site-specific positive selection. We documented for the first time a molecular signature of positive selection within a recessive resistance gene in plants. We then used two statistical platforms, Phylogenetic Analysis Using Maximum Likelihood and Hypothesis Testing Using Phylogenies (HyPhy), to look for site-specific positive selection. Their relative power and accuracy are assessed by comparing the sites they identify as being positively selected with those of resistance-determining amino acids. Our results indicate that although both methods are surprisingly accurate in their identification of resistance sites, HyPhy appears to more accurately identify biologically significant amino acids using our data set.
Collapse
Affiliation(s)
- J R Cavatorta
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
40
|
Dufresne PJ, Ubalijoro E, Fortin MG, Laliberté JF. Arabidopsis thaliana class II poly(A)-binding proteins are required for efficient multiplication of turnip mosaic virus. J Gen Virol 2008; 89:2339-2348. [PMID: 18753244 DOI: 10.1099/vir.0.2008/002139-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The poly(A)-binding protein (PABP) is an important translation initiation factor that binds to the polyadenylated 3' end of mRNA. We have previously shown that PABP2 interacts with the RNA-dependent RNA polymerase (RdRp) and VPg-Pro of turnip mosaic virus (TuMV) within virus-induced vesicles. At least eight PABP isoforms are produced in Arabidopsis thaliana, three of which (PABP2, PABP4 and PABP8) are highly and broadly expressed and probably constitute the bulk of PABP required for cellular functions. Upon TuMV infection, an increase in protein and mRNA expression from PAB2, PAB4 and PAB8 genes was recorded. In vitro binding assays revealed that RdRp and the viral genome-linked protein (VPg-Pro) interact preferentially with PABP2 but are also capable of interaction with one or both of the other class II PABPs (i.e. PABP4 and PABP8). To assess whether PABP is required for potyvirus replication, A. thaliana single and double pab knockouts were isolated and inoculated with TuMV. All lines showed susceptibility to TuMV. However, when precise monitoring of viral RNA accumulation was performed, it was found to be reduced by 2.2- and 3.5-fold in pab2 pab4 and pab2 pab8 mutants, respectively, when compared with wild-type plants. PABP levels were most significantly reduced in the membrane-associated fraction in both of these mutants. TuMV mRNA levels thus correlated with cellular PABP concentrations in these A. thaliana knockout lines. These data provide further support for a role of PABP in potyvirus replication.
Collapse
Affiliation(s)
- Philippe J Dufresne
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Eliane Ubalijoro
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Marc G Fortin
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Jean-François Laliberté
- Institut national de la recherche scientifique, Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
41
|
German-Retana S, Walter J, Doublet B, Roudet-Tavert G, Nicaise V, Lecampion C, Houvenaghel MC, Robaglia C, Michon T, Le Gall O. Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection. J Virol 2008; 82:7601-12. [PMID: 18480444 PMCID: PMC2493313 DOI: 10.1128/jvi.00209-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/06/2008] [Indexed: 12/16/2022] Open
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo1(1) and mo1(2) against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo1(1) or mo1(2) varieties. In order to identify the eIF4E amino acid residues necessary for viral infection, we constructed recombinant LMV expressing eIF4E with point mutations affecting various amino acids and compared the abilities of these eIF4E mutants to complement LMV infection in resistant plants. Three types of mutations were produced in order to affect different biochemical functions of eIF4E: cap binding, eIF4G binding, and putative interaction with other virus or host proteins. Several mutations severely reduced the ability of eIF4E to complement LMV accumulation in a resistant host and impeded essential eIF4E functions in yeast. However, the ability of eIF4E to bind a cap analogue or to fully interact with eIF4G appeared unlinked to LMV infection. In addition to providing a functional mutational map of a plant eIF4E, this suggests that the role of eIF4E in the LMV cycle might be distinct from its physiological function in cellular mRNA translation.
Collapse
Affiliation(s)
- Sylvie German-Retana
- Interactions Plante-Virus, UMR GDPP 1090, INRA Université de Bordeaux 2, BP 81, F-33883 Villenave d'Ornon Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Charron C, Nicolaï M, Gallois JL, Robaglia C, Moury B, Palloix A, Caranta C. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:56-68. [PMID: 18182024 DOI: 10.1111/j.1365-313x.2008.03407.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amino acid substitutions in the eukaryotic translation initiation factor 4E (eIF4E) result in recessive resistance to potyviruses in a range of plant species, including Capsicum spp. Correspondingly, amino acid changes in the central part of the viral genome-linked protein (VPg) are responsible for the potyvirus's ability to overcome eIF4E-mediated resistance. A key observation was that physical interaction between eIF4E and the VPg is required for viral infection, and eIF4E mutations that cause resistance prevent VPg binding and inhibit the viral cycle. In this study, polymorphism analysis of the pvr2-eIF4E coding sequence in a worldwide sample of 25 C. annuum accessions identified 10 allelic variants with exclusively non-synonymous variations clustered in two surface loops of eIF4E. Resistance and genetic complementation assays demonstrated that pvr2 variants, each with signature amino acid changes, corresponded to potyvirus resistance alleles. Systematic analysis of the interactions between eIF4E proteins encoded by the 10 pvr2 alleles and VPgs of virulent and avirulent potato virus Y (PVY) and tobacco etch virus (TEV) strains demonstrated that resistance phenotypes arose from disruption of the interaction between eIF4E and VPg, and that viral adaptation to eIF4E-mediated resistance resulted from restored interaction with the resistance protein. Complementation of an eIF4E knockout yeast strain by C. annuum eIF4E proteins further shows that amino acid changes did not impede essential eIF4E functions. Altogether, these results argue in favour of a co-evolutionary 'arms race' between Capsicum eIF4E and potyviral VPg.
Collapse
Affiliation(s)
- Carine Charron
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Domaine St Maurice, BP94, F-84143 Montfavet, France
| | | | | | | | | | | | | |
Collapse
|
43
|
German-Retana S, Walter J, Le Gall O. Lettuce mosaic virus: from pathogen diversity to host interactors. MOLECULAR PLANT PATHOLOGY 2008; 9:127-36. [PMID: 18705846 PMCID: PMC6640324 DOI: 10.1111/j.1364-3703.2007.00451.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
TAXONOMY Lettuce mosaic virus (LMV) belongs to the genus Potyvirus (type species Potato virus Y) in the family Potyviridae. PHYSICAL PROPERTIES The virion is filamentous, flexuous with a length of 750 nm and a width of 15 nm. The particles are made of a genomic RNA of 10 080 nucleotides, covalently linked to a viral-encoded protein (the VPg) at the 5' end and with a 3' poly A tail, and encapsidated in a single type of capsid protein. The molecular weight of the capsid protein subunit has been estimated electrophoretically to be 34 kDa and estimated from the amino acid sequence to be 31 kDa. GENOME ORGANIZATION The genome is expressed as a polyprotein of 3255 amino-acid residues, processed by three virus-specific proteinases into ten mature proteins. HOSTS LMV has a worldwide distribution and a relatively broad host range among several families. Weeds and ornamentals can act as local reservoirs for lettuce crops. In particular, many species within the family Asteraceae are susceptible to LMV, including cultivated and ornamental species such as common (Lactuca sativa), prickly (L. serriola) or wild (L. virosa) lettuce, endive/escarole (Cichorium endiva), safflower (Carthamus tinctorius), starthistle (Centaurea solstitialis), Cape daisy (Osteospermum spp.) and gazania (Gazania rigens). In addition, several species within the families Brassicaceae, Cucurbitaceae, Fabaceae, Solanaceae and Chenopodiaceae are natural or experimental hosts of LMV. Genetic control of resistance to LMV: The only resistance genes currently used to protect lettuce crops worldwide are the recessive genes mo1(1) and mo1(2) corresponding to mutant alleles of the gene encoding the translation initiation factor eIF4E in lettuce. It is believed that at least one intact copy of eIF4E must be present to ensure virus accumulation. TRANSMISSION LMV is transmitted in a non-persistent manner by a high number of aphid species. Myzus persicae and Macrosiphum euphorbiae are particularly active in disseminating this virus in the fields. LMV is also seedborne in lettuce. The effectiveness of LMV transmission depends on the cultivar and the age of the seed carrier at the inoculation time. SYMPTOMS The characteristic symptoms on susceptible lettuce cultivars are dwarfism, mosaic, distortion and yellowing of the leaves with sometimes a much reduced heart of lettuce (failure to form heads). The differences in virus strains, cultivars and the physiological stage of the host at the moment of the attack cause different symptom severity: from a very slight discoloration of the veins to severe necrosis leading to the death of the plant.
Collapse
Affiliation(s)
- Sylvie German-Retana
- UMR1090 Génomique Diversité Pouvoir Pathogène, INRA Université de Bordeaux 2, F-33883 Villenave D'Ornon, France.
| | | | | |
Collapse
|
44
|
Abstract
The yeast Saccharomyces cerevisiae is invaluable for understanding fundamental cellular processes and disease states of relevance to higher eukaryotes. Plant viruses are intracellular parasites that take advantage of resources of the host cell, and a simple eukaryotic cell, such as yeast, can provide all or most of the functions for successful plant virus replication. Thus, yeast has been used as a model to unravel the interactions of plant viruses with their hosts. Indeed, genome-wide and proteomics studies using yeast as a model host with bromoviruses and tombusviruses have facilitated the identification of replication-associated factors that affect host-virus interactions, virus pathology, virus evolution, and host range. Many of the host genes that affect the replication of the two viruses, which belong to two dissimilar virus families, are distinct, suggesting that plant viruses have developed different ways to utilize the resources of host cells. In addition, a surprisingly large number of yeast genes have been shown to affect RNA-RNA recombination in tombusviruses; this opens an opportunity to study the role of the host in virus evolution. The knowledge gained about host-virus interactions likely will lead to the development of new antiviral methods and applications in biotechnology and nanotechnology, as well as new insights into cellular functions of individual genes and the basic biology of the host cell.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
45
|
Abstract
The small size of most plant virus genomes and their very limited coding capacities requires that plant viruses are dependent on proteins expressed by the host plant for all stages of their life cycle. Identification of these host proteins is essential if we are to understand in any meaningful way the interactions that exist between virus and plant. A variety of methods are now available to isolate and study interacting proteins, however, the yeast two-hybrid (Y2H) assay system, which was one of the earliest mass analysis methods to be developed [Nature 340:245-246, 1989] remains one of the most popular and amenable approaches in current use. The Y2H method works by expressing two candidate interacting proteins together in the yeast cell. The (bait and prey) proteins under study are fused either to a promoter-specific DNA-binding domain or to a transcription activation domain. Interaction in the yeast nucleus between the bait and prey proteins brings the transcription activation and DNA-binding domains together so that they can initiate expression of a reporter gene. The reporter may be nonselective, such as the beta-galactosidase (LacZ) protein, or be selective by complementing a chromosomal mutation in a metabolic pathway for, for example, leucine or histidine biosynthesis. Individual bait proteins can be screened for interaction against a library of prey proteins, with any yeast colonies that grow on selective plates containing potential interacting partners. Using the Y2H system, a number of plant proteins interacting with viral proteins have been identified, recently, increasing our knowledge of the molecular basis of viral infection and host defense mechanisms.
Collapse
Affiliation(s)
- Stuart A MacFarlane
- Plant Pathology Department, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | |
Collapse
|
46
|
Gopalan S. A multidirectional non-cell autonomous control and a genetic interaction restricting tobacco etch virus susceptibility in Arabidopsis. PLoS One 2007; 2:e985. [PMID: 17912362 PMCID: PMC1991623 DOI: 10.1371/journal.pone.0000985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 09/12/2007] [Indexed: 11/19/2022] Open
Abstract
Background Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery. Methodology/Principal Findings An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV), a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement. Conclusions/Significance The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses) indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery.
Collapse
Affiliation(s)
- Suresh Gopalan
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America.
| |
Collapse
|
47
|
Beauchemin C, Laliberté JF. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J Virol 2007; 81:10905-13. [PMID: 17670821 PMCID: PMC2045535 DOI: 10.1128/jvi.01243-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Poly(A) binding protein 2 (PABP2) of Arabidopsis thaliana was previously shown to interact with VPg-Pro of turnip mosaic virus (TuMV) and may consequently play an important role during infection. Subcellular fractionation experiments revealed that PABP2 was predominantly a cytoplasmic soluble protein in healthy plants. However, in TuMV-infected plants, a subpopulation of PABP2 was membrane associated or was localized in the nucleus. Confocal microscopy experiments indicated that PABP2 was partially retargeted to the nucleolus in the presence of TuMV VPg-Pro. In addition, the membrane association of PABP2 during TuMV infection resulted from the internalization of the host protein in 6K-VPg-Pro-induced vesicles, as shown by a combination of confocal microscopy and sucrose gradient fractionation experiments. This redistribution of an important translation initiation factor to the nucleolus and to membrane structure likely underlies two important processes of the TuMV replication cycle.
Collapse
Affiliation(s)
- Chantal Beauchemin
- INRS-Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | | |
Collapse
|
48
|
Roudet-Tavert G, Michon T, Walter J, Delaunay T, Redondo E, Le Gall O. Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J Gen Virol 2007; 88:1029-1033. [PMID: 17325377 DOI: 10.1099/vir.0.82501-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using recombinant proteins produced in bacteria or in infected plants, interactions between the VPg and HcPro of Lettuce mosaic potyvirus (LMV) and between LMV VPg and the lettuce translation initiation factor 4E, the cap-binding protein (eIF4E), were demonstrated in vitro. Interaction with eIF4E and HcPro both involved the same VPg central domain. The structure of this domain in the VPg context was predicted to include an amphiphilic alpha-helix, with the amino acids related to biological functions in various potyviruses exposed at the hydrophilic side.
Collapse
Affiliation(s)
- G Roudet-Tavert
- IPV, UMR GDPP INRA-Bordeaux 2, IBVM, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | - T Michon
- IPV, UMR GDPP INRA-Bordeaux 2, IBVM, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | - J Walter
- IPV, UMR GDPP INRA-Bordeaux 2, IBVM, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | - T Delaunay
- IPV, UMR GDPP INRA-Bordeaux 2, IBVM, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | - E Redondo
- IPV, UMR GDPP INRA-Bordeaux 2, IBVM, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | - O Le Gall
- IPV, UMR GDPP INRA-Bordeaux 2, IBVM, BP 81, F-33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
49
|
Maule AJ, Caranta C, Boulton MI. Sources of natural resistance to plant viruses: status and prospects. MOLECULAR PLANT PATHOLOGY 2007; 8:223-31. [PMID: 20507494 DOI: 10.1111/j.1364-3703.2007.00386.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SUMMARY Globally, virus diseases are common in agricultural crops and have a major agronomic impact. They are countered through the deployment of genetic resistance against the virus, or through the use of a range of farming practices based upon the propagation of virus-free plant material and the exclusion of the virus vectors from the growing crop. We review here the current status of our knowledge of natural virus resistance genes, and consider the future prospects for the deployment of these genes against virus infection.
Collapse
Affiliation(s)
- Andrew J Maule
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
50
|
Nicaise V, Gallois JL, Chafiai F, Allen LM, Schurdi-Levraud V, Browning KS, Candresse T, Caranta C, Le Gall O, German-Retana S. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett 2007; 581:1041-6. [PMID: 17316629 DOI: 10.1016/j.febslet.2007.02.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/01/2007] [Indexed: 11/21/2022]
Abstract
The translation initiation factors eIF4E and eIF(iso)4E play a key role during virus infection in plants. During mRNA translation, eIF4E provides the cap-binding function and is associated with the protein eIF4G to form the eIF4F complex. Susceptibility analyses of Arabidopsis mutants knocked-out for At-eIF4G genes showed that eIF4G factors are indispensable for potyvirus infection. The colonization pattern by a viral recombinant carrying GFP indicated that eIF4G is involved at a very early infection step. Like eIF4E, eIF4G isoforms are selectively recruited for infection. Moreover, the eIF4G selective involvement parallels eIF4E recruitment. This is the first report of a coordinated and selective recruitment of eIF4E and eIF4G factors, suggesting the whole eIF4F recruitment.
Collapse
Affiliation(s)
- Valérie Nicaise
- Interactions Plante-Virus (IPV), UMR 1090, INRA Bordeaux 2, BP 81, F-33883 Villenave d'Ornon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|