1
|
Camarasa MJ, Velázquez S, San-Félix A, Pérez-Pérez MJ. TSAO Derivatives the First Non-Peptide Inhibitors of HIV-1 RT Dimerization. ACTA ACUST UNITED AC 2016; 16:147-53. [PMID: 16004078 DOI: 10.1177/095632020501600301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of different anti-HIV agents has become the standard of care for AIDS or HIV-infected individuals. Important progress has been made in the development of drugs for the clinical treatment of HIV infection. To date, 20 drugs have been approved for the treatment of AIDS. However, viral rebound during therapy, the emergence of HIV drug resistance and the need for long-term treatment modalities are the main causes for the failure of current antiretroviral therapy. There is still a need for the development of new drugs that are either less toxic, active against the growing number of drug-resistant HIV strains or directed to novel targets in the viral life cycle. Eleven of the approved anti-HIV drugs target the reverse transcriptase (RT). Among the so-called non-nucleoside RT inhibitors (NNRTIs) TSAO derivatives are an unusual class of compounds that exert their unique selectivity for HIV-1 through a specific interaction with the p51 subunit of HIV-1 RT. They are the only NNRTIs for which amino acids at both subunits (p66 and p51) of HIV-1 RT are needed for optimal interaction with the enzyme. Moreover, the TSAO compounds are the first non-peptide molecules that interfere with the dimerization of the enzyme.
Collapse
|
2
|
Wu H, Zhang XM, Zhang HJ, Zhang Q, Chen Z, Huang JD, Lee SS, Zheng BJ. In vitro selection of HIV-1 CRF08_BC variants resistant to reverse transcriptase inhibitors. AIDS Res Hum Retroviruses 2015; 31:260-70. [PMID: 25482475 DOI: 10.1089/aid.2013.0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) circulating recombinant form 08_BC (CRF08_BC), carrying the recombinant reverse transcriptase (RT) gene from subtypes B and C, has recently become highly prevalent in Southern China. As the number of patients increases, it is important to characterize the drug resistance mutations of CRF08_BC, especially against widely used antiretrovirals. In this study, clinically isolated virus (2007CNGX-HK), confirmed to be CRF08_BC with its sequence deposited in GenBank (KF312642), was propagated in human peripheral blood mononuclear cells (PBMCs) with increasing concentrations of nevirapine (NVP), efavirenz (EFV), or lamivudine (3TC). Three different resistance patterns led by initial mutations of Y181C, E138G, and Y188C were detected after the selection with NVP. Initial mutations, in combination with other previously reported substitutions (K20R, D67N, V90I, K101R/E, V106I/A, V108I, F116L, E138R, A139V, V189I, G190A, D218E, E203K, H221Y, F227L, N348I, and T369I) or novel mutations (V8I, S134N, C162Y, L228I, Y232H, E396G, and D404N), developed during NVP selection. EFV-associated variations contained two initial mutations (L100I and Y188C) and three other mutations (V106L, F116Y, and A139V). Phenotypic analyses showed that E138R, Y181C, and G190A contributed high-level resistance to NVP, while L100I and V106L significantly reduced virus susceptibility to EFV. Y188C was 20-fold less sensitive to both NVP and EFV. As expected, M184I alone, or with V90I or D67N, decreased 3TC susceptibility by over 1,000-fold. Although the mutation profile obtained in culture may be different from the patients, these results may still provide useful information to monitor and optimize the antiretroviral regimens.
Collapse
Affiliation(s)
- Hao Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Min Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Hao-Jie Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Qiwei Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhiwei Chen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Dong Huang
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shui-Shan Lee
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo-Jian Zheng
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
McCallum M, Oliveira M, Ibanescu RI, Kramer VG, Moisi D, Asahchop EL, Brenner BG, Harrigan PR, Xu H, Wainberg MA. Basis for early and preferential selection of the E138K mutation in HIV-1 reverse transcriptase. Antimicrob Agents Chemother 2013; 57:4681-8. [PMID: 23856772 PMCID: PMC3811420 DOI: 10.1128/aac.01029-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 12/13/2022] Open
Abstract
E138K, a G→A mutation in HIV-1 reverse transcriptase (RT), is preferentially selected by etravirine (ETR) and rilpivirine over other substitutions at position E138 that offer greater drug resistance. We hypothesized that there was a mutational bias for the E138K substitution and designed an allele-specific PCR to monitor the emergence of E138A/G/K/Q/R/V during ETR selection experiments. We also performed competition experiments using mutated viruses and quantified the prevalence of E138 minority species in drug-naive patients. E138K, as well as E138G, consistently emerged first during ETR selection experiments, followed by E138A and E138Q; E138R was never selected. Surprisingly, E138K was identified as a tiny minority in 23% of drug-naive subtype B patients, a result confirmed by ultradeep sequencing (UDS). This result could reflect a low fitness cost of E138K; however, E138K was one of the least fit substitutions at codon E138, even after taking into account the deoxynucleoside triphosphate pools of the cells used in competition experiments. Further UDS analysis revealed other minority species in a pattern consistent with the mutational bias of HIV RT. There was no evidence of APOBEC3-hypermutation in these selection experiments or in patients. Our results confirm the mutational bias of HIV-1 in patients and highlight the importance of G→A mutations in HIV-1 drug resistance evolution.
Collapse
Affiliation(s)
- Matthew McCallum
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Victor G. Kramer
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniela Moisi
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Eugene L. Asahchop
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Bluma G. Brenner
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - P. Richard Harrigan
- BC Center for Excellence in HIV/AIDS, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark A. Wainberg
- McGill University AIDS Centre, Lady Davis Institute of Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Effect of mutations at position E138 in HIV-1 reverse transcriptase and their interactions with the M184I mutation on defining patterns of resistance to nonnucleoside reverse transcriptase inhibitors rilpivirine and etravirine. Antimicrob Agents Chemother 2013; 57:3100-9. [PMID: 23612196 DOI: 10.1128/aac.00348-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impacts of mutations at position E138 (A/G/K/Q/R/V) alone or in combination with M184I in HIV-1 reverse transcriptase (RT) were investigated. We also determined why E138K is the most prevalent nonnucleoside reverse transcriptase inhibitor mutation in patients failing rilpivirine (RPV) therapy. Recombinant RT enzymes and viruses containing each of the above-mentioned mutations were generated, and drug susceptibility was assayed. Each of the E138A/G/K/Q/R mutations, alone or in combination with M184I, resulted in decreased susceptibility to RPV and etravirine (ETR). The maximum decrease in susceptibility to RPV was observed for E138/R/Q/G by both recombinant RT assay and cell-based assays. E138Q/R-containing enzymes and viruses also showed the most marked decrease in susceptibility to ETR by both assays. The addition of M184I to the E138 mutations did not significantly change the levels of diminution in drug susceptibility. These findings indicate that E138R caused the highest level of loss of susceptibility to both RPV and ETR, and, accordingly, E138R should be recognized as an ETR resistance-associated mutation. The E138K/Q/R mutations can compensate for M184I in regard to both enzymatic fitness and viral replication capacity. The favored emergence of E138K over other mutations at position E138, together with M184I, is not due to an advantage in either the level of drug resistance or viral replication capacity but may reflect the fact that E138R and E138Q require two distinct mutations to occur, one of which is a disfavorable G-to-C mutation, whereas E138K requires only a single favorable G-to-A hypermutation. Of course, other factors may also affect the concept of barrier to resistance.
Collapse
|
5
|
Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG. Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 2012; 287:38110-23. [PMID: 22955279 DOI: 10.1074/jbc.m112.398180] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66(M184I)/p51(WT), p66(E138K)/p51(E138K), p66(E138K/M184I)/p51(E138K), and p66(M184I)/p51(E138K). Ile-184 in p66 (p66(184I)) decreased the catalytic efficiency of RT (k(pol)/K(d)(.dNTP)), primarily through a decrease in dNTP binding (K(d)(.dNTP)). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66(184I) by restoring dNTP binding. Furthermore, p51(138K) reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (K(d)(.RPV) = k(off.RPV)/k(on.RPV)). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51(E138K) affects access to the RPV binding site by disrupting the salt bridge between p51(E138) and p66(K101). p66(184I) caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51(138K) restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Effect of Mutations at Position E138 in HIV-1 Reverse Transcriptase on Phenotypic Susceptibility and Virologic Response to Etravirine. J Acquir Immune Defic Syndr 2011; 58:18-22. [DOI: 10.1097/qai.0b013e3182237f74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Das K, Bauman JD, Rim AS, Dharia C, Clark AD, Camarasa MJ, Balzarini J, Arnold E. Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket. J Med Chem 2011; 54:2727-37. [PMID: 21446702 PMCID: PMC3361896 DOI: 10.1021/jm101536x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
tert-Butyldimethylsilyl-spiroaminooxathioledioxide (TSAO) compounds have an embedded thymidine-analogue backbone; however, TSAO compounds invoke non-nucleoside RT inhibitor (NNRTI) resistance mutations. Our crystal structure of RT:7 (TSAO-T) complex shows that 7 binds inside the NNRTI-binding pocket, assuming a "dragon" shape, and interacts extensively with almost all the pocket residues. The structure also explains the structure-activity relationships and resistance data for TSAO compounds. The binding of 7 causes hyper-expansion of the pocket and significant rearrangement of RT subdomains. This nonoptimal complex formation is apparently responsible (1) for the lower stability of a RT (p66/p51) dimer and (2) for the lower potency of 7 despite of its extensive interactions with RT. However, the HIV-1 RT:7 structure reveals novel design features such as (1) interactions with the conserved Tyr183 from the YMDD-motif and (2) a possible way for an NNRTI to reach the polymerase active site that may be exploited in designing new NNRTIs.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Angela S. Rim
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Chhaya Dharia
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Arthur D. Clark
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - María-José Camarasa
- Instituto de Química Médica (C.S.I.C.). Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Impact of human leukocyte antigen-B*51-restricted cytotoxic T-lymphocyte pressure on mutation patterns of nonnucleoside reverse transcriptase inhibitor resistance. AIDS 2010; 24:F15-22. [PMID: 20160632 DOI: 10.1097/qad.0b013e328337b010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study is to determine the impact of human leukocyte antigen (HLA)-B*51-restricted cytotoxic T-lymphocyte (CTL) pressure on the development of nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance. DESIGN The prevalence of HIV-1 harboring an escape mutation, I135X, in a major epitope of HLA-B*51-restricted CTL located in reverse transcriptase is increasing worldwide. We analyzed the effects of escape mutations on the emerging mutation patterns of NNRTI resistance. METHODS Monoclonal HIV-1 sequences harboring each of the escape mutations, including I135L (HIV-1I135L), I135V (HIV-1I135V), I135T (HIV-1I135T), and I135R (HIV-1I135R) in reverse transcriptase, and a wild-type monoclonal HIV-1 (HIV-1WT) were cultured in the presence of increasing concentrations of efavirenz. Induced mutations during culture passages of the culture were analyzed. RESULTS E138K emerged during the cultural passages of HIV-1I135V, HIV-1I135T, and HIV-1I135R, but not during the passages of HIV-1WT. The combination of I135T, the most frequent escape mutation, and E138K (HIV-1I135T/E138K) conferred significant resistance to efavirenz, nevirapine, and etravirine. The HIV-1I135L/E138K and HIV-1I135R/E138K were significantly resistant to nevirapine and etravirine, respectively, though each solo of escape mutations and E138K did not confer significant resistance to NNRTI. Computational analysis indicated that I135T and E138K cooperatively extend the gap between the binding site of reverse transcriptase and NNRTI. CONCLUSION HLA-B*51-restricted CTL can induce novel mutation patterns of NNRTI resistance by selecting escape mutations. The spread of CTL escape variants may alter the mutation patterns of drug resistance.
Collapse
|
9
|
Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Res 2010; 85:75-90. [DOI: 10.1016/j.antiviral.2009.09.008] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/08/2009] [Accepted: 09/12/2009] [Indexed: 11/20/2022]
|
10
|
TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother 2009; 54:718-27. [PMID: 19933797 DOI: 10.1128/aac.00986-09] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have proven efficacy against human immunodeficiency virus type 1 (HIV-1). However, in the setting of incomplete viral suppression, efavirenz and nevirapine select for resistant viruses. The diarylpyrimidine etravirine has demonstrated durable efficacy for patients infected with NNRTI-resistant HIV-1. A screening strategy used to test NNRTI candidates from the same series as etravirine identified TMC278 (rilpivirine). TMC278 is an NNRTI showing subnanomolar 50% effective concentrations (EC50 values) against wild-type HIV-1 group M isolates (0.07 to 1.01 nM) and nanomolar EC50 values against group O isolates (2.88 to 8.45 nM). Sensitivity to TMC278 was not affected by the presence of most single NNRTI resistance-associated mutations (RAMs), including those at positions 100, 103, 106, 138, 179, 188, 190, 221, 230, and 236. The HIV-1 site-directed mutant with Y181C was sensitive to TMC278, whereas that with K101P or Y181I/V was resistant. In vitro, considerable cross-resistance between TMC278 and etravirine was observed. Sensitivity to TMC278 was observed for 62% of efavirenz- and/or nevirapine-resistant HIV-1 recombinant clinical isolates. TMC278 inhibited viral replication at concentrations at which first-generation NNRTIs could not suppress replication. The rates of selection of TMC278-resistant strains were comparable among HIV-1 group M subtypes. NNRTI RAMs emerging in HIV-1 under selective pressure from TMC278 included combinations of V90I, L100I, K101E, V106A/I, V108I, E138G/K/Q/R, V179F/I, Y181C/I, V189I, G190E, H221Y, F227C, and M230I/L. E138R was identified as a new NNRTI RAM. These in vitro analyses demonstrate that TMC278 is a potent next-generation NNRTI, with a high genetic barrier to resistance development.
Collapse
|
11
|
Tambuyzer L, Azijn H, Rimsky LT, Vingerhoets J, Lecocq P, Kraus G, Picchio G, de Béthune MP. Compilation and prevalence of mutations associated with resistance to non-nucleoside reverse transcriptase inhibitors. Antivir Ther 2009. [DOI: 10.1177/135965350901400114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of antiretroviral therapy for HIV type-1 (HIV-1)-infected patients. Development of NNRTI resistance can lead to treatment failure and is conferred by the presence of specific resistance-associated mutations (RAMs) in the reverse transcriptase. In addition to the widely used list of NNRTI RAMs provided by the International AIDS Society-USA HIV-1 Drug Resistance Mutation Group, which were identified on the basis of clinical experience with the approved NNRTIs, a more comprehensive list of NNRTI RAMs is needed to guide the study of baseline and emerging resistance to new NNRTIs. Methods We conducted an extensive review of the existing literature on NNRTI resistance, together with several in vitro and in vivo studies on the mechanism of HIV-1 resistance to approved NNRTIs and to NNRTIs formerly or currently in clinical development. Results In total, 44 NNRTI RAMs were identified. These included V90I, A98G, L100I, K101E/P/Q, K103H/N/S/T, V106A/I/M, V108I, E138G/K/Q, V179D/E/F/G/I, Y181C/ I/V, Y188C/H/L, V189I, G190A/C/E/Q/S, H221Y, P225H, F227C/L, M230I/L, P236L, K238N/T and Y318F. These NNRTI RAMs were observed, either alone or in combination with others, ranging in frequency from 0.02% to 56.96% in a panel of 101,679 NNRTI-resistant isolates submitted to Virco BVBA (Mechelen, Belgium) for routine clinical resistance testing. Phenotypical data from site-directed mutants helped to establish the contribution of each mutation to NNRTI resistance. Conclusions The list of 44 NNRTI RAMs compiled in this study provides a comprehensive overview of mutations that play a role in HIV-1 NNRTI resistance and can be used to guide further in vitro and in vivo research on the mechanisms of HIV-1 NNRTI resistance.
Collapse
|
12
|
Domingo E, Escarmís C, Menéndez-Arias L, Perales C, Herrera M, Novella IS, Holland JJ. Viral Quasispecies: Dynamics, Interactions, and Pathogenesis *. ORIGIN AND EVOLUTION OF VIRUSES 2008. [PMCID: PMC7149507 DOI: 10.1016/b978-0-12-374153-0.00004-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quasispecies theory is providing a solid, evolving conceptual framework for insights into virus population dynamics, adaptive potential, and response to lethal mutagenesis. The complexity of mutant spectra can influence disease progression and viral pathogenesis, as demonstrated using virus variants selected for increased replicative fidelity. Complementation and interference exerted among components of a viral quasispecies can either reinforce or limit the replicative capacity and disease potential of the ensemble. In particular, a progressive enrichment of a replicating mutant spectrum with interfering mutant genomes prompted by enhanced mutagenesis may be a key event in the sharp transition of virus populations into error catastrophe that leads to virus extinction. Fitness variations are influenced by the passage regimes to which viral populations are subjected, notably average fitness decreases upon repeated bottleneck events and fitness gains upon competitive optimization of large viral populations. Evolving viral quasispecies respond to selective constraints by replication of subpopulations of variant genomes that display higher fitness than the parental population in the presence of the selective constraint. This has been profusely documented with fitness effects of mutations associated with resistance of pathogenic viruses to antiviral agents. In particular, selection of HIV-1 mutants resistant to one or multiple antiretroviral inhibitors, and the compensatory effect of mutations in the same genome, offers a compendium of the molecular intricacies that a virus can exploit for its survival. This chapter reviews the basic principles of quasispecies dynamics as they can serve to explain the behavior of viruses.
Collapse
|
13
|
Mulky A, Vu BC, Conway JA, Hughes SH, Kappes JC. Analysis of amino acids in the beta7-beta8 loop of human immunodeficiency virus type 1 reverse transcriptase for their role in virus replication. J Mol Biol 2006; 365:1368-78. [PMID: 17141805 DOI: 10.1016/j.jmb.2006.10.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/19/2006] [Accepted: 10/25/2006] [Indexed: 11/25/2022]
Abstract
The HIV-1 p51/p66 reverse transcriptase (RT) heterodimer interface comprises, in part, intermolecular interaction of the loop region between beta-strands 7 and 8 (beta7-beta8 loop) in the p51 fingers subdomain with the p66 palm subdomain. In this study, for the first time in the context of infectious HIV-1 particles, we analyzed the contribution of amino acid residues (S134, I135, N136, N137, T139 and P140) in the beta7-beta8 loop for RT heterodimerization, enzymatic activity, and virus infectivity. Mutating asparagine 136 to alanine (N136A) reduced viral infectivity and enzyme activity dramatically. The N136A mutation appeared to destabilize the RT heterodimer and render both the p66 and p51 subunits susceptible to aberrant cleavage by the viral protease. Subunit-specific mutagenesis demonstrated that the presence of the N136A mutation in the p51 subunit alone was sufficient to cause degradation of RT within the virus particle. Alanine mutation at other residues of the beta7-beta8 loop did not affect either RT stability or virus infectivity significantly. None of the beta7-beta8 loop alanine mutations affected the sensitivity of virus to inhibition by NNRTIs. In the context of infectious virions, our results indicate a critical role of the p51 N136 residue within the beta7-beta8 loop for RT heterodimer stability and function. These findings suggest the interface comprising N136 in p51 and interacting residues in p66 as a possible target for rational drug design.
Collapse
Affiliation(s)
- Alok Mulky
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
14
|
Ren J, Nichols CE, Stamp A, Chamberlain PP, Ferris R, Weaver KL, Short SA, Stammers DK. Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138. FEBS J 2006; 273:3850-60. [PMID: 16911530 DOI: 10.1111/j.1742-4658.2006.05392.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Lys101Glu is a drug resistance mutation in reverse transcriptase clinically observed in HIV-1 from infected patients treated with the non-nucleoside inhibitor (NNRTI) drugs nevirapine and efavirenz. In contrast to many NNRTI resistance mutations, Lys101(p66 subunit) is positioned at the surface of the NNRTI pocket where it interacts across the reverse transcriptase (RT) subunit interface with Glu138(p51 subunit). However, nevirapine contacts Lys101 and Glu138 only indirectly, via water molecules, thus the structural basis of drug resistance induced by Lys101Glu is unclear. We have determined crystal structures of RT(Glu138Lys) and RT(Lys101Glu) in complexes with nevirapine to 2.5 A, allowing the determination of water structure within the NNRTI-binding pocket, essential for an understanding of nevirapine binding. Both RT(Glu138Lys) and RT(Lys101Glu) have remarkably similar protein conformations to wild-type RT, except for significant movement of the mutated side-chains away from the NNRTI pocket induced by charge inversion. There are also small shifts in the position of nevirapine for both mutant structures which may influence ring stacking interactions with Tyr181. However, the reduction in hydrogen bonds in the drug-water-side-chain network resulting from the mutated side-chain movement appears to be the most significant contribution to nevirapine resistance for RT(Lys101Glu). The movement of Glu101 away from the NNRTI pocket can also explain the resistance of RT(Lys101Glu) to efavirenz but in this case is due to a loss of side-chain contacts with the drug. RT(Lys101Glu) is thus a distinctive NNRTI resistance mutant in that it can give rise to both direct and indirect mechanisms of drug resistance, which are inhibitor-dependent.
Collapse
Affiliation(s)
- Jingshan Ren
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
de Castro S, García-Aparicio C, Van Laethem K, Gago F, Lobatón E, De Clercq E, Balzarini J, Camarasa MJ, Velázquez S. Discovery of TSAO derivatives with an unusual HIV-1 activity/resistance profile. Antiviral Res 2006; 71:15-23. [PMID: 16616962 DOI: 10.1016/j.antiviral.2006.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 02/20/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
The very first TSAO derivative that lacks the 4''-amino group at the 3'-spiro moiety (compound 3) has been prepared and the effect of this modification on the activity/resistance profile has been evaluated. This molecule proved HIV-1 specific (NNRTI-characteristic). A mixture of wild-type and V106V/A or L234L/I mutations were found in the RT of some, but not all compound 3-resistant virus strains. Compound 3 does not select for the TSAO-specific E138K mutation in the RT. However, the compound markedly lost its antiviral potential against a variety of virus strains that contain NNRTI-characteristic mutations in RT including E138K. The deaminated TSAO compound must fit differently in the HIV-1 RT enzyme than its prototype TSAO-m(3)T.
Collapse
Affiliation(s)
- Sonia de Castro
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
D'Cruz OJ, Uckun FM. Dawn of non-nucleoside inhibitor-based anti-HIV microbicides. J Antimicrob Chemother 2006; 57:411-23. [PMID: 16431862 DOI: 10.1093/jac/dki464] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The emergence of HIV/AIDS as a disease spread through sexual intercourse has prompted the search for safe and effective vaginal and rectal microbicides for curbing mucosal viral transmission via semen. Since endogenous reverse transcription is implicated in augmenting the sexual transmission of HIV-1 infection, potential microbicides should have the inherent ability to optimally inhibit both wild-type and drug-escape mutants. The non-nucleoside reverse transcriptase inhibitors (NNRTIs), which bind to an allosteric site on RT, are an important arsenal of drugs against HIV-1. The clinical success of NNRTI-based HIV/AIDS therapies has led to extensive structural and molecular modelling studies of enzyme complexes and chemical synthesis of second- and third-generation NNRTIs. Rationally designed NNRTIs deduced from changes in binding pocket size, shape and residue character that result from clinically observed NNRTI resistance-associated mutations exhibit high binding affinity for HIV-1 RT and robust anti-HIV activity against the wild-type and drug-escape mutants without cytotoxicity. Notably, membrane permeable tight binding NNRTIs have the ability to inactivate cell-free as well as cell-associated HIV-1 in semen without metabolic activation. Consequently, NNRTIs currently under development as experimental microbicides include thiourea-PETT (where PETT stands for phenethylthiazolylthiourea) derivatives (PHI-236, PHI-346 and PHI-443), urea-PETT derivatives (MIV-150), oxypyrimidines (S-DABOs), thiocarboxanilides (UC-781) and diarylpyrimidines (TMC-120). Mucoadhesive formulations of these NNRTIs have been studied for safety and efficacy in animal models and some have entered Phase I safety testing in humans. This review focuses on the structural, biological and preclinical studies relevant to the clinical development of these NNRTIs as molecular virucides intended to prevent the sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Drug Discovery Program, Parker Hughes Institute, 2657 Patton Road, St Paul, MN 55113, USA.
| | | |
Collapse
|
17
|
Vingerhoets J, Azijn H, Fransen E, De Baere I, Smeulders L, Jochmans D, Andries K, Pauwels R, de Béthune MP. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol 2005; 79:12773-82. [PMID: 16188980 PMCID: PMC1235844 DOI: 10.1128/jvi.79.20.12773-12782.2005] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TMC125 is a potent new investigational nonnucleoside reverse transcriptase inhibitor (NNRTI) that is active against human immunodeficiency virus type 1 (HIV-1) with resistance to currently licensed NNRTIs. Sequential passage experiments with both wild-type virus and NNRTI-resistant virus were performed to identify mutations selected by TMC125 in vitro. In addition to "classic" selection experiments at a low multiplicity of infection (MOI) with increasing concentrations of inhibitors, experiments at a high MOI with fixed concentrations of inhibitors were performed to ensure a standardized comparison between TMC125 and current NNRTIs. Both low- and high-MOI experiments demonstrated that the development of resistance to TMC125 required multiple mutations which frequently conferred cross-resistance to efavirenz and nevirapine. In high-MOI experiments, 1 muM TMC125 completely inhibited the breakthrough of resistant virus from wild-type and NNRTI-resistant HIV-1, in contrast to efavirenz and nevirapine. Furthermore, breakthrough of virus from site-directed mutant (SDM) SDM-K103N/Y181C occurred at the same time or later with TMC125 as breakthrough from wild-type HIV-1 with efavirenz or nevirapine. The selection experiments identified mutations selected by TMC125 that included known NNRTI-associated mutations L100I, Y181C, G190E, M230L, and Y318F and the novel mutations V179I and V179F. Testing the antiviral activity of TMC125 against a panel of SDMs indicated that the impact of these individual mutations on resistance was highly dependent upon the presence and identity of coexisting mutations. These results demonstrate that TMC125 has a unique profile of activity against NNRTI-resistant virus and possesses a high genetic barrier to the development of resistance in vitro.
Collapse
|
18
|
Auwerx J, Rodríguez-Barrios F, Ceccherini-Silberstein F, San-Félix A, Velázquez S, De Clercq E, Camarasa MJ, Perno CF, Gago F, Balzarini J. The role of Thr139 in the human immunodeficiency virus type 1 reverse transcriptase sensitivity to (+)-calanolide A. Mol Pharmacol 2005; 68:652-9. [PMID: 15961674 DOI: 10.1124/mol.105.012351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The coumarins represent a unique class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that were isolated from tropical plants. (+)-Calanolide A, the most potent compound of this class, selects for the T139I resistance mutation in HIV-1 reverse transcriptase (RT). Seven RTs mutated at amino acid position 139 (Ala, Lys, Tyr, Asp, Ile, Ser, and Gln) were constructed by site-directed mutagenesis. The mutant T139Q enzyme retained full catalytic activity compared with wild-type RT, whereas the mutant T139I, T139S, and T139A RTs retained only 85 to 50% of the activity. Mutant T139K, T139D, and T139Y RTs had seriously impaired catalytic activities. The mutations in the T139I and T139D RTs were shown to destabilize the RT heterodimer. (+)-Calanolide A lost inhibitory activity (up to 20-fold) against the mutant T139Y, T139Q, T139K, and T139I enzymes. All of the mutant enzymes retained marked susceptibility toward the other NNRTIs, including nevirapine, delavirdine, efavirenz, thiocarboxanilide UC-781, quinoxaline GW867420X, TSAO [[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)] derivatives, and the nucleoside inhibitor, ddGTP. The fact that the T139I RT 1) proved to be resistant to (+)-calanolide A, 2) represents a catalytically efficient enzyme, and 3) requires only a single transition point mutation (ACA-->ATA) in codon 139 seems to explain why mutant T139I RT virus strains, but not virus strains containing other amino acid changes at this position, predominantly emerge in cell cultures under (+)-calanolide A pressure.
Collapse
Affiliation(s)
- Joeri Auwerx
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wainberg MA. HIV resistance to nevirapine and other non-nucleoside reverse transcriptase inhibitors. J Acquir Immune Defic Syndr 2003; 34 Suppl 1:S2-7. [PMID: 14562852 DOI: 10.1097/00126334-200309011-00002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nevirapine and other members of the non-nucleoside reverse transcriptase inhibitor (NNRTI) family of anti-HIV-1 drugs are essential components of antiretroviral treatment regimens. Unfortunately, drug resistance has become an important issue with respect to all therapeutic targets in HIV-1. This paper summarizes current knowledge about the mutations in the reverse transcriptase gene of HIV-1 that are responsible for drug resistance and the mechanisms whereby drug resistance develops.
Collapse
Affiliation(s)
- Mark A Wainberg
- McGill University AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Abstract
There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
21
|
Balzarini J, Camarasa MJ, Pérez-Pérez MJ, San-Félix A, Velázquez S, Perno CF, De Clercq E, Anderson JN, Karlsson A. Exploitation of the low fidelity of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and the nucleotide composition bias in the HIV-1 genome to alter the drug resistance development of HIV. J Virol 2001; 75:5772-7. [PMID: 11390579 PMCID: PMC114293 DOI: 10.1128/jvi.75.13.5772-5777.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA genome of the lentivirus human immunodeficiency virus type 1 (HIV-1) is significantly richer in adenine nucleotides than the statistically equal distribution of the four different nucleotides that is expected. This compositional bias may be due to the guanine-to-adenine (G-->A) nucleotide hypermutation of the HIV genome, which has been explained by dCTP pool imbalances during reverse transcription. The adenine nucleotide bias together with the poor fidelity of HIV-1 reverse transcriptase markedly enhances the genetic variation of HIV and may be responsible for the rapid emergence of drug-resistant HIV-1 strains. We have now attempted to counteract the normal mutational pattern of HIV-1 in response to anti-HIV-1 drugs by altering the endogenous deoxynucleoside triphosphate pool ratios with antimetabolites in virus-infected cell cultures. We showed that administration of these antimetabolic compounds resulted in an altered drug resistance pattern due to the reversal of the predominant mutational flow of HIV (G-->A) to an adenine-to-guanine (A-->G) nucleotide pattern in the intact HIV-1-infected lymphocyte cultures. Forcing the virus to change its inherent nucleotide bias may lead to better control of viral drug resistance development.
Collapse
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroederstraat 10, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|