1
|
Jorapur A, Marshall LA, Jacobson S, Xu M, Marubayashi S, Zibinsky M, Hu DX, Robles O, Jackson JJ, Baloche V, Busson P, Wustrow D, Brockstedt DG, Talay O, Kassner PD, Cutler G. EBV+ tumors exploit tumor cell-intrinsic and -extrinsic mechanisms to produce regulatory T cell-recruiting chemokines CCL17 and CCL22. PLoS Pathog 2022; 18:e1010200. [PMID: 35025968 PMCID: PMC8791514 DOI: 10.1371/journal.ppat.1010200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/26/2022] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.
Collapse
Affiliation(s)
- Aparna Jorapur
- Discovery Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Lisa A. Marshall
- Quantitative Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Scott Jacobson
- Discovery Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Mengshu Xu
- Computational Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Sachie Marubayashi
- Discovery Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Mikhail Zibinsky
- Drug Discovery, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Dennis X. Hu
- Drug Discovery, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Omar Robles
- Drug Discovery, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Jeffrey J. Jackson
- Drug Discovery, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Valentin Baloche
- CNRS-UMR 8126, Gustave Roussy and Paris-Sud/Paris-Saclay University, Villejuif, France
| | - Pierre Busson
- CNRS-UMR 8126, Gustave Roussy and Paris-Sud/Paris-Saclay University, Villejuif, France
| | - David Wustrow
- Drug Discovery, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Dirk G. Brockstedt
- Discovery Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Oezcan Talay
- Discovery Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Paul D. Kassner
- Quantitative Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| | - Gene Cutler
- Computational Biology, RAPT Therapeutics, Inc., South San Francisco, California, United States of America
| |
Collapse
|
2
|
The interplay between EBV and KSHV viral products and NF-κB pathway in oncogenesis. Infect Agent Cancer 2020; 15:62. [PMID: 33072180 PMCID: PMC7559203 DOI: 10.1186/s13027-020-00317-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
Among the DNA tumor viruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV), account for a considerable percentage of virus-associated cancers. Deregulation of transcription factors signaling pathways is one of the most significant oncogenic characteristics of EBV and KSHV. NF-κB is a transcription factor that play a remarkable role in oncogenesis because of its function as a master regulator of a spectrum of genes involved in physiological and pathophysiological process. Constitutive activation of NF-κB is a frequent and well-described event in many human malignancies. Compelling evidence represent EBV and KSHV are capable of targeting different components of NF-κB cascade. Here, we summarized recent findings to clarify the precise relationship between dysregulation of NF-κB and EBV and KSHV-related malignancies. This essay also emphasizes on contribution of various viral products in developing cancer through alteration of NF-κB signaling pathway.
Collapse
|
3
|
Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, Trudeau S, Zhao B, Weekes MP, Gewurz BE. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog 2019; 15:e1008030. [PMID: 31518366 PMCID: PMC6760809 DOI: 10.1371/journal.ppat.1008030] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/25/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with multiple human malignancies. EBV drives B-cell proliferation, which contributes to the pathogenesis of multiple lymphomas. Yet, knowledge of how EBV subverts host biosynthetic pathways to transform resting lymphocytes into activated lymphoblasts remains incomplete. Using a temporal proteomic dataset of EBV primary human B-cell infection, we identified that cholesterol and fatty acid biosynthetic pathways were amongst the most highly EBV induced. Epstein-Barr nuclear antigen 2 (EBNA2), sterol response element binding protein (SREBP) and MYC each had important roles in cholesterol and fatty acid pathway induction. Unexpectedly, HMG-CoA reductase inhibitor chemical epistasis experiments revealed that mevalonate pathway production of geranylgeranyl pyrophosphate (GGPP), rather than cholesterol, was necessary for EBV-driven B-cell outgrowth, perhaps because EBV upregulated the low-density lipoprotein receptor in newly infected cells for cholesterol uptake. Chemical and CRISPR genetic analyses highlighted downstream GGPP roles in EBV-infected cell small G protein Rab activation. Rab13 was highly EBV-induced in an EBNA3-dependent manner and served as a chaperone critical for latent membrane protein (LMP) 1 and 2A trafficking and target gene activation in newly infected and in lymphoblastoid B-cells. Collectively, these studies identify highlight multiple potential therapeutic targets for prevention of EBV-transformed B-cell growth and survival. EBV, the first human tumor virus identified, persistently infects >95% of adults worldwide. Upon infection of small, resting B-lymphocytes, EBV establishes a state of viral latency, where viral oncoproteins and non-coding RNAs activate host pathways to promote rapid B-cell proliferation. EBV’s growth-transforming properties are closely linked to the pathogenesis of multiple immunoblastic lymphomas, particularly in immunosuppressed hosts. While EBV oncogenes important for B-cell transformation have been identified, knowledge remains incomplete of how these EBV factors remodel cellular metabolism, a hallmark of human cancers. Using a recently established proteomic map of EBV-mediated B-cell growth transformation, we found that EBV induces biosynthetic pathways that convert acetyl-coenzyme A (acetyl-CoA) into isoprenoids, steroids, terpenoids, cholesterol, and long-chain fatty acids. Viral nuclear antigens cooperated with EBV-activated host transcription factors to upregulate rate-limiting enzymes of these biosynthetic pathways. The isoprenoid geranylgeranyl pyrophosphate was identified as a key product of the EBV-induced mevalonate pathway. Our studies highlighted GGPP roles in Rab protein activation, and Rab13 was identified as a highly EBV-upregulated GTPase critical for LMP1 and LMP2A trafficking and signaling. These studies identify multiple EBV-induced metabolic enzymes important for B-cell transformation, including potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wei Wang
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Stephen Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin E. Gewurz
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Constitutive activation of the canonical NF-κB signaling pathway in EBV-associated gastric carcinoma. Virology 2019; 532:1-10. [DOI: 10.1016/j.virol.2019.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 01/25/2023]
|
5
|
Vrzalikova K, Ibrahim M, Nagy E, Vockerodt M, Perry T, Wei W, Woodman C, Murray P. Co-Expression of the Epstein-Barr Virus-Encoded Latent Membrane Proteins and the Pathogenesis of Classic Hodgkin Lymphoma. Cancers (Basel) 2018; 10:cancers10090285. [PMID: 30149502 PMCID: PMC6162670 DOI: 10.3390/cancers10090285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is present in the tumour cells of a subset of patients with classic Hodgkin lymphoma (cHL), yet the contribution of the virus to the pathogenesis of these tumours remains only poorly understood. The EBV genome in virus-associated cHL expresses a limited subset of genes, restricted to the non-coding Epstein-Barr virus-encoded RNAs (EBERs) and viral miRNA, as well as only three virus proteins; the Epstein-Barr virus nuclear antigen-1 (EBNA1), and the two latent membrane proteins, known as LMP1 and LMP2, the latter of which has two isoforms, LMP2A and LMP2B. LMP1 and LMP2A are of particular interest because they are co-expressed in tumour cells and can activate cellular signalling pathways, driving aberrant cellular transcription in infected B cells to promote lymphomagenesis. This article seeks to bring together the results of recent studies of the latent membrane proteins in different B cell systems, including experiments in animal models as well as a re-analysis of our own transcriptional data. In doing so, we summarise the potentially co-operative and antagonistic effects of the LMPs that are relevant to B cell lymphomagenesis.
Collapse
Affiliation(s)
- Katerina Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Correspondence: ; Tel.: +44-121-414-4021
| | - Maha Ibrahim
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Eszter Nagy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Martina Vockerodt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Institute of Anatomy and Cell Biology, Georg-August University of Göttingen, 37099 Göttingen, Germany
| | - Tracey Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Wenbin Wei
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S102HQ, UK
| | - Ciaran Woodman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
| | - Paul Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.I.); (E.N.); (M.V.); (T.P.); (W.W.); (P.M.)
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77515 Olomouc, Czech Republic
| |
Collapse
|
6
|
Mouse model of Epstein-Barr virus LMP1- and LMP2A-driven germinal center B-cell lymphoproliferative disease. Proc Natl Acad Sci U S A 2017; 114:4751-4756. [PMID: 28351978 DOI: 10.1073/pnas.1701836114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is a major cause of immunosuppression-related B-cell lymphomas and Hodgkin lymphoma (HL). In these malignancies, EBV latent membrane protein 1 (LMP1) and LMP2A provide infected B cells with surrogate CD40 and B-cell receptor growth and survival signals. To gain insights into their synergistic in vivo roles in germinal center (GC) B cells, from which most EBV-driven lymphomas arise, we generated a mouse model with conditional GC B-cell LMP1 and LMP2A coexpression. LMP1 and LMP2A had limited effects in immunocompetent mice. However, upon T- and NK-cell depletion, LMP1/2A caused massive plasmablast outgrowth, organ damage, and death. RNA-sequencing analyses identified EBV oncoprotein effects on GC B-cell target genes, including up-regulation of multiple proinflammatory chemokines and master regulators of plasma cell differentiation. LMP1/2A coexpression also up-regulated key HL markers, including CD30 and mixed hematopoietic lineage markers. Collectively, our results highlight synergistic EBV membrane oncoprotein effects on GC B cells and provide a model for studies of their roles in immunosuppression-related lymphoproliferative diseases.
Collapse
|
7
|
Abstract
Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.
Collapse
|
8
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
9
|
Ondondo B, Faulkner L, Williams NA, Morgan AJ, Morgan DJ. The B subunit of Escherichia coli enterotoxin helps control the in vivo growth of solid tumors expressing the Epstein-Barr virus latent membrane protein 2A. Cancer Med 2015; 4:457-71. [PMID: 25641882 PMCID: PMC4380971 DOI: 10.1002/cam4.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 01/23/2023] Open
Abstract
Latent membrane protein 2A (LMP2A) is expressed on almost all Epstein–Barr virus (EBV)-associated tumors and is a potential target for immunotherapeutic intervention and vaccination. However, LMP2A is not efficiently processed and presented on major histocompatibility antigens class I molecules to generate potent cytotoxic T-lymphocytes (CTL) responses capable of killing these tumors. The B subunit of Escherichia coli enterotoxin (EtxB), causes rapid internalization and processing of membrane-bound LMP2A on EBV-infected B cells, and facilitates loading of processed-LMP2A peptides onto MHC class I. This re-directed trafficking/delivery of LMP2A to the MHC class I machinery enhances recognition and killing by LMP2A-specific CTL in vitro. To test the potential of EtxB to enhance immune targeting of LMP2A expressed in solid tumors, we generated a murine tumor model (Renca-LMP2A), in which LMP2A is expressed as a transgenic neoantigen on a renal carcinoma (Renca) cell line and forms solid tumors when injected subcutaneously into BALB/c mice. The data show that in BALB/c mice which have only low levels of peripheral Kd-LMP2A-specific CD8+ T cells, merely a transient inhibition of tumor growth is achieved compared with naïve mice; suggesting that there is suboptimal LMP2A-specifc CTL recognition and poorly targeted tumor killing. However, importantly, treatment of these mice with EtxB led to a significant delay in the onset of tumor growth and significantly lower tumor volumes compared with similar mice that did not receive EtxB. Moreover, this remarkable effect of EtxB was achieved despite progressive reduction in tumor expression of LMP2A and MHC class I molecules. These data clearly demonstrate the potential efficacy of EtxB as a novel therapeutic agent that could render EBV-associated tumors susceptible to immune control.
Collapse
Affiliation(s)
- Beatrice Ondondo
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, Oxfordshire OX3 7DQ, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Abstract
ABSTRACT Viruses have evolved to subvert host cell pathways to enable their replication and persistence. In particular, virus-encoded gene products target the host's immune system to evade elimination by antiviral immune defenses. Cytokines are soluble, secreted proteins, which regulate many aspects of immune responses, by providing signals through cell surface receptors on target cells. Cytokine pathways are therefore attractive targets for modulation by viruses during their replication cycle. This review deals with modulation of cytokine pathways by the human herpesvirus, a family of viruses that are capable of life-long persistence in the host and cause severe disease particularly in immunocompromised individuals.
Collapse
|
11
|
SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells. Oncogene 2014; 34:4491-9. [PMID: 25531330 DOI: 10.1038/onc.2014.380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV)-encoded Latent Membrane Protein 2A (LMP2A) is an EBV latency-associated protein regularly expressed in nasopharyngeal carcinoma (NPC). In B cells, LMP2A activity resembles that of a constitutively activated antigen receptor, which recruits the Syk tyrosine kinase to activate a set of downstream signaling pathways. LMP2A also downregulates cellular Syk levels. In the present study, we demonstrate that Syk interacts with the integrin β4 subunit (ITGβ4) of integrin α6β4 in epithelial cells and that concurrent LMP2A expression interferes with this interaction by competitive binding to Syk. We find that both Syk and LMP2A have an effect on ITGβ4 cell surface expression. However, in LMP2A expressing cells, ITGβ4 remains concentrated at the cellular protrusions, an expression pattern characteristic of motile cells, including NPC-derived epithelial cells. This effect of LMP2A on ITGβ4 localization is associated with a greater propensity for migration and invasion in-vitro, and may contribute to the invasive property of LMP2A-expressing NPC.
Collapse
|
12
|
Yeo KS, Mohidin TBM, Ng CC. Epstein-Barr virus-encoded latent membrane protein-1 upregulates 14-3-3σ and Reprimo to confer G(2)/M phase cell cycle arrest. C R Biol 2012; 335:713-21. [PMID: 23312294 DOI: 10.1016/j.crvi.2012.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/30/2012] [Accepted: 11/16/2012] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous tumor-causing virus which infects more than 90% of the world population asymptomatically. Recent studies suggest that LMP-1, -2A and -2B cooperate in the tumorigenesis of EBV-associated epithelial cancers such as nasopharygeal carcinoma, oral and gastric cancer. In this study, LMPs were expressed in the HEK293T cell line to reveal their oncogenic mechanism via investigation on their involvement in the regulation of the cell cycle and genes that are involved. LMPs were expressed in HEK293T in single and co-expression manner. The transcription of cell cycle arrest genes were examined via real-time PCR. Cell cycle progression was examined via flow cytometry. 14-3-3σ and Reprimo were upregulated in all LMP-1 expressing cells. Moreover, cell cycle arrest at G(2)/M progression was detected in all LMP-1 expressing cells. Therefore, we conclude that LMP-1 may induce cell cycle arrest at G(2)/M progression via upregulation of 14-3-3σ and Reprimo.
Collapse
Affiliation(s)
- Kok-Siong Yeo
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
13
|
Hatton O, Lambert SL, Krams SM, Martinez OM. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas. PLoS One 2012; 7:e42610. [PMID: 22880054 PMCID: PMC3411813 DOI: 10.1371/journal.pone.0042610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stacie L. Lambert
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sheri M. Krams
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
14
|
Vrazo AC, Chauchard M, Raab-Traub N, Longnecker R. Epstein-Barr virus LMP2A reduces hyperactivation induced by LMP1 to restore normal B cell phenotype in transgenic mice. PLoS Pathog 2012; 8:e1002662. [PMID: 22536156 PMCID: PMC3334893 DOI: 10.1371/journal.ppat.1002662] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors. As a ubiquitous human pathogen, Epstein-Barr virus (EBV) infection is associated with several human B cell diseases characterized by inappropriate B cell activation and function, including infectious mononucleosis and certain cancers. EBV latent membrane protein 1 (LMP1) and 2A (LMP2A) hijack cell signaling pathways to alter B cell activation and function, and are detected in EBV-associated diseases. Defining the effect on B cell function when LMP1 and LMP2A are expressed together in the same cell is critical to understanding how EBV subverts normal B cell behavior before disease develops. Using transgenic mice, we have demonstrated that LMP2A dampens cellular proliferation and activation induced by LMP1, which may be due to the LMP2A-associated decrease in the levels of TRAF2, a signaling protein used by LMP1. LMP2A also allows B cells carrying LMP1 to enter the germinal center during an immune response, a site that gives rise to EBV-associated tumors in humans. In sum, this study highlights the biological outcomes of LMP1 and LMP2A co-expression in B cells and contributes to the knowledge of how EBV subverts normal B cell behavior before disease develops.
Collapse
Affiliation(s)
- Alexandra C. Vrazo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Maria Chauchard
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 2012; 22:144-53. [PMID: 22249143 DOI: 10.1016/j.semcancer.2012.01.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
Abstract
Although frequently expressed in EBV-positive malignancies, the contribution of the oncogenic latent membrane proteins, LMP1 and LMP2, to the pathogenesis of nasopharyngeal carcinoma (NPC) is not fully defined. As a key effector in EBV-driven B cell transformation and an established "transforming" gene, LMP1 displays oncogenic properties in rodent fibroblasts and induces profound morphological and phenotypic effects in epithelial cells. LMP1 functions as a viral mimic of the TNFR family member, CD40, engaging a number of signalling pathways that induce morphological and phenotypic alterations in epithelial cells. Although LMP2A plays an essential role in maintaining viral latency in EBV infected B cells, its role in epithelial cells is less clear. Unlike LMP1, LMP2A does not display "classical" transforming functions in rodent fibroblasts but its ability to engage a number of potentially oncogenic cell signalling pathways suggests that LMP2A can also participate in EBV-induced epithelial cell growth transformation. Here we review the effects of LMP1 and LMP2 on various aspects of epithelial cell behaviour highlighting key aspects that may contribute to the pathogenesis of NPC.
Collapse
Affiliation(s)
- Christopher W Dawson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
16
|
Chen J, Zhu GB. Advances in understanding the relationship between Epstein-Barr virus infection and gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19:3040-3045. [DOI: 10.11569/wcjd.v19.i29.3040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV) plays an important role in gastric carcinogenesis and EBV infection is closely related to the development and progression of gastric cancer. Advances in molecular biology techniques have deepened our understanding of the characteristics of EBV-associated gastric cancer (EBVaGC). It has been found that latent EBV infection and EBV-induced malignant transformation are an important basis for the pathogenesis of EBVaGC. Understanding the pathogenesis of EBVaGC provides a theoretical basis for the diagnosis, treatment and prevention of this disease.
Collapse
|
17
|
Abstract
NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase, which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T cell leukemia virus type 1, the Kaposi sarcoma-associated herpesvirus, and the Epstein-Bar virus. These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| |
Collapse
|
18
|
NF-κB signaling modulation by EBV and KSHV. Trends Microbiol 2010; 18:248-57. [DOI: 10.1016/j.tim.2010.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/24/2010] [Accepted: 04/02/2010] [Indexed: 12/12/2022]
|
19
|
Swanson-Mungerson M, Bultema R, Longnecker R. Epstein-Barr virus LMP2A imposes sensitivity to apoptosis. J Gen Virol 2010; 91:2197-202. [PMID: 20484564 PMCID: PMC3066549 DOI: 10.1099/vir.0.021444-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In cell lines, the Epstein–Barr virus (EBV)-encoded protein latent membrane protein 2A (LMP2A) protects B-cells from apoptosis by blocking B-cell receptor (BCR) signalling. However, EBV-infected B-cells in vivo are extremely different from cell lines. This study used a murine transgenic model in which B-cells express LMP2A and a BCR specific for hen egg lysozyme to determine whether LMP2A protects resting and antigen-activated B-cells from apoptosis. LMP2A allows BCR signal transduction and induces constitutive activation of NF-κB to increase Bcl-2 levels that afford LMP2A-mediated protection from apoptosis in the absence or presence of antigen. In contrast, low levels of NF-κB inhibitor only affected Bcl-2 and Bcl-xL levels and increased apoptosis in LMP2A-negative B-cells after BCR cross-linking. These data suggest that LMP2A uniquely makes resting B-cells sensitive to NF-κB inhibition and apoptosis and suggest that NF-κB may be a novel target to eradicate latently EBV-infected B-cells.
Collapse
Affiliation(s)
- Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60516, USA.
| | | | | |
Collapse
|
20
|
Augmented latent membrane protein 1 expression from Epstein-Barr virus episomes with minimal terminal repeats. J Virol 2009; 84:2236-44. [PMID: 20015988 DOI: 10.1128/jvi.01972-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The major oncogene of the Epstein-Barr virus (EBV), latent membrane protein 1 (LMP1), can be expressed from either of two promoters, ED-L1 or L1-TR, producing mRNAs of 2.8 kb or 3.5 kb, respectively. L1-TR, active in nasopharyngeal carcinoma and Hodgkin's lymphoma, is located within the first of a highly variable reiteration of terminal repeat (TR) sequences that are joined by random recombination upon circularization of the linear genome at entry into cells. To determine whether the resultant TR number affects LMP1 promoter activity, we isolated single-cell clones bearing episomes of distinct TR numbers (6TR to 12TR) from epithelial cells newly infected with EBV. LMP1 mRNA levels correlated directly with the quantity of LMP1 protein expressed but varied inversely to TR number. Unexpectedly, the 3.5-kb transcript predominated only at lower TR reiterations. Diminished L1-TR activity in the context of a higher TR count was confirmed with a green fluorescent protein (GFP) reporter construct driven by L1-TR. Various levels of LMP1, expressed from virus isogenic in all but TR number, produced divergent morphological and growth phenotypes in each cell clone. Abundant LMP1 in 6TR cells yielded a relatively cytostatic state compared to the proliferative one produced by intermediate and smaller amounts in 8TR and 12TR clones. These findings suggest that the diversification of TR number, inherent in a round of EBV reactivation and reinfection, may itself be a component of the oncogenic process. The replicative burst preceding onset of many EBV-linked cancers may increase the likelihood that LMP1 levels compatible with clonal outgrowth are achieved in a subset of infected cells.
Collapse
|
21
|
The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 2009; 28:3903-14. [PMID: 19718044 PMCID: PMC2774296 DOI: 10.1038/onc.2009.249] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although frequently expressed in Epstein-Barr virus (EBV)-positive malignancies, the role that latent membrane protein 2A and 2B (LMP2A and LMP2B) have in the oncogenic process remains obscure. Here we show a novel function for these proteins in epithelial cells, namely, their ability to modulate signalling from type I/II interferon receptors (IFNRs). We show that LMP2A- and LMP2B-expressing epithelial cells show decreased responsiveness to interferon (IFN)alpha and IFNgamma, as assessed by STAT1 phosphorylation, ISGF3 and GAF-mediated binding to IFN-stimulated response element and IFNgamma-activated factor sequence elements and luciferase reporter activation. Transcriptional profiling highlighted the extent of this modulation, with both viral proteins impacting 'globally' on IFN-stimulated gene expression. Although not affecting the levels of cell-surface IFNRs, LMP2A and LMP2B accelerated the turnover of IFNRs through processes requiring endosome acidification. This function may form part of EBV's strategy to limit anti-viral responses and define a novel function for LMP2A and LMP2B in modulating signalling from receptors that participate in innate immune responses.
Collapse
|
22
|
EBV LMP2A affects LMP1-mediated NF-kappaB signaling and survival of lymphoma cells by regulating TRAF2 expression. Blood 2008; 111:3813-20. [PMID: 18230756 DOI: 10.1182/blood-2007-03-080309] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A mechanism used by Epstein-Barr virus (EBV) for in vitro transformation of B cells into lymphoblastoid cell lines (LCLs) is activation of the NF-kappaB pathway, which is largely mediated by the EBV latent membrane protein 1 (LMP1). LMP1 is coexpressed with LMP2A in many EBV-associated lymphoid malignancies. Since inhibition of NF-kappaB leads to apoptosis of EBV-infected LCLs and lymphoma cell lines, we sought to determine whether LMP1 alone, or in combination with other viral proteins, is responsible for initiating NF-kappaB activation in these cells, thereby playing a role in cell survival. We found that suppression of LMP1 by RNA interference results in inhibition of basal NF-kappaB and induction of apoptosis. Unexpectedly, knockdown of LMP2A also resulted in comparable decrease of NF-kappaB activity and apoptosis. We report that LMP2A protein controls the expression of TRAF2 mRNA, which in turn is necessary for signaling by LMP1. Our data contrast with previous studies showing that transfected LMP1 can signal in the absence of LMP2A or TRAF2, and demonstrate that both LMP2A and TRAF2 are required for survival in naturally infected lymphoma cells and LCLs. These results also support LMP1, LMP2A, and TRAF2 as potential therapeutic targets in a subset of EBV-associated lymphoid malignancies.
Collapse
|
23
|
Tomaszewski-Flick MJ, Rowe DT. Minimal protein domain requirements for the intracellular localization and self-aggregation of Epstein-Barr Virus Latent Membrane Protein 2. Virus Genes 2007; 35:225-34. [PMID: 17564822 DOI: 10.1007/s11262-007-0118-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 05/14/2007] [Indexed: 12/11/2022]
Abstract
The EBV Latent Membrane Protein 2 (LMP2) may have a role in the establishment and maintenance of in vivo latency. The gene is transcribed into two mRNAs that produce two LMP2 protein isoforms. The LMP2a protein isoform has 12 transmembrane segments (TMs) and an amino terminal cytoplasmic signaling domain (CSD) while the LMP2b isoform is identical but lacks the CSD. There has not been a consensus on the cellular membrane localization being sometimes ascribed to either a plasma membrane or an intracellular location [M. Rovedo, R. Longnecker, J. Virol. 81:89-94, 2007; D. Lynch, J. Zimmerman, D.T. Rowe, J. Gen. Virol. 83:1025-1035, 2002; C. Dawson, J. George, S. Blake, R. Longnecker, L.S. Young, Virology 289:192-207, 2001]. Fluorescent marker and epitope tagged LMP2b truncation mutants progressively removing TMs from the N and C termini were used to assess the localization and aggregation properties of LMP2b. wtLMP2b had an exclusively intracellular perinuclear localization, while all truncations of the protein resulted in localization to the cell surface. By epitope loop-tagging, all the truncated LMP2b proteins were verified to be in the predicted membrane orientation. In co-transfection experiments, the C-terminal region was implicated in the self-aggregation properties of LMP2b. Thus, an intact 12 TM domain was required for intracellular localization and protein-protein interaction while a C-terminal region was responsible for auto-aggregative properties.
Collapse
Affiliation(s)
- Monica Jo Tomaszewski-Flick
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto St, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
24
|
Abstract
Epstein-Barr virus (EBV) infection is linked to approximately 90% of B-cell lymphomas associated with posttransplant lymphoproliferative disease (PTLD), a serious complication for immunosuppressed transplant recipients. In this paper, we review the myriad ways by which EBV can inadvertently drive the genesis and persistence of B-cell lymphomas, particularly when the antiviral immune response is compromised. Probing the basic mechanisms by which EBV infection proceeds and contributes to malignancy in such cases will hopefully improve our understanding and treatment of PTLD and other EBV-associated malignancies.
Collapse
Affiliation(s)
- Andrew L Snow
- Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
25
|
Rovedo M, Longnecker R. Epstein-barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol 2007; 81:84-94. [PMID: 17035319 PMCID: PMC1797235 DOI: 10.1128/jvi.01302-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 09/28/2006] [Indexed: 12/14/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.
Collapse
Affiliation(s)
- Mark Rovedo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Ward 6-231, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
26
|
Ikeda M, Longnecker R. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 2006; 360:461-8. [PMID: 17150237 PMCID: PMC1868700 DOI: 10.1016/j.virol.2006.10.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/17/2006] [Accepted: 10/27/2006] [Indexed: 12/12/2022]
Abstract
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B cell receptor (BCR) altering normal B cell development. LMP2A specifically associates with Nedd4 family ubiquitin-protein ligases which downmodulate LMP2A activity by ubiquitinating LMP2A and LMP2A-associated protein tyrosine kinases (PTKs). Since specific ubiquitin tags provide an endocytic sorting signal for plasma membrane proteins which traffic to membrane vesicles, we examined LMP2A localization and trafficking. We found that LMP2A is secreted through exosomes, small endocytic membrane vesicles, as previously demonstrated for LMP1. Interestingly, the treatment of cells with methyl-beta-cyclodextrin (MCD), which depletes cholesterol from plasma membrane, dramatically increased LMP2A abundance and LMP2A exosome secretion. Cholesterol depletion also blocked LMP2A endocytosis resulting in the accumulation of LMP2A on plasma membrane. LMP2A phosphorylation and ubiquitination were blocked by cholesterol depletion. LMP2A in the exosomal fraction was ubiquitinated but not phosphorylated. These results indicate that cholesterol-dependent LMP2A trafficking determines the fate of LMP2A degradation.
Collapse
Affiliation(s)
| | - Richard Longnecker
- *Corresponding author, Phone: +1-312-503-0467, Fax: +1-312-503-1339, E-mail:
| |
Collapse
|
27
|
|
28
|
Ingham RJ, Raaijmakers J, Lim CSH, Mbamalu G, Gish G, Chen F, Matskova L, Ernberg I, Winberg G, Pawson T. The Epstein-Barr virus protein, latent membrane protein 2A, co-opts tyrosine kinases used by the T cell receptor. J Biol Chem 2005; 280:34133-42. [PMID: 16087662 DOI: 10.1074/jbc.m507831200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several human malignancies. The EBV protein latent membrane protein 2A (LMP2A) promotes viral latency in memory B cells by interfering with B cell receptor signaling and provides a survival signal for mature B cells that have lost expression of surface immunoglobulin. The latter function has suggested that LMP2A may enhance the survival of EBV-positive tumors. EBV is associated with several T cell malignancies and, since LMP2A has been detected in several of these disorders, we examined the ability of LMP2A to transmit signals and interfere with T cell receptor signaling in T cells. We show that LMP2A is tyrosine-phosphorylated in Jurkat TAg T cells, which requires expression of the Src family tyrosine kinases, Lck and Fyn. Lck and Fyn are recruited to the tyrosine-phosphorylated Tyr112 site in LMP2A, whereas phosphorylation of an ITAM motif in LMP2A creates a binding site for the ZAP-70/Syk tyrosine kinases. LMP2A also associates through its two PPPPY motifs with AIP4, a NEDD4 family E3 ubiquitin ligase; this interaction results in ubiquitylation of LMP2A and serves to regulate the stability of LMP2A and LMP2A-kinase complexes. Furthermore, stable expression of LMP2A in Jurkat T cells down-regulated T cell receptor levels and attenuated T cell receptor signaling. Thus, through recruiting tyrosine kinases involved in T cell receptor activation, LMP2A may provide a survival signal for EBV-positive T cell tumors, whereas LMP2A-associated NEDD4 E3 ligases probably titer the strength of this signal.
Collapse
Affiliation(s)
- Robert J Ingham
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Allen MD, Young LS, Dawson CW. The Epstein-Barr virus-encoded LMP2A and LMP2B proteins promote epithelial cell spreading and motility. J Virol 2005; 79:1789-802. [PMID: 15650203 PMCID: PMC544088 DOI: 10.1128/jvi.79.3.1789-1802.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 09/13/2004] [Indexed: 12/26/2022] Open
Abstract
The frequent expression of latent membrane proteins LMP2A and LMP2B in Epstein Barr virus (EBV)-associated tumors suggests that these proteins play a role in EBV-induced epithelial cell growth transformation. Expression of LMP2A and LMP2B had no effect on the morphology of squamous epithelial cells in monolayer culture, but their expression was associated with an increased capacity to spread and migrate on extracellular matrix. Although the mechanisms by which LMP2A and LMP2B promote cell spreading and motility are unclear, the use of selective pharmacological inhibitors has established a role for tyrosine kinases in this phenotype but ruled out contributions of phosphatidylinositol 3-kinase, extracellular signal-regulated kinase/mitogen-activated protein kinase, and protein kinase C. The ability of LMP2B to induce a phenotype that is virtually indistinguishable from that of LMP2A suggests that regions of the LMP2 protein in addition to the cytosolic amino terminus are capable of inducing phenotypic effects in epithelial cells. Thus, rather than serving to modulate the activity of LMP2A, LMP2B may directly engage signaling pathways to influence epithelial cell behavior such as cell adhesion and motility.
Collapse
Affiliation(s)
- Michael D Allen
- Cancer Research UK Institute for Cancer Studies, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
30
|
Taylor GS, Haigh TA, Gudgeon NH, Phelps RJ, Lee SP, Steven NM, Rickinson AB. Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol 2004; 78:768-78. [PMID: 14694109 PMCID: PMC368843 DOI: 10.1128/jvi.78.2.768-778.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/30/2003] [Indexed: 12/14/2022] Open
Abstract
Virus-associated malignancies are potential targets for immunotherapeutic vaccines aiming to stimulate T-cell responses against viral antigens expressed in tumor cells. Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma, a high-incidence tumor in southern China, expresses a limited set of EBV proteins, including the nuclear antigen EBNA1, an abundant source of HLA class II-restricted CD4(+) T-cell epitopes, and the latent membrane protein LMP2, a source of subdominant CD8(+) T-cell epitopes presented by HLA class I alleles common in the Chinese population. We used appropriately modified gene sequences from a Chinese EBV strain to generate a modified vaccinia virus Ankara recombinant, MVA-EL, expressing the CD4 epitope-rich C-terminal domain of EBNA1 fused to full-length LMP2. The endogenously expressed fusion protein EL is efficiently processed via the HLA class I pathway, and MVA-EL-infected dendritic cells selectively reactivate LMP2-specific CD8(+) memory T-cell responses from immune donors in vitro. Surprisingly, endogenously expressed EL also directly accesses the HLA class II presentation pathway and, unlike endogenously expressed EBNA1 itself, efficiently reactivates CD4(+) memory T-cell responses in vitro. This unscheduled access to the HLA class II pathway is coincident with EL-mediated redirection of the EBNA1 domain from its native nuclear location to dense cytoplasmic patches. Given its immunogenicity to both CD4(+) and CD8(+) T cells, MVA-EL has potential as a therapeutic vaccine in the context of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- G S Taylor
- CRUK Institute for Cancer Studies and MRC Centre for Immune Regulation, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Morrison JA, Klingelhutz AJ, Raab-Traub N. Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol 2003; 77:12276-84. [PMID: 14581564 PMCID: PMC254275 DOI: 10.1128/jvi.77.22.12276-12284.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) functions to maintain latency in EBV-infected B lymphocytes. Although LMP2A is nonessential for the immortalization of B lymphocytes by EBV, its expression in B lymphocytes prevents viral reactivation by blocking B-cell receptor activation and signaling. LMP2A also provides an antiapoptotic signal in transgenic mice that express LMP2A in B lymphocytes. LMP2A activates phosphatidylinositol 3-kinase (PI3K) and the serine/threonine kinase Akt in lymphocytes and epithelial cells. Here we show that EBV LMP2A activates the PI3K and beta-catenin signaling pathways in telomerase-immortalized human foreskin keratinocytes (HFK). LMP2A activated Akt in a PI3K-dependent manner, and the downstream Akt targets glycogen synthase kinase 3beta (GSK3beta) and the Forkhead transcription factor FKHR were phosphorylated and inactivated in LMP2A-expressing HFK cells. GSK3beta is a negative regulator of the Wnt signaling pathway, and inactivation of GSK3beta by LMP2A signaling led to stabilization of beta-catenin, the central oncoprotein of Wnt signaling. In LMP2A-expressing cells, beta-catenin accumulated in the cytoplasm and translocated into the nucleus via a two-step mechanism. The cytoplasmic accumulation of beta-catenin downstream of LMP2A was independent of PI3K signaling, whereas its nuclear translocation was dependent on PI3K signaling. In the nucleus, beta-catenin activated a reporter responsive to T-cell factor, and this activation was augmented by LMP2A coexpression. The Wnt pathway is inappropriately activated in 90% of colon cancers and is dysregulated in several other cancers, and these data suggest that activation of this pathway by LMP2A may contribute to the generation of EBV-associated cancers.
Collapse
Affiliation(s)
- J A Morrison
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
32
|
Lam N, Sugden B. LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments. EMBO J 2003; 22:3027-38. [PMID: 12805217 PMCID: PMC162136 DOI: 10.1093/emboj/cdg284] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded, ligand-independent receptor that mimics CD40. We report here that LMP1 signals principally from intracellular compartments. LMP1 associates simultaneously with lipid rafts and with its signaling molecules, tumor necrosis factor-receptor (TNF-R)-associated factors (TRAFs) and TNF-R1-associated death domain protein (TRADD) intracellularly, although it can be detected at low levels at the plasma membrane, indicating that most of LMP1's signaling complex resides in intracellular compartments. LMP1's signaling is independent of its accumulation at the plasma membrane in different cells, and as demonstrated by a mutant of LMP1 which has significantly reduced localization at the plasma membrane yet signals as efficiently as does wild-type LMP1. The fusion of the transmembrane domain of LMP1 to signaling domains of CD40, TNF-R1 and Fas activates their signaling; we demonstrate that a fusion of LMP1 with CD40 recruits TRAF2 intracellularly. Our results imply that members of the TNF-R family can signal from intracellular compartments containing lipid rafts and may do so when they act in autocrine loops.
Collapse
Affiliation(s)
- Ngan Lam
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
33
|
Abstract
Hodgkin's lymphoma (HL) is unusual among human malignancies in that the epidemiology suggests an infectious aetiology. The Epstein-Barr virus (EBV) is associated with a proportion of cases and this association is believed to be causal. In these cases the Hodgkin and Reed-Sternberg (HRS) cells express the EBV-encoded proteins LMP1 and LMP2, which can mimic CD40 and the B cell receptor, respectively, and therefore may play a critical role in facilitating the survival of HRS cells. EBV-associated and non-EBV-associated HL cases have different epidemiological features and recent data suggest that delayed exposure to EBV is a risk factor for the development of EBV-associated HL in young adults. We suggest that HL can be divided into four entities on the basis of EBV status and age at presentation, with three groups of EBV-associated cases and a single group of EBV-negative cases. The aetiology of the latter cases is obscure although involvement of an infectious agent(s) is suspected.
Collapse
Affiliation(s)
- R F Jarrett
- LRF Virus Centre, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, UK.
| |
Collapse
|
34
|
Tsao SW, Tramoutanis G, Dawson CW, Lo AKF, Huang DP. The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol 2002; 12:473-87. [PMID: 12450733 DOI: 10.1016/s1044579x02000901] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a key effector of EBV-mediated B cell transformation. LMP1 displays potent oncogenic properties in rodent fibroblasts, and induces a wide range of effects in B cells and epithelial cells. LMP1 functions as a constitutively active tumor necrosis factor receptor (TNFR) engaging a multitude of signaling pathways that include NF-kappaB, the mitogen-activated protein kinases (MAPKs), JNK, p38, the JAK/STAT pathway and, more recently, the small Rho GTPases. The constitutive activation of these signaling cascades explains LMP1's ability to induce such a diverse array of morphological and phenotypic effects in cells and provides an insight into how LMP1 may induce cell transformation. The frequent expression of LMP1 in undifferentiated nasopharyngeal carcinoma (NPC) points to a role for this viral oncoprotein as a key effector molecule in NPC pathogenesis.
Collapse
Affiliation(s)
- Sai Wah Tsao
- Department of Anatomy, Faculty of Medicine, University of Hong Kong, Hong Kong, PR China.
| | | | | | | | | |
Collapse
|
35
|
Chen SY, Lu J, Shih YC, Tsai CH. Epstein-Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J Virol 2002; 76:9556-61. [PMID: 12186939 PMCID: PMC136421 DOI: 10.1128/jvi.76.18.9556-9561.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is widely expressed in both EBV-infected cells and EBV-associated malignancies. However, the function of LMP2A is still veiled. In this study, LMP2A was found to induce the kinase activities of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase/stress-activated protein kinase JNK/SAPK. Furthermore, the downstream effector c-Jun showed hyperphosphorylation under LMP2A expression. The phosphorylation could be inhibited by the ERK pathway inhibitor PD98059, indicating that ERK may contribute to the phosphorylation of c-Jun in LMP2A-expressing cells. The impact on c-Jun phosphorylation by mitogen-activated protein kinase (MAPK) is suggested to increase c-Jun protein stability, and this was also observed in LMP2A-expressing cells by a protein synthesis inhibition assay. Moreover, LMP2A-induced cell invasion was inhibited in the presence of the ERK pathway inhibitor. Taken together, we suggest that LMP2A may exploit MAPK kinases and affect both the phosphorylation and stability of c-Jun protein. Additionally, LMP2A may thereby promote the mobility of the cells. In doing so, it may enhance the mobility of EBV-infected cells and contribute to the metastatic process of malignant cells. Here we demonstrated the first evidence of LMP2A-induced migration and the underlying pathways accounting for it.
Collapse
Affiliation(s)
- Shao-Yin Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
36
|
Lynch DT, Zimmerman JS, Rowe DT. Epstein-Barr virus latent membrane protein 2B (LMP2B) co-localizes with LMP2A in perinuclear regions in transiently transfected cells. J Gen Virol 2002; 83:1025-1035. [PMID: 11961256 DOI: 10.1099/0022-1317-83-5-1025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus is a human gammaherpesvirus that infects and establishes latency in B lymphocytes in vivo. The latent membrane protein 2 (LMP2) gene is expressed in latently infected B cells and encodes two protein isoforms, LMP2A and LMP2B, that are identical except for an additional N-terminal 119 aa cytoplasmic domain which is present in the LMP2A isoform. A panel of fusion proteins was constructed in which the fluorescent enhanced green fluorescent protein and DsRed protein domains were fused to the N- and C-termini of LMP2A and LMP2B. By fluorescence microscopy, LMP2B localized to perinuclear regions of both live and fixed transiently transfected cells. Co-localization was detected with markers for the endoplasmic reticulum and the trans-Golgi network. No evidence of co-localization of LMP2B with endosomes or surface expression was obtained. Transiently expressed LMP2B co-localized with transiently or constitutively expressed LMP2A. Confocal microscopy confirmed that LMP2A proteins localized to intracellular perinuclear compartments with markers for the trans-Golgi network. Only LMP2A proteins with C-terminal truncations were detected in the plasma membrane with extracellular loop1 epitope tags. These results indicate that the transmembrane domain of LMP2 proteins possess intracellular retention signals and suggest that LMP2A-mediated signalling effects are likely to be ectopic, originating from sites inside the cell close to the nucleus.
Collapse
Affiliation(s)
- David T Lynch
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, 130 Desoto Street, Pittsburgh, PA 15213, USA1
| | - Jeffrey S Zimmerman
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, 130 Desoto Street, Pittsburgh, PA 15213, USA1
| | - David T Rowe
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, 130 Desoto Street, Pittsburgh, PA 15213, USA1
| |
Collapse
|