1
|
Chkuaseli T, White K. Dimerization of an umbravirus RNA genome activates subgenomic mRNA transcription. Nucleic Acids Res 2023; 51:8787-8804. [PMID: 37395397 PMCID: PMC10484742 DOI: 10.1093/nar/gkad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Many eukaryotic RNA viruses transcribe subgenomic (sg) mRNAs during infections to control expression of a subset of viral genes. Such transcriptional events are commonly regulated by local or long-range intragenomic interactions that form higher-order RNA structures within these viral genomes. In contrast, here we report that an umbravirus activates sg mRNA transcription via base pair-mediated dimerization of its plus-strand RNA genome. Compelling in vivo and in vitro evidence demonstrate that this viral genome dimerizes via a kissing-loop interaction involving an RNA stem-loop structure located just upstream from its transcriptional initiation site. Both specific and non-specific features of the palindromic kissing-loop complex were found to contribute to transcriptional activation. Structural and mechanistic aspects of the process in umbraviruses are discussed and compared with genome dimerization events in other RNA viruses. Notably, probable dimer-promoting RNA stem-loop structures were also identified in a diverse group of umbra-like viruses, suggesting broader utilization of this unconventional transcriptional strategy.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
2
|
Campbell AJ, Anderson JR, Wilusz J. A plant-infecting subviral RNA associated with poleroviruses produces a subgenomic RNA which resists exonuclease XRN1 in vitro. Virology 2022; 566:1-8. [PMID: 34808564 PMCID: PMC9832584 DOI: 10.1016/j.virol.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.
Collapse
Affiliation(s)
- A J Campbell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
3
|
Huang YW, Sun CI, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. NbPsbO1 Interacts Specifically with the Bamboo Mosaic Virus (BaMV) Subgenomic RNA (sgRNA) Promoter and Is Required for Efficient BaMV sgRNA Transcription. J Virol 2021; 95:e0083121. [PMID: 34379502 PMCID: PMC8475527 DOI: 10.1128/jvi.00831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022] Open
Abstract
Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.
Collapse
Affiliation(s)
- Ying Wen Huang
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chu I Sun
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Chung Chi Hu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Na Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Chkuaseli T, White KA. Activation of viral transcription by stepwise largescale folding of an RNA virus genome. Nucleic Acids Res 2020; 48:9285-9300. [PMID: 32785642 PMCID: PMC7498350 DOI: 10.1093/nar/gkaa675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Evidence for Internal Initiation of RNA Synthesis by the Hepatitis C Virus RNA-Dependent RNA Polymerase NS5B In Cellulo. J Virol 2019; 93:JVI.00525-19. [PMID: 31315989 DOI: 10.1128/jvi.00525-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022] Open
Abstract
Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5' untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps.IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.
Collapse
|
6
|
Chkuaseli T, White KA. Intragenomic Long-Distance RNA-RNA Interactions in Plus-Strand RNA Plant Viruses. Front Microbiol 2018; 9:529. [PMID: 29670583 PMCID: PMC5893793 DOI: 10.3389/fmicb.2018.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023] Open
Abstract
Plant viruses that contain positive-strand RNA genomes represent an important class of pathogen. The genomes of these viruses harbor RNA sequences and higher-order RNA structures that are essential for the regulation of viral processes during infections. In recent years, it has become increasingly evident that, in addition to locally positioned RNA structures, long-distance intragenomic interactions, involving nucleotide base pairing over large distances, also contribute significantly to the control of various viral events. Viral processes that are modulated by such interactions include genome replication, translation initiation, translational recoding, and subgenomic mRNA transcription. Here, we review the structure and function of different types of long-distance RNA–RNA interactions, herein termed LDRIs, present in members of the family Tombusviridae and other plus-strand RNA plant viruses.
Collapse
Affiliation(s)
| | - K Andrew White
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Chen IH, Huang YW, Tsai CH. The Functional Roles of the Cis-acting Elements in Bamboo mosaic virus RNA Genome. Front Microbiol 2017; 8:645. [PMID: 28450857 PMCID: PMC5390519 DOI: 10.3389/fmicb.2017.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 02/05/2023] Open
Abstract
Bamboo mosaic virus (BaMV), which belongs to the genus Potexvirus in the family Alphaflexiviridae, has a single-stranded positive-sense RNA genome that is approximately 6400 nucleotides (nts) in length. Positive-sense RNA viruses can use genomic RNA as a template for translation and replication after entering a suitable host cell. Furthermore, such viral RNA is recognized by capsid protein for packaging and by viral movement protein(s) or the movement protein complex for cell-to-cell and systemic movement. Hence, viral RNA must contain signals for different functions to complete the viral infection cycle. In this review, we examine various cis-acting elements in the genome of BaMV. The highly structured 3' untranslated region (UTR) of the BaMV genomic RNA plays multiple roles in the BaMV infection cycle, including targeting chloroplasts for RNA replication, providing an initiation site for the synthesis of minus-strand RNA, signaling for polyadenylation, and directing viral long-distance movement. The nt at the extreme 3' end and the structure of the 3'-terminus of minus-strand RNA are involved in the initiation of plus-strand genomic RNA synthesis. Both these regions have been mapped and reported to interact with the viral-encoded RNA-dependent RNA polymerase. Moreover, the sequences upstream of open reading frames (ORFs) 2, 3, and 5 are involved in regulating subgenomic RNA synthesis. The cis-acting elements that were identified in BaMV RNA are discussed and compared with those of other potexviruses.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
8
|
Blanco-Pérez M, Hernández C. Evidence supporting a premature termination mechanism for subgenomic RNA transcription in Pelargonium line pattern virus: identification of a critical long-range RNA-RNA interaction and functional variants through mutagenesis. J Gen Virol 2016; 97:1469-1480. [PMID: 26990209 DOI: 10.1099/jgv.0.000459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pelargonium line pattern virus (PLPV) is a plus-strand RNA virus that has been proposed as type species of a tentative new genus, Pelarspovirus, in the family Tombusviridae. One of the singular traits of members of this prospective genus is the production of a unique subgenomic (sg) mRNA that is structurally and functionally tricistronic. Here, we have aimed to get insights into the mechanism that governs PLPV sg mRNA transcription. A long-range RNA-RNA interaction that is critical for the process has been identified through RNA folding predictions and mutational analysis of the viral genome. Such interaction seems to occur in the plus-strand, likely acts in cis, and specifically mediates the synthesis of sg RNA-sized minus-strand. The accumulation of this RNA species is easily detectable in plants and its generation can be uncoupled from that of the plus-strand sg mRNA. All these data together with the observation that 5' ends of PLPV genomic and sg mRNAs have sequence resemblances (as expected if both act as promoters in the corresponding minus-strand), support that premature termination is the mechanism underlying PLPV sg mRNA formation.
Collapse
Affiliation(s)
- Marta Blanco-Pérez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica e la Innovación, Ed. 8E. Camino de Vera s/n, 46022, Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica e la Innovación, Ed. 8E. Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
9
|
Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 2015; 479-480:434-43. [PMID: 25759098 DOI: 10.1016/j.virol.2015.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
Abstract
Positive-strand RNA viruses are the most common type of plant virus. Many aspects of the reproductive cycle of this group of viruses have been studied over the years and this has led to the accumulation of a significant amount of insightful information. In particular, the identification and characterization of cis-acting RNA elements within these viral genomes have revealed important roles in many fundamental viral processes such as virus disassembly, translation, genome replication, subgenomic mRNA transcription, and packaging. These functional cis-acting RNA elements include primary sequences, secondary and tertiary structures, as well as long-range RNA-RNA interactions, and they typically function by interacting with viral or host proteins. This review provides a general overview and update on some of the many roles played by cis-acting RNA elements in positive-strand RNA plant viruses.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
10
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
11
|
Abstract
The genus Dianthovirus is one of eight genera in the family Tombusviridae. All the genera have monopartite positive-stranded RNA genomes, except the dianthoviruses which have bipartite genomes. The dianthoviruses are distributed worldwide. Although they share common structural features with the other Tombusviridae viruses in their virions and the terminal structure of the genomic RNAs, the bipartite nature of the dianthovirus genome offers an ideal experimental system with which to study basic issues of virology. The two genomic RNAs seem to use distinct strategies to regulate their translation, transcription, genome replication, genome packaging, and cell-to-cell movement during infection. This review summarizes the current state of our knowledge of the dianthoviruses, with its main emphasis on the molecular biology of the virus, including the viral and host factors required for its infection of host plants. The epidemiology of the virus and the possible viral impacts on agriculture and the environment are also discussed.
Collapse
Affiliation(s)
- Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
12
|
Mateos-Gomez PA, Morales L, Zuñiga S, Enjuanes L, Sola I. Long-distance RNA-RNA interactions in the coronavirus genome form high-order structures promoting discontinuous RNA synthesis during transcription. J Virol 2013; 87:177-86. [PMID: 23055566 PMCID: PMC3536410 DOI: 10.1128/jvi.01782-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/04/2012] [Indexed: 02/06/2023] Open
Abstract
Coronavirus (CoV) transcription requires a high-frequency recombination process that links newly synthesized minus-strand subgenomic RNA copies to the leader region, which is present only once, at the 5' end of the genome. This discontinuous RNA synthesis step is based on the complementarity between the transcription-regulating sequences (TRSs) at the leader region and those preceding each gene in the nascent minus-strand RNA. Furthermore, the template switch requires the physical proximity of RNA genome domains located between 20,000 and 30,000 nucleotides apart. In this report, it is shown that the efficacy of this recombination step is promoted by novel additional long-distance RNA-RNA interactions between RNA motifs located close to the TRSs controlling the expression of each gene and their complementary sequences mapping close to the 5' end of the genome. These interactions would bring together the motifs involved in the recombination process. This finding indicates that the formation of high-order RNA structures in the CoV genome is necessary to control the expression of at least the viral N gene. The requirement of these long-distance interactions for transcription was shown by the engineering of CoV replicons in which the complementarity between the newly identified sequences was disrupted. Furthermore, disruption of complementarity in mutant viruses led to mutations that restored complementarity, wild-type transcription levels, and viral titers by passage in cell cultures. The relevance of these high-order structures for virus transcription is reinforced by the phylogenetic conservation of the involved RNA motifs in CoVs.
Collapse
Affiliation(s)
- Pedro A Mateos-Gomez
- Department of Molecular and Cell Biology, National Center of Biotechnology, Campus de la Universidad Autonoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Jiwan SD, Wu B, White KA. Subgenomic mRNA transcription in tobacco necrosis virus. Virology 2011; 418:1-11. [PMID: 21803392 DOI: 10.1016/j.virol.2011.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/27/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
Abstract
Tobacco necrosis virus-D (TNV-D), a positive-strand RNA Necrovirus in the family Tombusviridae, transcribes two subgenomic (sg) mRNAs during infections. We have investigated the strategy used by TNV-D in this process and uncovered evidence that it employs a premature termination (PT) mechanism for the transcription of its sg mRNAs. Structural and mutational analysis of the TNV-D genome identified local RNA structures upstream from transcriptional initiation sites that functioned in the plus-strand as attenuation structures and mediated the production of sg mRNA-sized minus-strands. Other evidence in support of a PT mechanism included the ability to uncouple minus-strand sg RNA production from plus-strand sg mRNA synthesis and the sequence similarities observed between the sg mRNA promoter and that for the viral genome. Accordingly, our results indicate that the necrovirus TNV-D, like several other genera in the family Tombusviridae, uses a PT mechanism for transcription of its sg mRNAs.
Collapse
Affiliation(s)
- Sadaf D Jiwan
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
14
|
Sztuba-Solińska J, Stollar V, Bujarski JJ. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 2011; 412:245-55. [PMID: 21377709 PMCID: PMC7111999 DOI: 10.1016/j.virol.2011.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 02/04/2011] [Indexed: 12/12/2022]
Abstract
Many (+)-strand RNA viruses use subgenomic (SG) RNAs as messengers for protein expression, or to regulate their viral life cycle. Three different mechanisms have been described for the synthesis of SG RNAs. The first mechanism involves internal initiation on a (−)-strand RNA template and requires an internal SGP promoter. The second mechanism makes a prematurely terminated (−)-strand RNA which is used as template to make the SG RNA. The third mechanism uses discontinuous RNA synthesis while making the (−)-strand RNA templates. Most SG RNAs are translated into structural proteins or proteins related to pathogenesis: however other SG RNAs regulate the transition between translation and replication, function as riboregulators of replication or translation, or support RNA–RNA recombination. In this review we discuss these functions of SG RNAs and how they influence viral replication, translation and recombination.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
15
|
Abstract
Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
16
|
Internal initiation is responsible for synthesis of Wuhan nodavirus subgenomic RNA. J Virol 2011; 85:4440-51. [PMID: 21325414 DOI: 10.1128/jvi.02410-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nodaviruses are small nonenveloped spherical viruses with a bipartite genome of RNAs. In nodaviruses, subgenomic RNA3 (sgRNA3) plays a critical role in viral replication and survival, as it coordinates the replication of two viral genomic RNAs (RNA1 and RNA2) and encodes protein B2, which is a potent RNA-silencing inhibitor. Despite its importance, the molecular mechanism of nodaviral sgRNA3 synthesis is still poorly understood. Here, we propose that sgRNA3 of Wuhan nodavirus (WhNV) is internally initiated from a promoter on the negative template of genomic RNA1. Serial deletion and mutation analyses further revealed that the core promoter of WhNV sgRNA3 is between nucleotide positions -22 and +6 of its transcription start site. Besides, a stem-loop structure of WhNV sgRNA3 was computationally predicted upstream of sgRNA3's transcription start site. Both the secondary structure and the primary sequence were determined to be required for promoter activity. Furthermore, our results show that the synthesis of WhNV sgRNA3 is counterregulated by the replication of WhNV genomic RNA2, which encodes a viral capsid precursor protein. And this sgRNA3 synthesis is also able to trans-activate the replication of RNA2. Altogether, findings in this study indicate that there is a newly discovered internal initiation model for the synthesis of nodaviral sgRNA.
Collapse
|
17
|
Evidence for a premature termination mechanism of subgenomic mRNA transcription in a carmovirus. J Virol 2010; 84:7904-7. [PMID: 20504939 DOI: 10.1128/jvi.00742-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional mechanism utilized by turnip crinkle carmovirus to synthesize subgenomic (sg) mRNAs was investigated by analyzing viral RNAs and their associated regulatory RNA elements. In vivo analyses revealed the following: (i) that minus-strand sg RNAs are detectable in infections, (ii) that minus-strand sg RNA accumulation can be partially uncoupled from that of their plus-strand sg mRNA counterparts, and (iii) that an RNA secondary structure located upstream of the sg mRNA start site mediates transcription by functioning in the plus strand of the viral genome. Collectively, these observations are consistent with this carmovirus using a premature termination mechanism for sg mRNA transcription.
Collapse
|
18
|
Abstract
Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.
Collapse
|
19
|
RNA-based regulation of transcription and translation of aureusvirus subgenomic mRNA1. J Virol 2009; 83:10096-105. [PMID: 19605481 DOI: 10.1128/jvi.00376-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cucumber leaf spot virus (CLSV) is an aureusvirus (family Tombusviridae) that has a positive-sense RNA genome encoding five proteins. During infections, CLSV transcribes two subgenomic (sg) mRNAs and the larger of the two, sg mRNA1, encodes coat protein. Here, the viral RNA sequences and structures that regulate transcription and translation of CLSV sg mRNA1 were investigated. A medium-range RNA-RNA interaction in the CLSV genome, spanning 148 nucleotides, was found to be required for the efficient transcription of sg mRNA1. Further analysis indicated that the structure formed by this interaction acted as an attenuation signal required for transcription of sg mRNA1 via a premature termination mechanism. Translation of coat protein from sg mRNA1 was determined to be facilitated by a 5'-terminal stem-loop structure in the message that resembled a tRNA anticodon stem-loop. The results from mutational analysis indicated that the 5'-terminal stem-loop mediated efficient base pairing with a 3'-cap-independent translational enhancer at the 3' end of the message, leading to efficient translation of coat protein from sg mRNA1. Comparison of the regulatory RNA structures for sg mRNA1 of CLSV to those used by the closely related tombusviruses and certain cellular RNAs revealed interesting differences and similarities that provide evolutionary and mechanistic insights into RNA-based regulatory strategies.
Collapse
|
20
|
Rico P, Hernández C. Characterization of the subgenomic RNAs produced by Pelargonium flower break virus: Identification of two novel RNAs species. Virus Res 2009; 142:100-7. [PMID: 19428742 DOI: 10.1016/j.virusres.2009.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
Pelargonium flower break virus (PFBV), a member of the genus Carmovirus, has a single-stranded positive-sense genomic RNA (gRNA) of 3.9kb. The 5' half of the gRNA encodes two proteins involved in replication, the p27 and its readthrough product, p86 (the viral RNA dependent-RNA polymerase, RdRp), and the 3' half encodes two small movement proteins, p7 and p12, and the coat protein (CP). As other members of the family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs (sgRNAs). Analysis of double-stranded RNAs extracted from PFBV-infected leaves and Northern blot hybridizations of total RNA from infected plants or protoplasts revealed than PFBV produces four 3'-coterminal sgRNAs of 3.2, 2.9, 1.7 and 1.4kb, respectively. The 5' termini of the 1.7 and 1.4kb sgRNAs mapped 26 and 143 nt upstream of the initiation codons of the p7 and CP genes, respectively, whereas the 5'-ends of the 3.2 and 2.9kb sgRNAs were located within the readthrough portion of the RdRp gene. The PFBV sgRNAs begin with a motif which is also present at the 5' terminus of the gRNA and the minus polarity of the regions preceding their corresponding start sites (in the gRNA) may be folded into hairpin structures resembling those found for the sgRNA promoters of other carmoviruses. The results indicate that, besides the sgRNAs involved in the translation of the movement proteins and the CP identified in most carmoviral infections, PFBV produces two additional sgRNAs whose biological significance is currently unknown. The possible participation of the 3.2 and 2.9kb PFBV sgRNAs in the expression of readthrough portions of the RdRp is discussed.
Collapse
Affiliation(s)
- P Rico
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46011 Valencia, Spain.
| | | |
Collapse
|
21
|
Characterization of the 5'- and 3'-terminal subgenomic RNAs produced by a capillovirus: Evidence for a CP subgenomic RNA. Virology 2009; 385:521-8. [PMID: 19155038 DOI: 10.1016/j.virol.2008.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022]
Abstract
The members of Capillovirus genus encode two overlapping open reading frames (ORFs): ORF1 encodes a large polyprotein containing the replication-associated proteins plus a coat protein (CP), and ORF2 encodes a movement protein (MP), located within ORF1 in a different reading frame. Organization of the CP sequence as part of the replicase ORF is unusual in capilloviruses. In this study, we examined the capillovirus genome expression strategy by characterizing viral RNAs produced by Citrus tatter leaf virus (CTLV), isolate ML, a Capillovirus. CTLV-ML produced a genome-length RNA of approximately 6.5-kb and two 3'-terminal sgRNAs in infected tissue that contain the MP and CP coding sequences (3'-sgRNA1), and the CP coding sequence (3'-sgRNA2), respectively. Both 3'-sgRNAs initiate at a conserved octanucleotide (UUGAAAGA), and are 1826 (3'-sgRNA1) and 869 (3'-sgRNA2) nts with 119 and 15 nt leader sequences, respectively, suggesting that these two 3'-sgRNAs could serve to express the MP and CP. Additionally, accumulation of two 5'-terminal sgRNAs of 5586 (5'-sgRNA1) and 4625 (5'-sgRNA2) nts was observed, and their 3'-termini mapped to 38-44 nts upstream of the transcription start sites of 3'-sgRNAs. The presence of a separate 3'-sgRNA corresponding to the CP coding sequence and its cognate 5'-terminal sgRNA (5'-sgRNA1) suggests that CTLV-ML produces a dedicated sg mRNA for the expression of its CP.
Collapse
|
22
|
Nagy PD, Pogany J. Host Factors Promoting Viral RNA Replication. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7120932 DOI: 10.1007/b135974_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plus-stranded RNA viruses, the largest group among eukaryotic viruses, are capable of reprogramming host cells by subverting host proteins and membranes, by co-opting and modulating protein and ribonucleoprotein complexes, and by altering cellular pathways during infection. To achieve robust replication, plus-stranded RNA viruses interact with numerous cellular molecules via protein–protein, RNA–protein, and protein–lipid interactions using molecular mimicry and other means. These interactions lead to the transformation of the host cells into viral “factories" that can produce 10,000–1,000,000 progeny RNAs per infected cell. This chapter presents the progress that was made largely in the last 15 years in understanding virus–host interactions during RNA virus replication. The most commonly employed approaches to identify host factors that affect plus-stranded RNA virus replication are described. In addition, we discuss many of the identified host factors and their proposed roles in RNA virus replication. Altogether, host factors are key determinants of the host range of a given virus and affect virus pathology, host–virus interactions, as well as virus evolution. Studies on host factors also contribute insights into their normal cellular functions, thus promoting understanding of the basic biology of the host cell. The knowledge obtained in this fast-progressing area will likely stimulate the development of new antiviral methods as well as novel strategies that could make plus-stranded RNA viruses useful in bio- and nanotechnology.
Collapse
|
23
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Thompson JR, Buratti E, de Wispelaere M, Tepfer M. Structural and functional characterization of the 5' region of subgenomic RNA5 of cucumber mosaic virus. J Gen Virol 2008; 89:1729-1738. [PMID: 18559944 DOI: 10.1099/vir.0.2008/001057-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The uncapped and ORF-less subgenomic RNA5 is produced in subgroup II strains of cucumber mosaic virus (CMV), but not in subgroup I strains. Its initiation nucleotide (nt 1903) is in a 21 nt conserved sequence (Box1) that is absent in CMV subgroup I. Putative non-coding RNA structural elements surrounding Box1 in the plus and minus strand were identified in silico and by in vitro RNase probing. Four main stem-loop structures (SLM, SLL, SLK and SLJ) were identified between nt 1887 and 1999 of isolate R-CMV (subgroup II), with notable differences within SLM and SLL between the two strands. Mutation of a stem-loop within SLM, even when the predicted wild-type structure was maintained, showed significant reduction in RNA5 levels in planta. Three mutants containing 3-4 nt substitutions between positions -39 and +49 showed significantly reduced levels of RNA5, while another similar mutant at positions 80-83 had RNA5 levels comparable to wild-type. Deletion of Box1 resulted in similar levels of RNA3 and 4 as wild-type, while eliminating RNA5. Insertion of Box1 into a subgroup I isolate was not sufficient to produce RNA5. However, in a mutant with an additional 21 nt of R-CMV 3' of Box1 (positions -1 to +41), low levels of RNA5 were detected. Taken together, these results have identified regions of the viral genome responsible for RNA5 production and in addition provide strong evidence for the existence of newly identified conserved structural elements in the 5' part of the 3' untranslated region.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Plant Virology Group, ICGEB Biosafety Outstation, Via Piovega 23, 31056 Ca' Tron di Roncade, Italy
| | - Emanuele Buratti
- Molecular Pathology Group, ICGEB, AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | - Mélissanne de Wispelaere
- INRA, Laboratoire de Biologie Cellulaire, UR501, INRA-Versailles, 78026 Versailles cedex, France
| | - Mark Tepfer
- Plant Virology Group, ICGEB Biosafety Outstation, Via Piovega 23, 31056 Ca' Tron di Roncade, Italy
| |
Collapse
|
25
|
Higher-order RNA structural requirements and small-molecule induction of tombusvirus subgenomic mRNA transcription. J Virol 2008; 82:3864-71. [PMID: 18256151 DOI: 10.1128/jvi.02416-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subgenomic (sg) mRNAs are small viral messages that are synthesized by polycistronic positive-strand RNA viruses to allow for the translation of certain viral proteins. Tombusviruses synthesize two such sg mRNAs via a premature termination mechanism. This transcriptional process involves the viral RNA-dependent RNA polymerase terminating minus-strand RNA synthesis prematurely at internal RNA signals during copying of the viral genome. The 3'-truncated minus-strand RNAs generated by the termination events then serve as templates for sg mRNA transcription. A higher-order RNA structure in the viral genome, located just upstream from the termination site, is a critical component of the RNA-based polymerase attenuation signal. Here, we have analyzed the role of this RNA structure in mediating efficient sg mRNA2 transcription. Our results include the following: (i) we define the minimum overall thermodynamic stability required for an operational higher-order RNA attenuation structure; (ii) we show that the distribution of stability within an attenuation structure affects its function; (iii) we establish that an RNA quadruplex structure can act as an effective attenuation structure; (iv) we prove that the higher-order RNA structure forms and functions in the plus strand; (v) we provide evidence that a specific attenuation structure-binding protein factor is not required for transcription; (vi) we demonstrate that sg mRNA transcription can be controlled artificially through small-molecule activation using RNA aptamer technology. These findings provide important new insights into the premature termination mechanism and present a novel approach to regulate the transcriptional process.
Collapse
|
26
|
Abstract
Identification of the roles of replication factors represents one of the major frontiers in current virus research. Among plant viruses, the positive-stranded (+) RNA viruses are the largest group and the most widespread. The central step in the infection cycles of (+) RNA viruses is RNA replication, which leads to rapid production of huge number of viral (+) RNA progeny in the infected plant cells. The RNA replication process is carried out by the virus-specific replicase complex consisting of viral RNA-dependent RNA polymerase, one or more auxiliary viral replication proteins, and host factors, which assemble in specialized membranous compartments in infected cells. Replication is followed by cell-to-cell and long-distance movement to invade the entire plant and/or encapsidation to facilitate transmission to new plants. This chapter provides an overview of our current understanding of the role of viral replication proteins during genome replication. The recent significant progress in this research area is based on development of powerful in vivo and in vitro approaches, including replicase assays, reverse genetic approaches, intracelular localization studies and the use of plant or yeast model hosts.
Collapse
|
27
|
Uncoupling RNA virus replication from transcription via the polymerase: functional and evolutionary insights. EMBO J 2007; 26:5120-30. [PMID: 18034156 DOI: 10.1038/sj.emboj.7601931] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/29/2007] [Indexed: 01/11/2023] Open
Abstract
Many eukaryotic positive-strand RNA viruses transcribe subgenomic (sg) mRNAs that are virus-derived messages that template the translation of a subset of viral proteins. Currently, the premature termination (PT) mechanism of sg mRNA transcription, a process thought to operate in a variety of viruses, is best understood in tombusviruses. The viral RNA elements involved in regulating this mechanism have been well characterized in several systems; however, no corresponding protein factors have been identified yet. Here we show that tombusvirus genome replication can be effectively uncoupled from sg mRNA transcription in vivo by C-terminal modifications in its RNA-dependent RNA polymerase (RdRp). Systematic analysis of the PT transcriptional pathway using viral genomes harboring mutant RdRps revealed that the C-terminus functions primarily at an early step in this mechanism by mediating both efficient and accurate production of minus-strand templates for sg mRNA transcription. Our results also suggest a simple evolutionary scheme by which the virus could gain or enhance its transcriptional activity, and define global folding of the viral RNA genome as a previously unappreciated determinant of RdRp evolution.
Collapse
|
28
|
Xu W, White KA. Subgenomic mRNA transcription in an aureusvirus: down-regulation of transcription and evolution of regulatory RNA elements. Virology 2007; 371:430-8. [PMID: 17988704 DOI: 10.1016/j.virol.2007.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/14/2007] [Accepted: 09/22/2007] [Indexed: 02/03/2023]
Abstract
The genus Aureusvirus is composed of a group of positive-strand RNA plant viruses that belong to the family Tombusviridae. Expression of certain aureusvirus genes requires the transcription of two subgenomic (sg) mRNAs. Interestingly, the level of sg mRNA2 accumulation in aureusvirus infections is considerably lower than that of sg mRNA1. The nature of this difference was investigated using the aureusvirus Cucumber leaf spot virus (CLSV). Analysis of sg mRNA2 transcription indicated that it is synthesized by a premature termination mechanism. The results also implicated the transcriptional promoter, the attenuation signal, and global RNA folding of the viral genome as mediators of sg mRNA2 suppression. Additionally, evaluation of the transcriptional regulatory RNA elements in aureusviruses and related tombusviruses revealed alternative strategies for building functionally-equivalent stem-loop structures and showed that sequences encoding a critical and invariant amino acid can be successfully incorporated into essential long-distance tertiary RNA-RNA interactions.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
29
|
Lin HX, Xu W, White KA. A multicomponent RNA-based control system regulates subgenomic mRNA transcription in a tombusvirus. J Virol 2006; 81:2429-39. [PMID: 17166897 PMCID: PMC1865963 DOI: 10.1128/jvi.01969-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During infections, positive-strand RNA tombusviruses transcribe two subgenomic (sg) mRNAs that allow for the expression of a subset of their genes. This process is thought to involve an unconventional mechanism involving the premature termination of the virally encoded RNA-dependent RNA polymerase while it is copying the virus genome. The 3' truncated minus strands generated by termination are then used as templates for sg mRNA transcription. In addition to requiring an extensive network of long-distance RNA-RNA interactions (H.-X. Lin and K. A. White, EMBO J. 23:3365-3374, 2004), the transcription of tombusvirus sg mRNAs also involves several additional RNA structures. In vivo analysis of these diverse RNA elements revealed that they function at distinct steps in the process by facilitating the formation or stabilization of the long-distance interactions, modulating minus-strand template production, or promoting the initiation of sg mRNA transcription. All of the RNA elements characterized could be readily incorporated into a premature termination model for sg mRNA transcription. Overall, the analyses revealed a complex system that displays a high level of structural integration and functional coordination. This multicomponent RNA-based control system may serve as a useful paradigm for understanding related transcriptional processes in other positive-sense RNA viruses.
Collapse
Affiliation(s)
- Han-Xin Lin
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
30
|
Mizumoto H, Tomaru Y, Takao Y, Shirai Y, Nagasaki K. Intraspecies host specificity of a single-stranded RNA virus infecting a marine photosynthetic protist is determined at the early steps of infection. J Virol 2006; 81:1372-8. [PMID: 17108022 PMCID: PMC1797505 DOI: 10.1128/jvi.01082-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are extremely abundant in seawater and are believed to be significant pathogens to photosynthetic protists (microalgae). Recently, several novel RNA viruses were found to infect marine photosynthetic protists; one of them is HcRNAV, which infects Heterocapsa circularisquama (Dinophyceae). There are two distinct ecotypes of HcRNAV with complementary intraspecies host ranges. Nucleotide sequence comparison between them revealed remarkable differences in the coat protein coding gene resulting in a high frequency of amino acid substitutions. However, the detailed mechanism supporting this intraspecies host specificity is still unknown. In this study, virus inoculation experiments were conducted with compatible and incompatible host-virus combinations to investigate the mechanism determining intraspecies host specificity. Cells were infected by adding a virus suspension directly to a host culture or by transfecting viral RNA into host cells by particle bombardment. Virus propagation was monitored by Northern blot analysis with a negative-strand-specific RNA probe, transmission electron microscopy, and a cell lysis assay. With compatible host-virus combinations, propagation of infectious progeny occurred regardless of the inoculation method used. When incompatible combinations were used, direct addition of a virus suspension did not even result in viral RNA replication, while in host cells transfected with viral RNA, infective progeny virus particles with a host range encoded by the imported viral RNA were propagated. This indicates that the intraspecies host specificity of HcRNAV is determined by the upstream events of virus infection. This is the first report describing the reproductive steps of an RNA virus infecting a photosynthetic protist at the molecular level.
Collapse
Affiliation(s)
- Hiroyuki Mizumoto
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | | | | | | | | |
Collapse
|
31
|
Osman TAM, Coutts RHA, Buck KW. In vitro synthesis of minus-strand RNA by an isolated cereal yellow dwarf virus RNA-dependent RNA polymerase requires VPg and a stem-loop structure at the 3' end of the virus RNA. J Virol 2006; 80:10743-51. [PMID: 16928757 PMCID: PMC1641740 DOI: 10.1128/jvi.01050-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.
Collapse
Affiliation(s)
- Toba A M Osman
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
32
|
Pasternak AO, Spaan WJM, Snijder EJ. Nidovirus transcription: how to make sense...? J Gen Virol 2006; 87:1403-1421. [PMID: 16690906 DOI: 10.1099/vir.0.81611-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
33
|
Osman TAM, Morris J, Coutts RHA, Buck KW. Synthesis of genomic and subgenomic RNAs by a membrane-bound RNA-dependent RNA polymerase isolated from oat plants infected with cereal yellow dwarf virus. Arch Virol 2006; 151:2229-42. [PMID: 16755373 DOI: 10.1007/s00705-006-0789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 04/19/2006] [Indexed: 11/25/2022]
Abstract
A membrane-bound RNA-dependent RNA polymerase (RdRp) complex was isolated by differential sedimentation from oat plants infected with cereal yellow dwarf virus (CYDV). When incubated with 32P-labelled UTP, unlabelled ATP, CTP and GTP, and Mg2+ ions, the RdRp preparation catalysed the synthesis of double-stranded (ds) RNAs corresponding in size to the virus genomic RNA (5.7 kbp) and two putative subgenomic RNAs (2.8 and 0.7 kbp). Hybridisation using strand-specific hybridization targets showed that the 5.7-kbp dsRNA was labelled mainly in the plus strand, whereas the 2.8- and 0.7-kbp dsRNAs were labelled only in the minus strand. Genomic-length single-stranded, plus-strand RNA of 5.7 kb and single-stranded, plus-strand subgenomic RNAs of 2.8 and 0.7 kbp were detected in RNA isolated from oat plants infected with CYDV. Mapping experiments were consistent with the genomic and subgenomic RNAs having common 3' ends, but different 5' ends, whether produced in vitro or in vivo. The RdRp-encoding region of the CYDV genome was cloned and expressed in Escherichia coli, and the purified protein was used to raise antibodies in a rabbit. In immunoblots, the antibodies detected a protein of about 68 kDa in RdRp preparations from CYDV-infected oat plants, but not from equivalent preparations from healthy oats. As far as we are aware, this is the first report of an in vitro RNA synthesis system for a phloem-limited virus.
Collapse
Affiliation(s)
- T A M Osman
- Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | | | | | | |
Collapse
|
34
|
Li W, Wong SM. Analyses of subgenomic promoters of Hibiscus chlorotic ringspot virus and demonstration of 5' untranslated region and 3'-terminal sequences functioning as subgenomic promoters. J Virol 2006; 80:3395-405. [PMID: 16537607 PMCID: PMC1440410 DOI: 10.1128/jvi.80.7.3395-3405.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hibiscus chlorotic ringspot virus (HCRSV), which belongs to the genus Carmovirus, generates two 3'-coterminal subgenomic RNAs (sgRNAs) of 1.4 kb and 1.7 kb. Transcription start sites of the two sgRNAs were identified at nucleotides (nt) 2178 and 2438, respectively. The full promoter of sgRNA1, a 118-base sequence, is localized between positions +6 and -112 relative to its transcription start site (+1). Similarly, a 132-base sequence, from +6 to -126, defines the sgRNA2 promoter. Computer analysis revealed that both sgRNA promoters share a similar two-stem-loop (SL1 + SL2) structure, immediately upstream of the transcription start site. Mutational analysis of the primary sequence and secondary structures showed further similarities between the two subgenomic promoters. The basal portion of SL2, encompassing the transcription start site, was essential for transcription activity in each promoter, while SL1 and the upper portion of SL2 played a role in transcription enhancement. Both the 5' untranslated region (UTR) and the last 87 nt at the 3' UTR of HCRSV genomic RNA are likely to be the putative genomic plus-strand and minus-strand promoters, respectively. They function well as individual sgRNA promoters to produce ectopic subgenomic RNAs in vivo but not to the same levels of the actual sgRNA promoters. This suggests that HCRSV sgRNA promoters share common features with the promoters for genomic plus-strand and minus-strand RNA synthesis. To our knowledge, this is the first demonstration that both the 5' UTR and part of the 3' UTR can be duplicated and function as sgRNA promoters within a single viral genome.
Collapse
Affiliation(s)
- Weimin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | | |
Collapse
|
35
|
Basnayake VR, Sit TL, Lommel SA. The genomic RNA packaging scheme of Red clover necrotic mosaic virus. Virology 2006; 345:532-9. [PMID: 16297955 DOI: 10.1016/j.virol.2005.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/19/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a small icosahedral plant virus with a bipartite RNA genome. While the RCNMV genome consists of two RNAs, it has not been definitively established whether these RNAs are co-packaged into a single virion or packaged individually into separate virions. Biochemical evidence exists to support both hypotheses. To determine the genomic RNA complement within RCNMV, virions were subjected to heat treatments and UV crosslinking. A stable RNA-1:RNA-2 heterodimer was formed with both treatments establishing that RCNMV genomic RNAs are co-packaged into a single virion. Furthermore, RNA-2 homodimer and homotrimers were also observed indicating that some virions contain multiple copies of RNA-2 exclusively. These results indicate that RCNMV virions consist of two distinct populations: (i) virions containing both genomic RNAs; and (ii) virions with multiple copies of RNA-2. This type of hybrid packaging arrangement was unexpected and appears to be unique among the multipartite RNA viruses.
Collapse
Affiliation(s)
- Veronica R Basnayake
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
36
|
Miller WA, White KA. Long-distance RNA-RNA interactions in plant virus gene expression and replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:447-67. [PMID: 16704356 PMCID: PMC1894749 DOI: 10.1146/annurev.phyto.44.070505.143353] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The vast majority of plant and animal viruses have RNA genomes. Viral gene expression and replication are controlled by cis-acting elements in the viral genome, which have been viewed conventionally as localized structures. However, recent research has altered this perception and provided compelling evidence for cooperative activity involving distantly positioned RNA elements. This chapter focuses on viral RNA elements that interact across hundreds or thousands of intervening nucleotides to control translation, genomic RNA synthesis, and subgenomic mRNA transcription. We discuss evidence supporting the existence and function of the interactions, and speculate on the regulatory roles that such long-distance interactions play in the virus life cycle. We emphasize viruses in the Tombusviridae and Luteoviridae families in which long-distance interactions are best characterized, but similar phenomena in other viruses are also discussed. Many more examples likely remain undiscovered.
Collapse
Affiliation(s)
- W. Allen Miller
- Plant Pathology Department and Biochemistry, Biophysics & Molecular Biology Department, Iowa State University, Ames, Iowa 50011;
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3;
| |
Collapse
|
37
|
Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori KI, Arimoto M, Okuno T, Nakai T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 2005; 86:2807-2816. [PMID: 16186236 DOI: 10.1099/vir.0.80902-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Striped jack nervous necrosis virus (SJNNV), which infects fish, is the type species of the genus Betanodavirus. This virus has a bipartite genome of positive-strand RNAs, designated RNAs 1 and 2. A small RNA (ca. 0.4 kb) has been detected from SJNNV-infected cells, which was newly synthesized and corresponded to the 3'-terminal region of RNA1. Rapid amplification of cDNA ends analysis showed that the 5' end of this small RNA (designated RNA3) initiated at nt 2730 of the corresponding RNA1 sequence and contained a 5' cap structure. Substitution of the first nucleotide of the subgenomic RNA sequence within RNA1 selectively inhibited production of the positive-strand RNA3 but not of the negative-strand RNA3, which suggests that RNA3 may be synthesized via a premature termination model. The single RNA3-encoded protein (designated protein B2) was expressed in Escherichia coli, purified and used to immunize a rabbit to obtain an anti-protein B2 polyclonal antibody. An immunological test showed that the antigen was specifically detected in the central nervous system and retina of infected striped jack larvae (Pseudocaranx dentex), and in the cytoplasm of infected cultured E-11 cells. These results indicate that SJNNV produces subgenomic RNA3 from RNA1 and synthesizes protein B2 during virus multiplication, as reported for alphanodaviruses. In addition, an Agrobacterium co-infiltration assay established in transgenic plants that express green fluorescent protein showed that SJNNV protein B2 has a potent RNA silencing-suppression activity, as discovered for the protein B2 of insect-infecting alphanodaviruses.
Collapse
Affiliation(s)
- Tokinori Iwamoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Takeda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasushi Okinaka
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Koh-Ichiro Mori
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Misao Arimoto
- Kamiura Station, Japan Fisheries Research Agency, Oita 879-2602, Japan
| | - Tetsuro Okuno
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
38
|
Sanfaçon H. Replication of positive-strand RNA viruses in plants: contact points between plant and virus components. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-121] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Positive-strand RNA viruses constitute the largest group of plant viruses and have an important impact on world agriculture. These viruses have small genomes that encode a limited number of proteins and depend on their hosts to complete the various steps of their replication cycle. In this review, the contact points between positive-strand RNA plant viruses and their hosts, which are necessary for the translation and replication of the viral genomes, are discussed. Special emphasis is placed on the description of viral replication complexes that are associated with specific membranous compartments derived from plant intracellular membranes and contain viral RNAs and proteins as well as a variety of host proteins. These complexes are assembled via an intricate network of protein–protein, protein–membrane, and protein–RNA interactions. The role of host factors in regulating the assembly, stability, and activity of viral replication complexes are also discussed.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada (e-mail: )
| |
Collapse
|
39
|
Yamamura Y, Scholthof HB. Tomato bushy stunt virus: a resilient model system to study virus-plant interactions. MOLECULAR PLANT PATHOLOGY 2005; 6:491-502. [PMID: 20565674 DOI: 10.1111/j.1364-3703.2005.00301.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED SUMMARY Taxonomy: Tomato bushy stunt virus (TBSV) (Fig. 1) is the type species of the plant-infecting Tombusvirus genus in the family Tombusviridae. Physical properties: TBSV virions are non-enveloped icosahedral T = 3 particles assembled from 180 coat protein subunits (42 kDa) whose arrangement causes a granular appearance on the surface structure. The particles are approximately 33 nm in diameter and composed of 17% ribonucleic acid and 83% protein. Encapsidated within the virion is the TBSV genome that consists of a positive-sense single-stranded RNA of approximately 4.8 kb, which lacks the 5'-cap or 3'-poly(A) tail typical for eukaryotic mRNAs. HOST RANGE In nature, TBSV has a fairly restricted host range, mostly encompassing a few dicotyledonous species in separate families, and affected agricultural crops comprise primarily vegetables. The experimental host range is broad, with over 120 plant species in more than 20 different families reported to be susceptible although in most plants the infection often remains localized around the site of entry. The differences between hosts with regards to requirements for cell-to-cell and long-distance movement have led to the development of TBSV as an attractive model system to obtain general insights into RNA transport through plants. SYMPTOMS SYMPTOMS induced by TBSV are largely dependent on the host genotype; they can vary from necrotic and chlorotic lesions, to a systemic mild or severe mosaic, or they may culminate in a lethal necrosis. The original TBSV isolates from tomato plants caused a mottle, crinkle and downward curling of leaves with the youngest leaves exhibiting tip necrosis upon systemic infection. Tomato fruit yield can be greatly reduced by virus infection. Plants may be stunted and a proliferation of lateral shoots leads to a bushy appearance of the infected tomato plants, hence the nomenclature of the pathogen. Useful sites: http://image.fs.uidaho.edu/vide/descr825.htm; http://www.ictvdb.rothamsted.ac.uk/ICTVdB/74010001.htm (general information); http://mmtsb.scripps.edu/viper/info_page.php?vipPDB=2tbv (structural information).
Collapse
Affiliation(s)
- Yoshimi Yamamura
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
40
|
Smits SL, van Vliet ALW, Segeren K, el Azzouzi H, van Essen M, de Groot RJ. Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter. J Virol 2005; 79:8275-81. [PMID: 15956573 PMCID: PMC1143767 DOI: 10.1128/jvi.79.13.8275-8281.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/08/2005] [Indexed: 11/20/2022] Open
Abstract
Toroviruses (order Nidovirales) are enveloped positive-strand RNA viruses of mammals. The prototype torovirus, equine torovirus strain Berne (Berne virus [BEV]), uses two different transcription strategies to produce a 3'-coterminal nested set of subgenomic (sg) mRNAs. Its mRNA 2 carries a leader sequence derived from the 5' end of the genome and is produced via discontinuous transcription. The remaining three sg mRNAs, 3 to 5, are colinear with the 3' end of the genome and are made via non-discontinuous RNA synthesis. Their synthesis is supposedly regulated by short conserved sequence motifs, 5'-ACN3-4CUUUAGA-3', within the noncoding intergenic regions that precede the M, HE, and N genes (A. L. van Vliet, S. L. Smits, P. J. Rottier, and R. J. de Groot, EMBO J. 21:6571-6580, 2002). We have now studied the--for nidoviruses unusual--non-discontinuous transcription mechanism in further detail by probing the role of the postulated transcription-regulating sequences (TRSs). To this end, we constructed a synthetic defective interfering (DI) RNA, carrying a 24-nucleotide segment of the intergenic region between the HE and N genes. We demonstrate that this DI RNA, when introduced into BEV-infected cells, directs the synthesis of a sg DI RNA species; in fact, a 16-nucleotide cassette containing the TRS already proved sufficient. Synthesis of this sg DI RNA, like that of mRNAs 3 to 5 of the standard virus, initiated at the 5'-most adenylate of the TRS. An extensive mutational analysis of the TRS is presented. Our results provide first and formal experimental evidence that the conserved motifs within the BEV intergenic sequences indeed drive sg RNA synthesis.
Collapse
Affiliation(s)
- Saskia L Smits
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
van den Born E, Posthuma CC, Gultyaev AP, Snijder EJ. Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region. J Virol 2005; 79:6312-24. [PMID: 15858015 PMCID: PMC1091703 DOI: 10.1128/jvi.79.10.6312-6324.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 12/28/2004] [Indexed: 11/20/2022] Open
Abstract
Nidoviruses produce an extensive 3'-coterminal nested set of subgenomic (sg) mRNAs, which are used to express structural proteins and sometimes accessory proteins. In arteriviruses and coronaviruses, these mRNAs contain a common 5' leader sequence, derived from the genomic 5' end. The joining of the leader sequence to different segments derived from the 3'-proximal part of the genome (mRNA bodies) presumably involves a unique mechanism of discontinuous minus-strand RNA synthesis in which base pairing between sense and antisense transcription-regulating sequences (TRSs) plays an essential role. The leader TRS is present in the loop of a hairpin structure that functions in sg mRNA synthesis. In this study, the minimal sequences in the 5'-proximal region of the Equine arteritis virus genome that are required for sg RNA synthesis were delimited through mutagenesis. A full-length cDNA clone was engineered in which this domain was duplicated, allowing us to make mutations and monitor their effects on sg RNA synthesis without seriously affecting genome replication and translation. The leader TRS present in the duplicated sequence was used and yielded novel sg mRNAs with significantly extended leaders. Our combined findings suggest that the leader TRS hairpin (LTH) and its immediate flanking sequences are essential for efficient sg RNA synthesis and form an independent functional entity that could be moved 300 nucleotides downstream of its original position in the genome. We hypothesize that a conformational switch in the LTH region regulates the role of the 5'-proximal region of the arterivirus genome in subgenomic RNA synthesis.
Collapse
Affiliation(s)
- Erwin van den Born
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
42
|
Chernysheva OA, White KA. Modular arrangement of viral cis-acting RNA domains in a tombusvirus satellite RNA. Virology 2005; 332:640-9. [PMID: 15680429 DOI: 10.1016/j.virol.2004.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/01/2004] [Accepted: 12/06/2004] [Indexed: 11/21/2022]
Abstract
Satellite (sat) RNAs are parasitic sub-viral RNA replicons found associated with certain positive-strand RNA viruses. Typical sat RNAs, such as those associated with members of the genus Tombusvirus, share little or no sequence identity with their helper virus genomes. Here, we have investigated a tombusvirus sat RNA and determined that it contains two functionally-relevant higher-order RNA domains, a T-shaped domain and a downstream domain, that are similar to elements shown previously to be present in the 5' untranslated regions (UTRs) of tombusvirus genomes. Although the two sat RNA domains showed only limited sequence identity with their viral counterparts, they were able to adopt comparably-folded RNA secondary structures. Interestingly, the relative spacing between the domains in the viral and satellite contexts was notably different. In the viral 5' UTR, the two domains are adjacent and separated by a small hairpin, however, in the sat RNA they are separated by a 137-nt long segment. Despite this distal modular arrangement, the two domains were found to be united spatially in the sat RNA through the formation of an RNA-RNA bridge. This co-localization facilitated an important inter-domain interaction and was essential for efficient helper-mediated sat RNA accumulation in protoplasts. These results indicate that the tombusvirus sat RNA and helper genome contain structurally and functionally equivalent RNA domains. It is proposed that the limited sequence identity observed between these corresponding higher-order RNA structures is related to a strategy that reduces the induction of gene silencing, which presumably would be detrimental to both viral and sat RNA replicons.
Collapse
Affiliation(s)
- Olena A Chernysheva
- Department of Biology, York University, Toronto, 4700 Keele Street, Ontario, Canada M3J 1P3
| | | |
Collapse
|
43
|
Ayllón MA, Satyanarayana T, Gowda S, Dawson WO. An atypical 3'-controller element mediates low-level transcription of the p6 subgenomic mRNA of Citrus tristeza virus. MOLECULAR PLANT PATHOLOGY 2005; 6:165-176. [PMID: 20565647 DOI: 10.1111/j.1364-3703.2005.00275.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Citrus tristeza virus (CTV) has within the 3'-half of the genome ten open reading frames (ORFs) that are expressed through a series of 3'-coterminal subgenomic (sg) messenger (m)RNAs that, in general, function as monocistronic mRNAs with only the 5'-most ORF translated. Yet only nine sg mRNAs have been detected, suggesting that ORF 3, which is predicted to encode a small hydrophobic protein of approximately 6 kDa (p6), might be expressed in some other manner, perhaps from a functionally dicistronic sg mRNA. However, when we positioned the p6 gene near the 3'-terminus of a minimal CTV replicon to amplify greatly the level of production of the putative sg mRNA, we found a minimal level of a p6 mRNA, thus providing evidence for a separate mRNA for each 3' ORF. The 5' termini of the sg mRNAs and the cis-acting elements (controller elements-CEs) that regulate the production of the p6 gene and the adjacent HSP70h (heat shock protein 70 homologue) were located further upstream of the ORFs compared with the other CTV CEs. Both preferentially initiated synthesis with an adenylate, as has been shown for the more highly expressed 3' genes; but in contrast, the p6 sg mRNA occasionally initiated with a guanylate. Although the nucleotide sequences and the computer-predicted secondary structures of the HSP70h CE were similar to those previously described for other 3' CEs, those of the p6 CE were quite different, suggesting that CE strength is related to proximity to an ideal CE conformation. The lack of similarity between different CTV CEs led us to examine how well the CTV replicase complex could initiate sg mRNAs from CEs from different members of the family Closteroviridae. We found that the CTV replicase complex efficiently initiated production of sgRNAs from the p6 and HSP70h CEs from Beet yellows virus, with the HSP70h CE initiating at the same nucleotide as within the homologous virus, indicating that the mode of recognition of the CEs is similar. However, CEs from a more distantly related member of the Closteroviridae, Lettuce infectious yellows virus, did not function to produce sg mRNAs in CTV.
Collapse
Affiliation(s)
- María A Ayllón
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | | | | | |
Collapse
|
44
|
Pasternak AO, Spaan WJM, Snijder EJ. Regulation of relative abundance of arterivirus subgenomic mRNAs. J Virol 2004; 78:8102-13. [PMID: 15254182 PMCID: PMC446141 DOI: 10.1128/jvi.78.15.8102-8113.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/22/2004] [Indexed: 11/20/2022] Open
Abstract
The subgenomic (sg) mRNAs of arteriviruses (order Nidovirales) form a 5'- and 3'-coterminal nested set with the viral genome. Their 5' common leader sequence is derived from the genomic 5'-proximal region. Fusion of sg RNA leader and "body" segments involves a discontinuous transcription step. Presumably during minus-strand synthesis, the nascent RNA strand is transferred from one site in the genomic template to another, a process guided by conserved transcription-regulating sequences (TRSs) at these template sites. Subgenomic RNA species are produced in different but constant molar ratios, with the smallest RNAs usually being most abundant. Factors thought to influence sg RNA synthesis are size differences between sg RNA species, differences in sequence context between body TRSs, and the mutual influence (or competition) between strand transfer reactions occurring at different body TRSs. Using an Equine arteritis virus infectious cDNA clone, we investigated how body TRS activity affected sg RNA synthesis from neighboring body TRSs. Flanking sequences were standardized by head-to-tail insertion of several copies of an RNA7 body TRS cassette. A perfect gradient of sg RNA abundance, progressively favoring smaller RNA species, was observed. Disruption of body TRS function by mutagenesis did not have a significant effect on the activity of other TRSs. However, deletion of body TRS-containing regions enhanced synthesis of sg RNAs from upstream TRSs but not of those produced from downstream TRSs. The results of this study provide considerable support for the proposed discontinuous extension of minus-strand RNA synthesis as a crucial step in sg RNA synthesis.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
45
|
Lin HX, White KA. A complex network of RNA-RNA interactions controls subgenomic mRNA transcription in a tombusvirus. EMBO J 2004; 23:3365-74. [PMID: 15282544 PMCID: PMC514510 DOI: 10.1038/sj.emboj.7600336] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 06/28/2004] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic (+)-strand RNA viruses utilize a wide variety of gene expression strategies to achieve regulated production of their viral proteins. A common mechanism used by many is to transcribe viral subgenomic (sg) mRNAs. Transcription of sg mRNA2 in tombusviruses allows for expression of the p19 suppressor of gene silencing and p22 movement proteins. We have investigated the mechanism of transcription of this sg mRNA in Tomato bushy stunt virus and have determined that this process is facilitated by no less than three different RNA modules that are located throughout the viral genome. These RNA units perform distinct tasks and function via long-distance RNA-RNA interactions. Systematic deconstruction of the RNA network and analysis of related RNA promoter elements allowed us to identify fundamental properties necessary for productive sg mRNA2 transcription. Collectively, our results (i) establish specific roles for the different RNA components of a multipartite RNA-based control system, (ii) support a premature termination mechanism for tombusvirus sg mRNA transcription and (iii) reveal a close mechanistic relationship between sg mRNA transcription, viral RNA replication and RNA recombination.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Down-Regulation/genetics
- Gene Expression Regulation, Viral
- Genetic Engineering
- Genome, Viral
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA Stability/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Tombusvirus/genetics
- Transcription, Genetic/genetics
- Virus Replication
Collapse
Affiliation(s)
- Han-Xin Lin
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Biology, York University, 4700 Keele St, Toronto, Ontario, Canada M3J 1P3. Tel: +1 416 736 5243; Fax: +1 416 736 5698; E-mail:
| |
Collapse
|
46
|
Sivakumaran K, Choi SK, Hema M, Kao CC. Requirements for brome mosaic virus subgenomic RNA synthesis in vivo and replicase-core promoter interactions in vitro. J Virol 2004; 78:6091-101. [PMID: 15163702 PMCID: PMC416551 DOI: 10.1128/jvi.78.12.6091-6101.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based solely on in vitro results, two contrasting models have been proposed for the recognition of the brome mosaic virus (BMV) subgenomic core promoter by the replicase. The first posits that the replicase recognizes at least four key nucleotides in the core promoter, followed by an induced fit, wherein some of the nucleotides base pair prior to the initiation of RNA synthesis (S. Adkins and C. C. Kao, Virology 252:1-8, 1998). The second model posits that a short RNA hairpin in the core promoter serves as a landing pad for the replicase and that at least some of the key nucleotides help form a stable hairpin (P. C. J. Haasnoot, F. Brederode, R. C. L. Olsthoorn, and J. Bol, RNA 6:708-716, 2000; P. C. J. Haasnoot, R. C. L. Olsthoorn, and J. Bol, RNA 8:110-122, 2002). We used transfected barley protoplasts to examine the recognition of the subgenomic core promoter by the BMV replicase. Key nucleotides required for subgenomic initiation in vitro were found to be important for RNA4 levels in protoplasts. In addition, additional residues not required in vitro and the formation of an RNA hairpin within the core promoter were correlated with wild-type RNA4 levels in cells. Using a template competition assay, the core promoter of ca. 20 nucleotides was found to be sufficient for replicase binding. Mutations of the key residues in the core promoter reduced replicase binding, but deletions that disrupt the predicted base pairing in the proposed stem retained binding at wild-type levels. Together, these results indicate that key nucleotides in the BMV subgenomic core promoter direct replicase recognition but that the formation of a stem-loop is required at a step after binding. Additional functional characterization of the subgenomic core promoter was performed. A portion of the promoter for BMV minus-strand RNA synthesis could substitute for the subgenomic core promoter in transfected cells. The comparable sequence from Cowpea Chlorotic Mottle Virus (CCMV) could also substitute for the BMV subgenomic core promoter. However, nucleotides in the CCMV core required for RNA synthesis are not identical to those in BMV, suggesting that the subgenomic core promoter can induce the BMV replicase in interactions needed for subgenomic RNA transcription in vivo.
Collapse
Affiliation(s)
- K Sivakumaran
- Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
47
|
Guenther RH, Sit TL, Gracz HS, Dolan MA, Townsend HL, Liu G, Newman WH, Agris PF, Lommel SA. Structural characterization of an intermolecular RNA-RNA interaction involved in the transcription regulation element of a bipartite plant virus. Nucleic Acids Res 2004; 32:2819-28. [PMID: 15155850 PMCID: PMC419593 DOI: 10.1093/nar/gkh585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 34-nucleotide trans-activator (TA) located within the RNA-2 of Red clover necrotic mosaic virus folds into a simple hairpin. The eight-nucleotide TA loop base pairs with eight complementary nucleotides in the TA binding sequence (TABS) of the capsid protein subgenomic promoter on RNA-1 and trans-activates subgenomic RNA synthesis. Short synthetic oligoribonucleotide mimics of the RNA-1 TABS and the RNA-2 TA form a weak 1:1 bimolecular complex in vitro with a K(a) of 5.3 x 10(4) M(-1). K(a) determination for a series of RNA-1 and RNA-2 mimic variants indicated optimum stability is obtained with seven-base complementarity. Thermal denaturation and NMR show that the RNA-1 TABS 8mers are weakly ordered in solution while RNA-2 TA oligomers form the predicted hairpin. NMR diffusion studies confirmed RNA-1 and RNA-2 oligomer complex formation in vitro. MC-Sym generated structural models suggest that the bimolecular complex is composed of two stacked helices, one being the stem of the RNA-2 TA hairpin and the other formed by the intermolecular base pairing between RNA-1 and RNA-2. The RCNMV TA structural model is similar to those for the Simian retrovirus frameshifting element and the Human immunodeficiency virus-1 dimerization kissing hairpins, suggesting a conservation of form and function.
Collapse
Affiliation(s)
- Richard H Guenther
- Department of Plant Pathology, Box 7616, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ayllón MA, Gowda S, Satyanarayana T, Dawson WO. cis-acting elements at opposite ends of the Citrus tristeza virus genome differ in initiation and termination of subgenomic RNAs. Virology 2004; 322:41-50. [PMID: 15063115 DOI: 10.1016/j.virol.2004.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/08/2004] [Accepted: 01/12/2004] [Indexed: 11/29/2022]
Abstract
Citrus tristeza virus (CTV), a member of the Closteroviridae with a plus-stranded genomic RNA of approximately 20 kb, produces 10 3'-coterminal subgenomic (sg) RNAs that serve as messenger (m)RNAs for its internal genes. In addition, a population of 5'-terminal sgRNAs of approximately 700 nts are highly abundant in infected cells. Previous analysis demonstrated that the controller elements (CE) are responsible for the 3'-terminal mRNAs and the small 5'-terminal sgRNAs differ in the number of additional sgRNAs produced. A feature of both types of CE is production of 5'- and 3'-terminal positive-stranded sgRNAs, but the 3' CEs additionally produce a negative-stranded complement of the 3'-terminal mRNAs. Here, we found that the termination (for 5'-terminal sgRNAs) and initiation (for 3'-terminal sgRNAs) sites of the 5' vs. the 3' CEs occur at opposite ends of the respective minimal active CEs. The initiation site for the 3' CE of the major coat protein gene, and probably those of the p20 and p23 genes, was outside (3' in terms of the genomic RNA) the minimal unit, whereas the termination sites were located within the minimal CE, 30-50 nts upstream of the initiation site (referring to the positive-strand sequence). In contrast, the initiation site for the 5' CE was in the 5' region of the minimal unit, with the termination sites 20-35 nts downstream (referring to the positive-strand sequence). Furthermore, the CEs differ in initiation nucleotide and response to mutagenesis of that nucleotide. The 3' CE initiates sgRNA synthesis from a uridylate, whereas the 5' CE initiates from a cytidylate. We previously found that the 3' CEs were unusually tolerant to mutagenesis of the initiation sites, with initiation proceeding from alternative sites. Mutagenesis of the initiation site of the 5' CE prevented synthesis of either the 5'- or 3'-terminal sgRNAs. Thus, the cis-acting elements at opposite ends of the genome are remarkably different, perhaps having arisen from different origins and or with different functions in the life cycle of this virus.
Collapse
Affiliation(s)
- María A Ayllón
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | | | | | |
Collapse
|
49
|
Eckerle LD, Albariño CG, Ball LA. Flock House virus subgenomic RNA3 is replicated and its replication correlates with transactivation of RNA2. Virology 2004; 317:95-108. [PMID: 14675628 DOI: 10.1016/j.virol.2003.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The nodavirus Flock House virus has a bipartite genome composed of RNAs 1 and 2, which encode the catalytic component of the RNA-dependent RNA polymerase (RdRp) and the capsid protein precursor, respectively. In addition to catalyzing replication of the viral genome, the RdRp also transcribes from RNA1 a subgenomic RNA3, which is both required for and suppressed by RNA2 replication. Here, we show that in the absence of RNA1 replication, FHV RdRp replicated positive-sense RNA3 transcripts fully and copied negative-sense RNA3 transcripts into positive strands. The two nonstructural proteins encoded by RNA3 were dispensable for replication, but sequences in the 3'-terminal 58 nucleotides were required. RNA3 variants that failed to replicate also failed to transactivate RNA2. These results imply that RNA3 is naturally produced both by transcription from RNA1 and by subsequent RNA1-independent replication and that RNA3 replication may be necessary for transactivation of RNA2.
Collapse
Affiliation(s)
- Lance D Eckerle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
50
|
White KA, Nagy PD. Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:187-226. [PMID: 15210331 DOI: 10.1016/s0079-6603(04)78005-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tombusviruses are among the most extensively studied messenger-sensed RNA plant viruses. Over the past decade, there have been numerous important advances in our understanding of the molecular biology of members in this genus. Unlike most other RNA viruses, the synthesis of tombusvirus proteins has been found to involve an atypical translational mechanism related to the uncapped and nonpolyadenylated nature of their genomes. Tombusviruses also appear to employ an unusual mechanism for transcription of the sg mRNAs that template translation of a subset of their viral proteins. In addition to these new insights into tombusvirus gene expression, there has also been significant progress made in our understanding of tombusvirus RNA replication. These studies have been facilitated greatly by small genome-derived RNA replicons, referred to as defective interfering RNAs. In addition, the development of an in vitro system to study viral RNA synthesis has allowed for dissection of some of the steps involved in the replication process. Another exciting recent advance has been the creation of yeast-based systems that support amplification of tombusvirus RNA replicons and will allow the identification of host factors involved in viral RNA synthesis. Lastly, the recombinogenic nature of tombusvirus genomes has made them ideal systems for studying RNA-RNA recombination and genetic rearrangements, both in vivo and in vitro. In this review, we compile recent information on each of the aforementioned processes-translation, transcription, replication and recombination-and discuss the significance of the results.
Collapse
Affiliation(s)
- K Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|