1
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
3
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 370] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
4
|
Efthimiadou E, Lelovas P, Fragogeorgi E, Boukos N, Balafas V, Loudos G, Kostomitsopoulos N, Theodosiou M, Tziveleka A, Kordas G. RETRACTED: Folic acid mediated endocytosis enhanced by modified multi stimuli nanocontainers for cancer targeting and treatment: Synthesis, characterization, in-vitro and in-vivo evaluation of therapeutic efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Nguyen L, Li M, Woo S, You Y. Development of Prodrugs for PDT-Based Combination Therapy Using a Singlet-Oxygen-Sensitive Linker and Quantitative Systems Pharmacology. J Clin Med 2019; 8:jcm8122198. [PMID: 31847080 PMCID: PMC6947033 DOI: 10.3390/jcm8122198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) has become an effective treatment for certain types of solid tumors. The combination of PDT with other therapies has been extensively investigated in recent years to improve its effectiveness and expand its applications. This focused review summarizes the development of a prodrug system in which anticancer drugs are activated locally at tumor sites during PDT treatment. The development of a singlet-oxygen-sensitive linker that can be conveniently conjugated to various drugs and efficiently cleaved to release intact drugs is recapitulated. The initial design of prodrugs, preliminary efficacy evaluation, pharmacokinetics study, and optimization using quantitative systems pharmacology is discussed. Current treatment optimization in animal models using physiologically based a pharmacokinetic (PBPK) modeling approach is also explored.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
- Correspondence: ; Tel.: +1-716-645-4843
| |
Collapse
|
6
|
Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. Int J Pharm 2018; 548:500-514. [DOI: 10.1016/j.ijpharm.2018.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
7
|
Liu W, Wang YM, Li YH, Cai SJ, Yin XB, He XW, Zhang YK. Fluorescent Imaging-Guided Chemotherapy-and-Photodynamic Dual Therapy with Nanoscale Porphyrin Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603459. [PMID: 28244202 DOI: 10.1002/smll.201603459] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Imaging-guided therapy systems (IGTSs) are revolutionary techniques used in cancer treatment due to their safety and efficiency. IGTSs should have tunable compositions for bioimaging, a suitable size and shape for biotransfer, sufficient channels and/or pores for drug loading, and intrinsic biocompatibility. Here, a biocompatible nanoscale zirconium-porphyrin metal-organic framework (NPMOF)-based IGTS that is prepared using a microemulsion strategy and carefully tuned reaction conditions is reported. A high content of porphyrin (59.8%) allows the achievement of efficient fluorescent imaging and photodynamic therapy (PDT). The 1D channel of the Kagome topology of NPMOFs provides a 109% doxorubicin loading and pH-response smart release for chemotherapy. The fluorescence guiding of the chemotherapy-and-PDT dual system is confirmed by the concentration of NPMOFs at cancer sites after irradiation with a laser and doxorubicin release, while low toxicity is observed in normal tissues. NPMOFs are established as a promising platform for the early diagnosis of cancer and initial therapy.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong-Mei Wang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shi-Jiao Cai
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Mohammadpour R, Safarian S, Buckway B, Ghandehari H. Comparative Endocytosis Mechanisms and Anticancer Effect of HPMA Copolymer- and PAMAM Dendrimer-MTCP Conjugates for Photodynamic Therapy. Macromol Biosci 2016; 17. [PMID: 27779358 DOI: 10.1002/mabi.201600333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/03/2016] [Indexed: 12/14/2022]
Abstract
Polymer architecture can influence biodistribution and the mode of presentation of bioactive agents to cells. Herein delivery, loading efficiency, and mode of cellular entry of polymer conjugates of the photosensitizer Meso-Tetra (4-Carboxyphenyl) Porphyrine (MTCP) are examined when attached to hyperbranched amine terminated poly(amido amine) (PAMAM) dendrimer or random coil linear N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer containing free amines in the side chains. The in vitro dark cytotoxicity and phototoxicity of MTCP and related conjugates are assessed on mouth epidermal carcinoma (KB) and human adenocarcinoma alveolar basal epithelial (A549) cells. Phototoxicity of polymeric conjugates increases by ≈100 and 4000 fold in KB and A549 cells compared with nonconjugated MTCP. The increase in phototoxicity activity is shown to result from increased rate of cellular uptake, whereas, cellular internalization of MTCP is negligible in comparison with the conjugated forms. The results of this study suggest the superiority of amine-terminated HPMA copolymer versus PAMAM dendrimer under study for delivery of MTCP. Treatment with various pharmacological inhibitors of endocytosis shows that polymer architecture influences the mechanism of cellular uptake of the conjugated photosensitizer. Results show that polymeric conjugates of MTCP improve solubility, influence the route and the rate of cellular internalization, and drastically enhance the uptake of the photosensitizer.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Shahrokh Safarian
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Brandon Buckway
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA.,The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA.,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112-5820, USA.,The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112-5820, USA.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112-5820, USA
| |
Collapse
|
9
|
Zheng Y, Zhang Y, Chen D, Chen H, Lin L, Zheng C, Guo Y. Monascus Pigment Rubropunctatin: A Potential Dual Agent for Cancer Chemotherapy and Phototherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2541-2548. [PMID: 26953890 DOI: 10.1021/acs.jafc.5b05343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Monascus pigment, rubropunctatin, was extracted and purified from red mold rice (RMR), and its cytotoxic activities against human cervical carcinoma HeLa cells were studied under the conditions with or without light irradiation. The IC50 value of rubropunctatin against HeLa cells in the dark was 93.71 ± 1.96 μM (24 h), while the cytotoxic activity was enhanced more than 3 times (IC50 = 24.02 ± 2.17 μM) under light irradiation (halogen lamp, 500 W; wavelength, 597-622 nm; and fluence rate, 15 mW cm(-2), for 30 min). However, the IC50 value of rubropunctatin against the immortalized human cervical epithelial H8 cells was more than 300 μM, even under light irradiation, indicating that rubropunctatin has a favorable selectivity index (SI). Treatment of HeLa cells with rubropunctatin in the dark or under light irradiation resulted in a dose-dependent apoptosis, as validated by the increase in the percentage of cells in the sub-G1 phase and phosphatidylserine externalization, and the inductive effect on HeLa cell apoptosis was boosted by the light irradiation. In addition, treatment with rubropunctatin alone or under light irradiation was found to induce apoptosis in HeLa cells via the mitochondrial pathway, including loss of mitochondrial membrane potential, activation of caspase-3, caspase-8, and caspase-9, and increase of the level of intracellular reactive oxygen species (ROS). It was suggested that rubropunctatin could be a promising natural dual anticancer agent for photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Yunquan Zheng
- College of Chemistry, Fuzhou University , 2 Xueyuan Road, Fuzhou, Fujian 350116, People's Republic of China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University , 523 Gongye Road, Fuzhou, Fujian 350002, People's Republic of China
| | - Yun Zhang
- College of Chemistry, Fuzhou University , 2 Xueyuan Road, Fuzhou, Fujian 350116, People's Republic of China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University , 523 Gongye Road, Fuzhou, Fujian 350002, People's Republic of China
| | - Deshan Chen
- College of Chemistry, Fuzhou University , 2 Xueyuan Road, Fuzhou, Fujian 350116, People's Republic of China
| | - Haijun Chen
- College of Chemistry, Fuzhou University , 2 Xueyuan Road, Fuzhou, Fujian 350116, People's Republic of China
| | - Ling Lin
- College of Chemistry, Fuzhou University , 2 Xueyuan Road, Fuzhou, Fujian 350116, People's Republic of China
| | - Chengzhuo Zheng
- College of Chemistry, Fuzhou University , 2 Xueyuan Road, Fuzhou, Fujian 350116, People's Republic of China
| | - Yanghao Guo
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University , 523 Gongye Road, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
10
|
Wu W, Dong Y, Gao J, Gong M, Zhang X, Kong W, Li Y, Zeng Y, Si D, Wei Z, Ci X, Jiang L, Li W, Li Q, Yi X, Liu C. Aspartate-modified doxorubicin on its N-terminal increases drug accumulation in LAT1-overexpressing tumors. Cancer Sci 2015; 106:747-756. [PMID: 25867020 PMCID: PMC4471785 DOI: 10.1111/cas.12672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022] Open
Abstract
L-type amino acid transporter 1 (LAT1), overexpressed on the membrane of various tumor cells, is a potential target for tumor-targeting therapy. This study aimed to develop a LAT1-mediated chemotherapeutic agent. We screened doxorubicin modified by seven different large neutral amino acids. The aspartate-modified doxorubicin (Asp-DOX) showed the highest affinity (Km = 41.423 μmol/L) to LAT1. Aspartate was attached to the N-terminal of DOX by the amide bond with a free carboxyl and a free amino group on the α-carbon atom of the Asp residue. The product Asp-DOX was characterized by HPLC/MS. In vitro, Asp-DOX exerted stronger inhibition on the cancer cells overexpressing LAT1 and the uptake of Asp-DOX was approximately 3.5-fold higher than that of DOX in HepG2 cells. Pharmacokinetic data also showed that Asp-DOX was expressed over a longer circulation time (t1/2 = 49.14 min) in the blood compared to DOX alone (t1/2 = 15.12 min). In HepG2 and HCT116 tumor-bearing mice, Asp-DOX achieved 3.1-fold and 6.4-fold accumulation of drugs in tumor tissue, respectively, than those of the unmodified DOX. More importantly, treatment of tumor-bearing mice with Asp-DOX showed a significantly stronger inhibition of tumor growth than mice treated with free DOX in HepG2 tumor models. Furthermore, after Asp modification, Asp-DOX avoided MDR mediated by P-glycoprotein. These results suggested that the Asp-DOX modified drug may provide a new treatment strategy for tumors that overexpress LAT1 and MDR1.
Collapse
Affiliation(s)
- Weidang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yan Dong
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Jing Gao
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Min Gong
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xing Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiling Kong
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yazhuo Li
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yong Zeng
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Duanyun Si
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Zihong Wei
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xiaoyan Ci
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Lixin Jiang
- Hefei Tianmai Biotechnology Development Co., Ltd, Hefei, China
| | - Wei Li
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Quansheng Li
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xiulin Yi
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Changxiao Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Minko T. Soluble polymer conjugates for drug delivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 2:15-20. [PMID: 24981750 DOI: 10.1016/j.ddtec.2005.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.:
Collapse
Affiliation(s)
- Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
12
|
Upponi JR, Torchilin VP. Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Abd-Elgaliel WR, Cruz-Monserrate Z, Wang H, Logsdon CD, Tung CH. Pancreatic cancer-associated Cathepsin E as a drug activator. J Control Release 2013; 167:221-7. [PMID: 23422726 DOI: 10.1016/j.jconrel.2013.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/25/2013] [Accepted: 02/09/2013] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is challenging to treat, and better means to detect and/or treat pancreatic cancer are urgently needed to save lives. Cathepsin E (Cath E) is a proteolytic enzyme highly expressed in PDAC. In this study, a novel approach using Cath E activation of a Cath E-specific prodrug was demonstrated. Specific activation of the prodrug is expected to kill pancreatic cancer cells without harming normal pancreatic cells. A novel 5-aminolevulinic acid (5-ALA) prodrug was custom-designed to be activated selectively by endogenous Cath E within the PDAC cells. The 5-ALA prodrug was incubated with Cath E-positive and -negative tumor cells and illuminated with various doses of light. In addition, mice genetically engineered to develop PDAC were injected intravenously with the 5-ALA prodrug, and the pancreas was treated with light irradiation. One day after treatment, PDAC tissue was assessed for apoptosis. The 5-ALA prodrug was activated within the Cath E-positive tumor but not in the normal pancreatic tissue. When used in combination with light treatment, it allowed delivery of selective photodynamic therapy (PDT) to the cancerous tissues, with minimal harm to the adjacent normal tissues. With this novel Cath E activation approach, it is possible to detect pancreatic cancer cells accurately and specifically impair their viability, while sparing normal cells. This treatment could result in fewer side effects than the non-specific treatments currently in use. Cath E is a specific and effective drug activator for PDAC treatment.
Collapse
Affiliation(s)
- Wael R Abd-Elgaliel
- Department of Translational Imaging, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, USA
| | | | | | | | | |
Collapse
|
14
|
Ye WL, Teng ZH, Liu DZ, Cui H, Liu M, Cheng Y, Yang TH, Mei QB, Zhou SY. Synthesis of a new pH-sensitive folate-doxorubicin conjugate and its antitumor activity in vitro. J Pharm Sci 2012; 102:530-40. [PMID: 23169439 DOI: 10.1002/jps.23381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 11/01/2012] [Indexed: 11/08/2022]
Abstract
Folate-aminocaproic acid-doxorubicin (FA-AMA-DOX) was synthesized and characterized by H NMR spectroscopy and mass spectrometry. Cytotoxicity and cellular uptake experiments were performed in KB and HepG2 cells, which express folic acid receptor, and the cell line A549, which does not express folic acid receptor. Cytotoxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cellular uptake was monitored using fluorescence microscopy. The amount of DOX released from FA-AMA-DOX was much greater at pH 5.0 than that at pH 6.5 or 7.4. The cytotoxicity of FA-AMA-DOX toward KB and HepG2 cells was greater than that of DOX or AMA-DOX at the same concentrations, and cytotoxicity could be attenuated by FA in a dose-dependent manner. On the contrary, the cytotoxicity of FA-AMA-DOX and AMA-DOX toward A549 cells was lower than that of DOX at the same concentration, and cytotoxicity could not be reduced by FA. Compared with FA-AMA, FA-AMA-DOX increased the intracellular accumulation of DOX in KB cells. These results suggested that FA-AMA-DOX have suitable attributes for the active targeting of folate-receptor-positive tumor cells and for releasing the chemotherapeutic agent, DOX, in situ; it therefore has potential as a novel cancer therapeutic.
Collapse
Affiliation(s)
- Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Diez B, Ernst G, Teijo MJ, Batlle A, Hajos S, Fukuda H. Combined chemotherapy and ALA-based photodynamic therapy in leukemic murine cells. Leuk Res 2012; 36:1179-84. [DOI: 10.1016/j.leukres.2012.04.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 12/16/2022]
|
16
|
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63:131-5. [PMID: 20304019 DOI: 10.1016/j.addr.2010.03.011] [Citation(s) in RCA: 1431] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/15/2010] [Indexed: 02/07/2023]
Abstract
Enhanced permeability and retention (EPR) effect is the physiology-based principal mechanism of tumor accumulation of large molecules and small particles. This specific issue of Advanced Drug Delivery Reviews is summing up multiple data on the EPR effect-based drug design and clinical outcome. In this commentary, the role of the EPR effect in the intratumoral delivery of protein and peptide drugs, macromolecular drugs and drug-loaded long-circulating pharmaceutical nanocarriers is briefly discussed together with some additional opportunities for drug delivery arising from the initial EPR effect-mediated accumulation of drug-containing macromolecular systems in tumors.
Collapse
|
17
|
Inoue S, Ding H, Portilla-Arias J, Hu J, Konda B, Fujita M, Espinoza A, Suhane S, Riley M, Gates M, Patil R, Penichet ML, Ljubimov AV, Black KL, Holler E, Ljubimova JY. Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity. Cancer Res 2011; 71:1454-64. [PMID: 21303974 DOI: 10.1158/0008-5472.can-10-3093] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable nanopolymers are believed to offer great potential in cancer therapy. Here, we report the characterization of a novel, targeted, nanobiopolymeric conjugate based on biodegradable, nontoxic, and nonimmunogenic PMLA [poly(β-l-malic acid)]. The PMLA nanoplatform was synthesized for repetitive systemic treatments of HER2/neu-positive human breast tumors in a xenogeneic mouse model. Various moieties were covalently attached to PMLA, including a combination of morpholino antisense oligonucleotides (AON) directed against HER2/neu mRNA, to block new HER2/neu receptor synthesis; anti-HER2/neu antibody trastuzumab (Herceptin), to target breast cancer cells and inhibit receptor activity simultaneously; and transferrin receptor antibody, to target the tumor vasculature and mediate delivery of the nanobiopolymer through the host endothelial system. The results of the study showed that the lead drug tested significantly inhibited the growth of HER2/neu-positive breast cancer cells in vitro and in vivo by enhanced apoptosis and inhibition of HER2/neu receptor signaling with suppression of Akt phosphorylation. In vivo imaging analysis and confocal microscopy demonstrated selective accumulation of the nanodrug in tumor cells via an active delivery mechanism. Systemic treatment of human breast tumor-bearing nude mice resulted in more than 90% inhibition of tumor growth and tumor regression, as compared with partial (50%) tumor growth inhibition in mice treated with trastuzumab or AON, either free or attached to PMLA. Our findings offer a preclinical proof of concept for use of the PMLA nanoplatform for combination cancer therapy.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Neurosurgery and Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, Ding H, Patil R, Portilla-Arias JA, Modo M, Moore DF, Farahani K, Okun MS, Prakash N, Neman J, Ahdoot D, Grundfest W, Nikzad S, Heiss JD. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 2011; 54 Suppl 1:S106-24. [PMID: 20149882 PMCID: PMC3524337 DOI: 10.1016/j.neuroimage.2010.01.105] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 01/29/2023] Open
Abstract
Nanotechnology is the design and assembly of submicroscopic devices called nanoparticles, which are 1-100 nm in diameter. Nanomedicine is the application of nanotechnology for the diagnosis and treatment of human disease. Disease-specific receptors on the surface of cells provide useful targets for nanoparticles. Because nanoparticles can be engineered from components that (1) recognize disease at the cellular level, (2) are visible on imaging studies, and (3) deliver therapeutic compounds, nanotechnology is well suited for the diagnosis and treatment of a variety of diseases. Nanotechnology will enable earlier detection and treatment of diseases that are best treated in their initial stages, such as cancer. Advances in nanotechnology will also spur the discovery of new methods for delivery of therapeutic compounds, including genes and proteins, to diseased tissue. A myriad of nanostructured drugs with effective site-targeting can be developed by combining a diverse selection of targeting, diagnostic, and therapeutic components. Incorporating immune target specificity with nanostructures introduces a new type of treatment modality, nano-immunochemotherapy, for patients with cancer. In this review, we will discuss the development and potential applications of nanoscale platforms in medical diagnosis and treatment. To impact the care of patients with neurological diseases, advances in nanotechnology will require accelerated translation to the fields of brain mapping, CNS imaging, and nanoneurosurgery. Advances in nanoplatform, nano-imaging, and nano-drug delivery will drive the future development of nanomedicine, personalized medicine, and targeted therapy. We believe that the formation of a science, technology, medicine law-healthcare policy (STML) hub/center, which encourages collaboration among universities, medical centers, US government, industry, patient advocacy groups, charitable foundations, and philanthropists, could significantly facilitate such advancements and contribute to the translation of nanotechnology across medical disciplines.
Collapse
Affiliation(s)
- Babak Kateb
- Brain Mapping Foundation, West Hollywood, CA 90046, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 2009; 30:3466-75. [PMID: 19304320 DOI: 10.1016/j.biomaterials.2009.02.040] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
Abstract
Copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer therapeutics. To demonstrate that polymers, as liposomes, can be used for simultaneously delivering multiple chemotherapeutic agents to tumors in vivo, we have synthesized and evaluated an HPMA-based polymer-drug conjugate carrying 6.4wt% of gemcitabine, 5.7wt% of doxorubicin and 1.0mol% of tyrosinamide (to allow for radiolabeling). The resulting construct, i.e. poly(HPMA-co-MA-GFLG-gemcitabine-co-MA-GFLG-doxorubicin-co-MA-TyrNH(2)), was termed P-Gem-Dox, and was shown to effectively kill cancer cells in vitro, to circulate for prolonged period of time, to localize to tumors relatively selectively, and to inhibit tumor growth. As compared to control regimens, P-Gem-Dox increased the efficacy of the combination of gemcitabine and doxorubicin without increasing its toxicity, and it more strongly inhibited angiogenesis and induced apoptosis. These findings demonstrate that passively tumor-targeted polymeric drug carriers can be used for delivering two different chemotherapeutic agents to tumors simultaneously, and they thereby set the stage for more elaborate analyses on the potential of polymer-based multi-drug targeting.
Collapse
Affiliation(s)
- Twan Lammers
- Department of Innovative Cancer Diagnosis and Therapy, DKFZ Heidelberg, German Cancer Research Center, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Xie Q, Jia L, Liu YH, Wei CG. Synergetic anticancer effect of combined gemcitabine and photodynamic therapy on pancreatic cancer in vivo. World J Gastroenterol 2009; 15:737-41. [PMID: 19222100 PMCID: PMC2653444 DOI: 10.3748/wjg.15.737] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-tumor effects of combined cytotoxic drug (gemcitabine) and photodynamic therapy (PDT) on human pancreatic cancer xenograft in nude mice.
METHODS: Human pancreatic cancer cell line SW1990 was used in the investigation of the in vivo effect of combined gemcitabine and PDT on human pancreatic cancer xenograft in mice. Sixty mice were randomly allocated into a control group (without treatment), photosensitizer treatment group (2 mg/kg photosan, without illumination), chemotherapy group (50 mg/kg gemcitabine i.p.), PDT group (2 mg/kg photosan + laser irradiation) and combined treatment group (photosan + chemotherapy), with 12 mice in each group. Tumor size was measured twice every week. Anti-tumor activity in different groups was evaluated by tumor growth inhibition (TGI).
RESULTS: No significant anti-tumor effect was observed either in photosensitizer treatment group or in chemotherapy group. PDT led to necrosis in cancer lesions and significantly reduced tumor volume compared with photosensitizer on day 6 and at the following time points after initialization of therapy (0.24 ± 0.15-0.49 ± 0.08 vs 0.43 ± 0.18-1.25 ± 0.09, P < 0.05). PDT significantly reduced tumor volume in combined treatment group compared with photosensitizer treatment group (0.12 ± 0.07-0.28 ± 0.12 vs 0.39 ± 0.15-1.20 ± 0.11, P < 0.05), small dose chemotherapy group (0.12 ± 0.07-0.28 ± 0.12 vs 0.32 ± 0.14-1.16 ± 0.08, P < 0.05) and control group (0.12 ± 0.07-0.28 ± 0.12 vs 0.43 ± 0.18-1.25 ± 0.09, P < 0.05). TGI was higher in the combined treatment group (82.42%) than in the PDT group (58.18%).
CONCLUSION: PDT has a significant anti-tumor effect, which is maintained for a short time and can be significantly enhanced by small doses of gemcitabine.
Collapse
|
21
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
22
|
Minko T, Khandare JJ, Vetcher AA, Soldatenkov VA, Garbuzenko OB, Saad M, Pozharov VP. Multifunctional Nanotherapeutics for Cancer. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
23
|
Adams N, Schubert US. Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 2007; 59:1504-20. [PMID: 17904246 DOI: 10.1016/j.addr.2007.08.018] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 08/14/2007] [Indexed: 12/12/2022]
Abstract
Polyoxazolines of various architectures and chemical functionalities can be prepared in a living and therefore controlled manner via cationic ring-opening polymerisation. They have found widespread applications, ranging from coatings to pigment dispersants. Furthermore, several polyoxazolines are water-soluble or amphiphilic and relatively non-toxic, which makes them interesting as biomaterials. This paper reviews the development of polyoxazoline-based polymers in biological and biomedical application contexts since the beginning of the millennium. This includes nanoscalar systems such as membranes and nanoparticles, drug and gene delivery applications, as well as stimuli-responsive systems.
Collapse
Affiliation(s)
- Nico Adams
- Unilever Centre for Molecular Science Informatics, University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB1 9SB, United Kingdom
| | | |
Collapse
|
24
|
Fujita M, Lee BS, Khazenzon NM, Penichet ML, Wawrowsky KA, Patil R, Ding H, Holler E, Black KL, Ljubimova JY. Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(beta-L-malic acid). J Control Release 2007; 122:356-63. [PMID: 17630012 PMCID: PMC2394675 DOI: 10.1016/j.jconrel.2007.05.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 05/28/2007] [Indexed: 10/23/2022]
Abstract
Tumor-specific targeting using achievements of nanotechnology is a mainstay of increasing efficacy of anti-tumor drugs. To improve drug targeting we covalently conjugated for the first time two different monoclonal antibodies, an anti-mouse transferrin receptor antibody and a mouse autoimmune anti-nucleosome antibody 2C5, onto the drug delivery nanoplatform, poly(beta-L-malic acid). The active anti-tumor drug components attached to the same carrier molecule were antisense oligonucleotides to vascular protein laminin-8. The resulting drug, a new Polycefin variant, was administered intravenously into glioma-bearing xenogeneic animals. The drug delivery system was targeted across mouse endothelial system by the anti-mouse transferring receptor antibody and to the tumor cell surface by the anti-nucleosome antibody 2C5. The targeting efficacies of the Polycefin variants bearing either two antibodies or each single antibody were compared in vitro and in vivo. ELISA confirmed the co-existence of two antibodies on the same nanoplatform molecule and their functional activities. Fluorescence imaging analysis after 24 h of intravenous injection demonstrated significantly higher tumor accumulation of Polycefin variants with the tandem configuration of antibodies than with single antibodies. The results suggest improved efficacy for tandem configuration of antibodies than for single configurations carried by a drug delivery vehicle.
Collapse
Affiliation(s)
- Manabu Fujita
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fujita M, Khazenzon NM, Ljubimov AV, Lee BS, Virtanen I, Holler E, Black KL, Ljubimova JY. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 2006; 9:183-91. [PMID: 17109197 PMCID: PMC3487708 DOI: 10.1007/s10456-006-9046-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/16/2006] [Indexed: 10/23/2022]
Abstract
We have previously shown that laminin-8, a vascular basement membrane component, was overexpressed in human glioblastomas multiforme and their adjacent tissues compared to normal brain. Increased laminin-8 correlated with shorter glioblastoma recurrence time and poor patient survival making it a potential marker for glioblastoma diagnostics and prediction of disease outcome. However, laminin-8 therapeutic potential was unknown because the technology of blocking the expression of multi-chain complex proteins was not yet developed. To inhibit the expression of laminin-8 constituents in glioblastoma in vitro and in vivo, we used Polycefin, a bioconjugate drug delivery system based on slime-mold Physarum polycephalum-derived poly(malic acid). It carries an attached transferrin receptor antibody to target tumor cells and to deliver two conjugated morpholino antisense oligonucleotides against laminin-8 alpha4 and beta1 chains. Polycefin efficiently inhibited the expression of both laminin-8 chains by cultured glioblastoma cells. Intracranial Polycefin treatment of human U87MG glioblastoma-bearing nude rats reduced incorporation of both tumor-derived laminin-8 chains into vascular basement membranes. Polycefin was thus able to simultaneously inhibit the expression of two different chains of a complex protein. The treatment also significantly reduced tumor microvessel density (p < 0.001) and area (p < 0.001) and increased animal survival (p < 0.0004). These data suggest that laminin-8 may be important for glioblastoma angiogenesis. Polycefin, a versatile nanoscale drug delivery system, was suitable for in vivo delivery of two antisense oligonucleotides to brain tumor cells causing a reduction of glioblastoma angiogenesis and an increase of animal survival. This system may hold promise for future clinical applications.
Collapse
Affiliation(s)
- Manabu Fujita
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 W. Third Street, Suite 800E, Los Angeles, CA 90048, USA
| | - Natalya M. Khazenzon
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 W. Third Street, Suite 800E, Los Angeles, CA 90048, USA
| | - Alexander V. Ljubimov
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA. Arrogene, Inc., Tarzana, CA 91356, USA
| | - Bong-Seop Lee
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 W. Third Street, Suite 800E, Los Angeles, CA 90048, USA
| | - Ismo Virtanen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Eggehard Holler
- Arrogene, Inc., Tarzana, CA 91356, USA. Institut für Biophysik und Physikalische Biochemie der Universität Regensburg, Regensburg, Germany
| | - Keith L. Black
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 W. Third Street, Suite 800E, Los Angeles, CA 90048, USA. Arrogene, Inc., Tarzana, CA 91356, USA
| | - Julia Y. Ljubimova
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 W. Third Street, Suite 800E, Los Angeles, CA 90048, USA. Arrogene, Inc., Tarzana, CA 91356, USA
| |
Collapse
|
26
|
Vaidya A, Sun Y, Ke T, Jeong EK, Lu ZR. Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magn Reson Med 2006; 56:761-7. [PMID: 16902981 DOI: 10.1002/mrm.21009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive and effective approach for cancer treatment. It is potentially useful for treating tumors that are not accessible to surgery, radiation, or destructive ablations, and are resistant to chemotherapy. Efficacious treatment of interstitial tumors with PDT requires efficient delivery of photosensitizers and accurate location of tumor tissues for effective light irradiations. In this study we performed contrast-enhanced (CE) MRI-guided PDT with a bifunctional polymer conjugate containing both a magnetic resonance imaging (MRI) contrast agent and a photosensitizer, poly(L-glutamic acid) (PGA)-(Gd-DO3A)-mesochlorin e(6) (Mce(6)). The efficacy of the bifunctional conjugate in cancer CE-MRI and cancer treatment was evaluated in athymic nude mice bearing MDA-MB-231 human breast carcinoma xenografts, with PGA-(Gd-DO3A) used as a control. The polymer conjugates preferentially accumulated in the solid tumor due to the hyperpermeability of the tumor vasculature, resulting in significant tumor enhancement for accurate tumor detection and localization by MRI. Significant therapeutic response was observed for PDT with the bifunctional conjugate as compared to the control. CE-MRI-guided PDT with the bifunctional conjugate is effective for tumor detection and minimally invasive cancer treatment.
Collapse
Affiliation(s)
- Anagha Vaidya
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah , USA
| | | | | | | | | |
Collapse
|
27
|
Kirveliene V, Grazeliene G, Dabkeviciene D, Micke I, Kirvelis D, Juodka B, Didziapetriene J. Schedule-dependent interaction between Doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and in vivo. Cancer Chemother Pharmacol 2005; 57:65-72. [PMID: 16001168 DOI: 10.1007/s00280-005-0006-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 03/02/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate cytotoxic and antitumor effects of a conventional anticancer drug Doxorubicin (Dox) and photodynamic therapy (PDT) mediated by a promising photosensitizer of second generation meta-tetra (3-hydroxyphenyl)-chlorin (mTHPC) in combination. METHODS Murine hepatoma MH-22A was used for investigation in vitro and in vivo. In vitro, the cells were incubated with 0.15 microg/ml mTHPC for 18 h and exposed to light from LED array (lambda = 660+/-20 nm) at 0.6-2.4 kJ/m2. 0.05-0.2 microg/ml Dox was administered either 24 h prior to or immediately after light exposure (Dox-->PDT or PDT + Dox, respectively). The cytotoxicity was tested by staining with crystal violet. The character of the combined effect was assessed by multiple regression analysis. In vivo, the antitumor activity was estimated by monitoring the tumor volume over time, in mice transplanted subcutaneously with MH-22A and treated with Dox and/or PDT. For PDT, mice were exposed to light from diode laser (lambda = 650+/-2 nm) at 12 kJ/m2 following 24 h after administration of 0.15 mg/kg mTHPC. A 3 mg/kg Dox was administered either within 15 min prior to mTHPC or within 15 min after light exposure (Dox-->PDT or PDT + Dox, respectively). RESULTS Both in vitro and in vivo, the combination of mTHPC-mediated PDT and Dox was evaluated to be more effective than each treatment alone. In vitro, the difference between cell viability curves after photodynamic treatment as a single modality and after combination of photodynamic treatment with Dox was statistically significant under most of the applied conditions (P < or = 0.02). In the case of PDT + Dox, the combination had an additive character, and the sequence Dox-->PDT caused a sub-additive interaction. In vivo, both regimens of combination were more effective in inhibiting tumor growth than any single treatment (P < 0.09). The antitumor activity of PDT + Dox regimen was more prominent than that of Dox-->PDT; however, significance of the difference was not high (P = 0.08). CONCLUSIONS These results indicate that Dox potentiates therapeutic efficacy of mTHPC-mediated PDT and vice versa, and the degree of potentiation is influenced by the combination schedule: administration of Dox immediately after light exposure is preferable to administration of Dox at 24 h prior to light exposure.
Collapse
Affiliation(s)
- V Kirveliene
- Department of Biochemistry and Biophysics, Vilnius University, Ciurlionio 21, LT 03101, Vilnius, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
28
|
You Y, Gibson SL, Hilf R, Ohulchanskyy TY, Detty MR. Core-modified porphyrins. Part 4: Steric effects on photophysical and biological properties in vitro. Bioorg Med Chem 2005; 13:2235-51. [PMID: 15727875 DOI: 10.1016/j.bmc.2004.12.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 12/22/2004] [Accepted: 12/22/2004] [Indexed: 11/29/2022]
Abstract
21,23-Dithiaporphyrins (2-10) were designed and prepared as analogues of 5,20-diphenyl-10,15-bis(4-carboxylatomethoxy)phenyl-21,23-dithiaporphyrin (1) to examine the impact of steric bulk at the 5- and 20-meso positions as well as the impact of symmetry. Changes at the meso positions had minimal impact on the UV-vis-near-IR absorption spectra, quantum yields for the generation of singlet oxygen, and quantum yields for fluorescence and some impact on values of the octanol/water partition coefficient. Of the compounds 1-10, 5-phenyl-20-(2-thienyl)-10,15-bis-(4-carboxylatomethoxy-phenyl)-21,23-dithiaporphyrin (3) showed the greatest phototoxicity toward cultured R3230AC cells, with 68% cell kill at 1 x 10(-7)M and irradiation with 5J cm(-2) of 350-750 nm light. Results in this study suggest that smaller substituents on the meso ring and less symmetrical compounds are more effective as photosensitizers than compounds with two bulky substituents at adjoining meso sites and a higher symmetry. The mitochondria appear to be involved in the process of phototoxicity as determined by the inhibition of whole cell cytochrome c oxidase activity in cells treated with 3 and light. No impact upon mitochondrial cytochrome c oxidase activity was observed in cells treated with 3 and no light. Fluorescence microscopy studies suggest that the mitochondria are not initial sites of accumulation of 3.
Collapse
Affiliation(s)
- Youngjae You
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | |
Collapse
|
29
|
Melik-Nubarov N, Krylova O. The Control of Membrane Properties by Synthetic Polymers. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1554-4516(05)02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|