1
|
Chen J, Zeng H, Zhang X. Integrative transcriptomic and metabolomic analysis of D-leaf of seven pineapple varieties differing in N-P-K% contents. BMC PLANT BIOLOGY 2021; 21:550. [PMID: 34809576 PMCID: PMC8607640 DOI: 10.1186/s12870-021-03291-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Pineapple (Ananas comosus L. Merr.) is the third most important tropical fruit in China. In other crops, farmers can easily judge the nutritional requirements from leaf color. However, concerning pineapple, it is difficult due to the variation in leaf color of the cultivated pineapple varieties. A detailed understanding of the mechanisms of nutrient transport, accumulation, and assimilation was targeted in this study. We explored the D-leaf nitrogen (N), phosphorus (P), and potassium (K) contents, transcriptome, and metabolome of seven pineapple varieties. RESULTS Significantly higher N, P, and K% contents were observed in Bali, Caine, and Golden pineapple. The transcriptome sequencing of 21 libraries resulted in the identification of 14,310 differentially expressed genes in the D-leaves of seven pineapple varieties. Genes associated with N transport and assimilation in D-leaves of pineapple was possibly regulated by nitrate and ammonium transporters, and glutamate dehydrogenases play roles in N assimilation in arginine biosynthesis pathways. Photosynthesis and photosynthesis-antenna proteins pathways were also significantly regulated between the studied genotypes. Phosphate transporters and mitochondrial phosphate transporters were differentially regulated regarding inorganic P transport. WRKY, MYB, and bHLH transcription factors were possibly regulating the phosphate transporters. The observed varying contents of K% in the D-leaves was associated to the regulation of K+ transporters and channels under the influence of Ca2+ signaling. The UPLC-MS/MS analysis detected 873 metabolites which were mainly classified as flavonoids, lipids, and phenolic acids. CONCLUSIONS These findings provide a detailed insight into the N, P, K% contents in pineapple D-leaf and their transcriptomic and metabolomic signatures.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, 524091, China.
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China.
| | - Hui Zeng
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, 524091, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Xiumei Zhang
- Key Laboratory of Tropical Fruit Tree Biology, Ministry of Agriculture, Zhanjiang, Guangdong, 524091, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| |
Collapse
|
2
|
Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario - A Current Overview. FRONTIERS IN PLANT SCIENCE 2019; 10:563. [PMID: 31139199 PMCID: PMC6527881 DOI: 10.3389/fpls.2019.00563] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 05/06/2023]
Abstract
Global climate change in the form of extreme heat and drought poses a major challenge to sustainable crop production by negatively affecting plant performance and crop yield. Such negative impact on crop yield is likely to be aggravated in future because continued greenhouse gas emissions will cause further rise in temperature leading to increased evapo-transpiration and drought severity, soil salinity as well as insect and disease threats. This has raised a major challenge for plant scientists on securing global food demand, which urges an immediate need to enhance the current yield of major food crops by two-fold to feed the increasing population. As a fourth major food crop, enhancing potato productivity is important for food security of an increasing population. However, potato plant is highly prone to high temperature, drought, soil salinity, as well as insect and diseases. In order to maintain a sustainable potato production, we must adapt our cultivation practices and develop stress tolerant potato cultivars that are appropriately engineered for changing environment. Yet the lack of data on the underlying mechanisms of potato plant resistance to abiotic and biotic stress and the ability to predict future outcomes constitutes a major knowledge gap. It is a challenge for plant scientists to pinpoint means of improving tuber yield under increasing CO2, high temperature and drought stress including the changing patterns of pest and pathogen infestations. Understanding stress-related physiological, biochemical and molecular processes is crucial to develop screening procedures for selecting crop cultivars that can better adapt to changing growth conditions. Elucidation of such mechanism may offer new insights into the identification of specific characteristics that may be useful in breeding new cultivars aimed at maintaining or even enhancing potato yield under changing climate. This paper discusses the recent progress on the mechanism by which potato plants initially sense the changes in their surrounding CO2, temperature, water status, soil salinity and consequently respond to these changes at the molecular, biochemical and physiological levels. We suggest that future research needs to be concentrated on the identification and characterization of signaling molecules and target genes regulating stress tolerance and crop yield potential.
Collapse
Affiliation(s)
- Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | | | | | | | | |
Collapse
|
3
|
Tong W, Imai A, Tabata R, Shigenobu S, Yamaguchi K, Yamada M, Hasebe M, Sawa S, Motose H, Takahashi T. Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:834. [PMID: 27379127 PMCID: PMC4904021 DOI: 10.3389/fpls.2016.00834] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/27/2016] [Indexed: 05/19/2023]
Abstract
Polyamines are small basic compounds present in all living organisms and act in a variety of biological processes. However, the mechanism of polyamine sensing, signaling and response in relation to other metabolic pathways remains to be fully addressed in plant cells. As one approach, we isolated Arabidopsis mutants that show increased resistance to spermine in terms of chlorosis. We show here that two of the mutants have a point mutation in a nitrate transporter gene of the NRT1/PTR family (NPF), NRT1.3 (AtNPF6.4). These mutants also exhibit increased resistance to putrescine and spermidine while loss-of-function mutants of the two closest homologs of NRT1.3, root-specific NRT1.1 (AtNPF6.3) and petiole-specific NRT1.4 (AtNPF6.2), were shown to have a normal sensitivity to polyamines. When the GUS reporter gene was expressed under the control of the NRT1.3 promoter, GUS staining was observed in leaf mesophyll cells and stem cortex cells but not in the epidermis, suggesting that NRT1.3 specifically functions in parenchymal tissues. We further found that the aerial part of the mutant seedling has normal levels of polyamines but shows reduced uptake of norspermidine compared with the wild type. These results suggest that polyamine transport or metabolism is associated with nitrate transport in the parenchymal tissue of the shoot.
Collapse
Affiliation(s)
- Wurina Tong
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Akihiro Imai
- National Institute for Basic BiologyOkazaki, Japan
| | - Ryo Tabata
- Graduate School of Science and Technology, Kumamoto UniversityKumamoto, Japan
| | | | | | - Masashi Yamada
- National Institute for Basic BiologyOkazaki, Japan
- Department of Biology, Duke UniversityDurham, NC, USA
| | | | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto UniversityKumamoto, Japan
| | - Hiroyasu Motose
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
- *Correspondence: Taku Takahashi,
| |
Collapse
|
4
|
Hüner NPA, Dahal K, Kurepin LV, Savitch L, Singh J, Ivanov AG, Kane K, Sarhan F. Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Front Chem 2014; 2:18. [PMID: 24860799 PMCID: PMC4029004 DOI: 10.3389/fchem.2014.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023] Open
Abstract
We propose that targeting the enhanced photosynthetic performance associated with the cold acclimation of winter cultivars of rye (Secale cereale L.), wheat (Triticum aestivum L.), and Brassica napus L. may provide a novel approach to improve crop productivity under abiotic as well as biotic stress conditions. In support of this hypothesis, we provide the physiological, biochemical, and molecular evidence that the dwarf phenotype induced by cold acclimation is coupled to significant enhancement in photosynthetic performance, resistance to photoinhibition, and a decreased dependence on photoprotection through non-photochemical quenching which result in enhanced biomass production and ultimately increased seed yield. These system-wide changes at the levels of phenotype, physiology, and biochemistry appear to be governed by the family of C-repeat/dehydration-responsive family of transcription factors (CBF/DREB1). We relate this phenomenon to the semi-dwarf, gibberellic acid insensitive (GAI), cereal varieties developed during the "green revolution" of the early 1960s and 1970s. We suggest that genetic manipulation of the family of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) may provide a novel approach for the maintenance and perhaps even the enhancement of plant productivity under conditions of sub-optimal growth conditions predicted for our future climate.
Collapse
Affiliation(s)
- Norman P. A. Hüner
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Keshav Dahal
- Department of Biological Sciences, University of Toronto at ScarboroughScarborough, ON, Canada
| | - Leonid V. Kurepin
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Leonid Savitch
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| | - Jas Singh
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| | - Alexander G. Ivanov
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Khalil Kane
- Départment des Sciences biologiques, Université du Québec à MontréalMontréal, QC, Canada
| | - Fathey Sarhan
- Départment des Sciences biologiques, Université du Québec à MontréalMontréal, QC, Canada
| |
Collapse
|
5
|
Eichelmann H, Oja V, Peterson R, Laisk A. The rate of nitrite reduction in leaves as indicated by O₂ and CO₂ exchange during photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2205-15. [PMID: 21239375 PMCID: PMC3060700 DOI: 10.1093/jxb/erq428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed.
Collapse
Affiliation(s)
- H. Eichelmann
- Institute of Molecular and Cell Biology, Tartu University, Riia st. 23, Tartu 51010, Estonia
| | - V. Oja
- Institute of Molecular and Cell Biology, Tartu University, Riia st. 23, Tartu 51010, Estonia
| | - R.B. Peterson
- Department of Biochemistry and Genetics, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511, USA
| | - A. Laisk
- Institute of Molecular and Cell Biology, Tartu University, Riia st. 23, Tartu 51010, Estonia
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|