1
|
Zolotarev N, Wang Y, Du M, Bayer M, Grosschedl A, Cisse I, Grosschedl R. Regularly spaced tyrosines in EBF1 mediate BRG1 recruitment and formation of nuclear subdiffractive clusters. Genes Dev 2024; 38:4-10. [PMID: 38233109 PMCID: PMC10903943 DOI: 10.1101/gad.350828.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
B lineage priming by pioneer transcription factor EBF1 requires the function of an intrinsically disordered region (IDR). Here, we examine the role of regularly spaced tyrosines in the IDR as potential determinants of IDR function and activity of EBF1. We found that four Y > A mutations in EBF1 reduced the formation of condensates in vitro and subdiffractive clusters in vivo. Notably, Y > A mutant EBF1 was inefficient in promoting B cell differentiation and showed impaired chromatin binding, recruitment of BRG1, and activation of specific target genes. Thus, regularly spaced tyrosines in the IDR contribute to the biophysical and functional properties of EBF1.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Yuanting Wang
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Manyu Du
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Anna Grosschedl
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim Cisse
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany;
| |
Collapse
|
2
|
Souza OF, Popi AF. Role of microRNAs in B-Cell Compartment: Development, Proliferation and Hematological Diseases. Biomedicines 2022; 10:biomedicines10082004. [PMID: 36009551 PMCID: PMC9405569 DOI: 10.3390/biomedicines10082004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
B-cell development is a very orchestrated pathway that involves several molecules, such as transcription factors, cytokines, microRNAs, and also different cells. All these components maintain the ideal microenvironment and control B-cell differentiation. MicroRNAs are small non-coding RNAs that bind to target mRNA to control gene expression. These molecules could circulate in the body in a free form, protein-bounded, or encapsulated into extracellular vesicles, such as exosomes. The comprehension of the role of microRNAs in the B-cell development was possible based on microRNA profile of each B-cell stage and functional studies. Herein, we report the knowledge about microRNAs in the B-cell the differentiation, proliferation, and also in hematological malignancies.
Collapse
|
3
|
Amirifar P, Yazdani R, Azizi G, Ranjouri MR, Durandy A, Plebani A, Lougaris V, Hammarstrom L, Aghamohammadi A, Abolhassani H. Known and potential molecules associated with altered B cell development leading to predominantly antibody deficiencies. Pediatr Allergy Immunol 2021; 32:1601-1615. [PMID: 34181780 DOI: 10.1111/pai.13589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Predominantly antibody deficiencies (PADs) encompass a heterogeneous group of disorders characterized by low immunoglobulin serum levels in the presence or absence of peripheral B cells. Clinical presentation of affected patients may include recurrent respiratory and gastrointestinal infections, invasive infections, autoimmune manifestations, allergic reactions, lymphoproliferation, and increased susceptibility to malignant transformation. In the last decades, several genetic alterations affecting B-cell development/maturation have been identified as causative of several forms of PADs, adding important information on the genetic background of PADs, which in turn should lead to a better understanding of these disorders and precise clinical management of affected patients. This review aimed to present a comprehensive overview of the known and potentially involved molecules in the etiology of PADs to elucidate the pathogenesis of these disorders and eventually offer a better prognosis for affected patients.
Collapse
Affiliation(s)
- Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Alessandro Plebani
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lennart Hammarstrom
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Ramamoorthy S, Kometani K, Herman JS, Bayer M, Boller S, Edwards-Hicks J, Ramachandran H, Li R, Klein-Geltink R, Pearce EL, Grün D, Grosschedl R. EBF1 and Pax5 safeguard leukemic transformation by limiting IL-7 signaling, Myc expression, and folate metabolism. Genes Dev 2020; 34:1503-1519. [PMID: 33004416 PMCID: PMC7608749 DOI: 10.1101/gad.340216.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
In this study, Ramamoorthy et al. investigate EBF1 and PAX5 combined haploinsufficiency in the development of a B-ALL phenotype in mice. Using transcriptional and metabolomic profiling, the authors report that EBF1 and Pax5 may safeguard early stage B cells from transformation to B-ALL by limiting IL-7 signaling, folate metabolism, and Myc expression. EBF1 and PAX5 mutations are associated with the development of B progenitor acute lymphoblastic leukemia (B-ALL) in humans. To understand the molecular networks driving leukemia in the Ebf1+/−Pax5+/− (dHet) mouse model for B-ALL, we interrogated the transcriptional profiles and chromatin status of leukemic cells, preleukemic dHet pro-B, and wild-type pro-B cells with the corresponding EBF1 and Pax5 cistromes. In dHet B-ALL cells, many EBF1 and Pax5 target genes encoding pre-BCR signaling components and transcription factors were down-regulated, whereas Myc and genes downstream from IL-7 signaling or associated with the folate pathway were up-regulated. We show that blockade of IL-7 signaling in vivo and methotrexate treatment of leukemic cells in vitro attenuate the expansion of leukemic cells. Single-cell RNA-sequencing revealed heterogeneity of leukemic cells and identified a subset of wild-type pro-B cells with reduced Ebf1 and enhanced Myc expression that show hallmarks of dHet B-ALL cells. Thus, EBF1 and Pax5 may safeguard early stage B cells from transformation to B-ALL by limiting IL-7 signaling, folate metabolism and Myc expression.
Collapse
Affiliation(s)
- Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Kohei Kometani
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Josip S Herman
- Laboratory of Single-Cell Biology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,International Max Planck Research School, University of Freiburg, 79104 Freiburg, Germany
| | - Marc Bayer
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,International Max Planck Research School, University of Freiburg, 79104 Freiburg, Germany
| | - Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Haribaskar Ramachandran
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ramon Klein-Geltink
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Dominic Grün
- Laboratory of Single-Cell Biology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
5
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
6
|
Abstract
This Outlook by Murre discusses two new studies in this issue of Genes & Development by Miyai et al. and Li et al. These studies provide new and unprecedented insights into the genetic and epigenetic mechanisms that establish B-cell identity. Earlier studies have identified transcription factors that specify B-cell fate, but the underlying mechanisms remain to be revealed. Two new studies by Miyai and colleagues (pp. 112–126) and Li and colleagues (pp. 96–111) in this issue of Genes & Development provide new and unprecedented insights into the genetic and epigenetic mechanisms that establish B-cell identity.
Collapse
Affiliation(s)
- Cornelis Murre
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Li R, Cauchy P, Ramamoorthy S, Boller S, Chavez L, Grosschedl R. Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming. Genes Dev 2018; 32:96-111. [PMID: 29440261 PMCID: PMC5830932 DOI: 10.1101/gad.309583.117] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023]
Abstract
B-cell fate determination requires the action of transcription factors that operate in a regulatory network to activate B-lineage genes and repress lineage-inappropriate genes. However, the dynamics and hierarchy of events in B-cell programming remain obscure. To uncouple the dynamics of transcription factor expression from functional consequences, we generated induction systems in developmentally arrested Ebf1-/- pre-pro-B cells to allow precise experimental control of EBF1 expression in the genomic context of progenitor cells. Consistent with the described role of EBF1 as a pioneer transcription factor, we show in a time-resolved analysis that EBF1 occupancy coincides with EBF1 expression and precedes the formation of chromatin accessibility. We observed dynamic patterns of EBF1 target gene expression and sequential up-regulation of transcription factors that expand the regulatory network at the pro-B-cell stage. A continuous EBF1 function was found to be required for Cd79a promoter activity and for the maintenance of an accessible chromatin domain that is permissive for binding of other transcription factors. Notably, transient EBF1 occupancy was detected at lineage-inappropriate genes prior to their silencing in pro-B cells. Thus, persistent and transient functions of EBF1 allow for an ordered sequence of epigenetic and transcriptional events in B-cell programming.
Collapse
Affiliation(s)
- Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Medicine, Division of Medial Genetics, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
8
|
Alivernini S, Kurowska-Stolarska M, Tolusso B, Benvenuto R, Elmesmari A, Canestri S, Petricca L, Mangoni A, Fedele AL, Di Mario C, Gigante MR, Gremese E, McInnes IB, Ferraccioli G. MicroRNA-155 influences B-cell function through PU.1 in rheumatoid arthritis. Nat Commun 2016; 7:12970. [PMID: 27671860 PMCID: PMC5052655 DOI: 10.1038/ncomms12970] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-155 (miR-155) is an important regulator of B cells in mice. B cells have a critical role in the pathogenesis of rheumatoid arthritis (RA). Here we show that miR-155 is highly expressed in peripheral blood B cells from RA patients compared with healthy individuals, particularly in the IgD-CD27- memory B-cell population in ACPA+ RA. MiR-155 is highly expressed in RA B cells from patients with synovial tissue containing ectopic germinal centres compared with diffuse synovial tissue. MiR-155 expression is associated reciprocally with lower expression of PU.1 at B-cell level in the synovial compartment. Stimulation of healthy donor B cells with CD40L, anti-IgM, IL-21, CpG, IFN-α, IL-6 or BAFF induces miR-155 and decreases PU.1 expression. Finally, inhibition of endogenous miR-155 in B cells of RA patients restores PU.1 and reduces production of antibodies. Our data suggest that miR-155 is an important regulator of B-cell activation in RA. MiR-155 is thought to inhibit PU.1 and thereby drive antigen-induced B-cell maturation. Here the authors show that patients with rheumatoid arthritis have high B-cell miR-155 expression and that an antagomir can rescue PU.1 expression, suggesting potential therapeutic avenues to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Roberta Benvenuto
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Aziza Elmesmari
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Silvia Canestri
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Antonella Mangoni
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Anna Laura Fedele
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Clara Di Mario
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy.,Division of Pathology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gianfranco Ferraccioli
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| |
Collapse
|
9
|
Pang SHM, Carotta S, Nutt SL. Transcriptional control of pre-B cell development and leukemia prevention. Curr Top Microbiol Immunol 2014; 381:189-213. [PMID: 24831348 DOI: 10.1007/82_2014_377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The differentiation of early B cell progenitors is controlled by multiple transcriptional regulators and growth-factor receptors. The triad of DNA-binding proteins, E2A, EBF1, and PAX5 is critical for both the early specification and commitment of B cell progenitors, while a larger number of secondary determinants, such as members of the Ikaros, ETS, Runx, and IRF families have more direct roles in promoting stage-specific pre-B gene-expression program. Importantly, it is now apparent that mutations in many of these transcription factors are associated with the progression to acute lymphoblastic leukemia. In this review, we focus on recent studies that have shed light on the transcriptional hierarchy that controls efficient B cell commitment and differentiation as well as focus on the oncogenic consequences of the loss of many of the same factors.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
10
|
Li J, Wan Y, Ji Q, Fang Y, Wu Y. The role of microRNAs in B-cell development and function. Cell Mol Immunol 2013; 10:107-12. [PMID: 23314697 DOI: 10.1038/cmi.2012.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA)-mediated gene silencing at the translational level has led to novel discoveries for numerous biological processes. Recently, there has been increasing evidence to indicate that miRNAs are involved in normal immune functions and inflammation. In this review, we focus on recent advances that have elucidated the role of miRNAs in B-cell development, differentiation, apoptosis and function. While the regulatory mechanisms of miRNAs in controlling and maintaining B-cell fate remain largely uncharacterized, further studies on miRNAs and their targets will increase our understanding of B-cell development and function. Such studies may be able to provide new therapeutic strategies for treating autoimmune diseases.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Rheumatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
11
|
Abstract
The mechanisms that drive normal B cell differentiation and activation are frequently subverted by B cell lymphomas for their unlimited growth and survival. B cells are particularly prone to malignant transformation because the machinery used for antibody diversification can cause chromosomal translocations and oncogenic mutations. The advent of functional and structural genomics has greatly accelerated our understanding of oncogenic mechanisms in lymphomagenesis. The signaling pathways that normal B cells utilize to sense antigens are frequently derailed in B cell malignancies, leading to constitutive activation of prosurvival pathways. These malignancies co-opt transcriptional regulatory systems that characterize their normal B cell counterparts and frequently alter epigenetic regulators of chromatin structure and gene expression. These mechanistic insights are ushering in an era of targeted therapies for these cancers based on the principles of pathogenesis.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
12
|
Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation. Immunity 2011; 33:917-28. [PMID: 21167753 DOI: 10.1016/j.immuni.2010.11.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 08/10/2010] [Accepted: 10/01/2010] [Indexed: 01/01/2023]
Abstract
B cell development requires the coordinated action of transcription factors and cytokines, in particular interleukin-7 (IL-7). We report that mice lacking the POZ (Poxvirus and zinc finger) domain of the transcription factor Miz-1 (Zbtb17(ΔPOZ/ΔPOZ)) almost entirely lacked follicular B cells, as shown by the fact that their progenitors failed to activate the Jak-Stat5 pathway and to upregulate the antiapoptotic gene Bcl2 upon IL-7 stimulation. We show that Miz-1 exerted a dual role in the interleukin-7 receptor (IL-7R) pathway by directly repressing the Janus kinase (Jak) inhibitor suppressor of cytokine signaling 1 (Socs1) and by activating Bcl2 expression. Zbtb17(ΔPOZ/ΔPOZ) (Miz-1-deficient) B cell progenitors had low expression of early B cell genes as transcription factor 3 (Tcf3) and early B cell factor 1 (Ebf1) and showed a propensity for apoptosis. Only the combined re-expression of Bcl2 and Ebf1 could reconstitute the ability of Miz-1-deficient precursors to develop into CD19(+) B cells.
Collapse
|
13
|
|
14
|
Green NS, Barral S. Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease. Pediatr Blood Cancer 2011; 56:177-81. [PMID: 20830771 PMCID: PMC3006002 DOI: 10.1002/pbc.22754] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 06/24/2010] [Indexed: 01/11/2023]
Abstract
Fetal hemoglobin (HbF) levels are generally inversely proportional to severity of sickle cell disease (SCD) for given sickle phenotypes. Molecular regulation of HbF occurs through complex interactions cis and trans to the beta globin gene locus. Novel insights made through population-based genetic epidemiologic studies of non-anemic populations were replicated in SCD groups, despite large differences in HbF levels. Identification of the lymphoid transcription factor BCL11A as a key suppressor of HbF expression validates approaches using population genetics to study HbF expression. We review these methods and findings, and speculate on applying pharmaco-genetics to optimize hydroxyurea therapy aimed at increasing HbF.
Collapse
Affiliation(s)
- Nancy S. Green
- Department of Pediatrics, Columbia University Medical Center
| | - Sandra Barral
- G.H. Sergievsky Center and the Taub Institute, Columbia University Medical Center
| |
Collapse
|
15
|
Abstract
Natural killer (NK) cells play an important role in host defense against tumors and viruses and other infectious diseases. NK cell development is regulated by mechanisms that are both shared with and separate from other hematopoietic cell lineages. Functionally, NK cells use activating and inhibitory receptors to recognize both healthy and altered cells such as transformed or infected cells. Upon activation, NK cells produce cytokines and cytotoxic granules using mechanisms similar to other hematopoietic cell lineages especially cytotoxic T cells. Here we review the transcription factors that control NK cell development and function. Although many of these transcription factors are shared with other hematopoietic cell lineages, they control unexpected and unique aspects of NK cell biology. We review the mechanisms and target genes by which these transcriptional regulators control NK cell development and functional activity.
Collapse
Affiliation(s)
- David G T Hesslein
- Department of Microbiology and Immunology, The Cancer Research Institute, University of California, San Francisco, USA
| | | |
Collapse
|
16
|
|
17
|
Tran AH, Berger A, Wu GE, Kee BL, Paige CJ. Early B-cell factor regulates the expression of Hemokinin-1 in the olfactory epithelium and differentiating B lymphocytes. J Neuroimmunol 2010; 232:41-50. [PMID: 20965576 DOI: 10.1016/j.jneuroim.2010.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 12/13/2022]
Abstract
Hemokinin-1, encoded by the TAC4 gene, is a tachykinin most closely related to substance P. Previous studies have shown that TAC4 distinguishes itself from other tachykinins by its predominantly non-neuronal expression profile, particularly in cells of the immune system. Here we report for the first time that the highest levels of TAC4 expression are found in the olfactory epithelium. Furthermore, we identify olfactory neuron-specific transcription factor (Olf-1), also known as early B-cell factor (EBF), as a novel regulator of TAC4 expression. EBF present in the olfactory epithelium and in B cells binds to two sites in the TAC4 promoter and modulates expression in developing B cells. Our findings suggest a role for TAC4 in cell differentiation, and represent a regulatory bridge between the nervous system and the immune system.
Collapse
Affiliation(s)
- Anne H Tran
- Department of Stem Cell and Developmental Biology, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| | | | | | | | | |
Collapse
|
18
|
Early B Cell Factor 1 Regulates B Cell Gene Networks by Activation, Repression, and Transcription- Independent Poising of Chromatin. Immunity 2010; 32:714-25. [DOI: 10.1016/j.immuni.2010.04.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/24/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
|
19
|
Beck K, Peak MM, Ota T, Nemazee D, Murre C. Distinct roles for E12 and E47 in B cell specification and the sequential rearrangement of immunoglobulin light chain loci. ACTA ACUST UNITED AC 2009; 206:2271-84. [PMID: 19752184 PMCID: PMC2757879 DOI: 10.1084/jem.20090756] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The E2A gene products, E12 and E47, are critical regulators of B cell development. However, it remains elusive whether E12 and E47 have overlapping and/or distinct functions during B lymphopoiesis. We have generated mice deficient for either E12 or E47 and examined their roles in B cell maturation. We show that E47 is essential for developmental progression at the prepro–B cell stage, whereas E12 is dispensable for early B cell development, commitment, and maintenance. In contrast, both E12 and E47 play critical roles in pre–B and immature B cells to promote immunoglobulin λ (Igλ) germline transcription as well as Igλ VJ gene rearrangement. Furthermore, we show that E12 as well as E47 is required to promote receptor editing upon exposure to self-antigen. We demonstrate that increasing levels of E12 and E47 act to induce Igλ germline transcription, promote trimethylated lysine 4 on histone 3 (H3) as well as H3 acetylation across the Jλ region, and activate Igλ VJ gene rearrangement. We propose that in the pre–B and immature B cell compartments, gradients of E12 and E47 activities are established to mechanistically regulate the sequential rearrangement of the Ig light chain genes.
Collapse
Affiliation(s)
- Kristina Beck
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
20
|
Parrish YK, Baez I, Milford TA, Benitez A, Galloway N, Rogerio JW, Sahakian E, Kagoda M, Huang G, Hao QL, Sevilla Y, Barsky LW, Zielinska E, Price MA, Wall NR, Dovat S, Payne KJ. IL-7 Dependence in human B lymphopoiesis increases during progression of ontogeny from cord blood to bone marrow. THE JOURNAL OF IMMUNOLOGY 2009; 182:4255-66. [PMID: 19299724 DOI: 10.4049/jimmunol.0800489] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IL-7 is critical for B cell production in adult mice; however, its role in human B lymphopoiesis is controversial. One challenge was the inability to differentiate human cord blood (CB) or adult bone marrow (BM) hematopoietic stem cells (HSCs) without murine stroma. Here, we examine the role of IL-7 in human B cell development using a novel, human-only model based on coculturing human HSCs on primary human BM stroma. In this model, IL-7 increases human B cell production by >60-fold from both CB and adult BM HSCs. IL-7-induced increases are dose-dependent and specific to CD19(+) cells. STAT5 phosphorylation and expression of the Ki-67 proliferation Ag indicate that IL-7 acts directly on CD19(+) cells to increase proliferation at the CD34(+) and CD34(-) pro-B cell stages. Without IL-7, HSCs in CB, but not BM, give rise to a small but consistent population of CD19(lo) B lineage cells that express EBF (early B cell factor) and PAX-5 and respond to subsequent IL-7 stimulation. Flt3 ligand, but not thymic stromal-derived lymhopoietin (TSLP), was required for the IL-7-independent production of human B lineage cells. As compared with CB, adult BM shows a reduction of in vitro generative capacity that is progressively more profound in developmentally sequential populations, resulting in an approximately 50-fold reduction in IL-7-dependent B lineage generative capacity. These data provide evidence that IL-7 is essential for human B cell production from adult BM and that IL-7-induced expansion of the pro-B compartment is increasingly critical for human B cell production during the progression of ontogeny.
Collapse
|
21
|
Hesslein DGT, Fretz JA, Xi Y, Nelson T, Zhou S, Lorenzo JA, Schatz DG, Horowitz MC. Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone 2009; 44:537-46. [PMID: 19130908 PMCID: PMC2657874 DOI: 10.1016/j.bone.2008.11.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/20/2008] [Accepted: 11/26/2008] [Indexed: 12/20/2022]
Abstract
Ebf1 is a transcription factor essential for B cell fate specification and function and important for the development of olfactory sensory neurons. We show here that Ebf1 also plays an important role in regulating osteoblast and adipocyte development in vivo. Ebf1 mRNA and protein is expressed in MSCs, in OBs at most stages of differentiation, and in adipocytes. Tibiae and femora from Ebf1(-/-) mice had a striking increase in all bone formation parameters examined including the number of OBs, osteoid volume, and bone formation rate. Serum osteocalcin, a marker of bone formation, was significantly elevated in mutant mice. The numbers of osteoclasts in bone were normal in younger (4 week-old) Ebf1(-/-) mice but increased in older (12 week-old) Ebf1(-/-) mice. This correlated well with in vitro osteoclast development from bone marrow cells. In addition to the increased osteoblastogenesis, there was a dramatic increase in adipocyte numbers in the bone marrow of Ebf1(-/-) mice. Increased adiposity was also seen histologically in the liver but not in the spleen of these mice, and accompanied by decreased deposition of adipose to subcutaneous sites. Thus Ebf1-deficient mice appear to be a new model of lipodystrophy. Ebf1 is a rare example of a transcription factor that regulates both the osteoblast and adipocyte lineages similarly.
Collapse
Affiliation(s)
- David G T Hesslein
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gururajan M, Simmons A, Dasu T, Spear BT, Calulot C, Robertson DA, Wiest DL, Monroe JG, Bondada S. Early growth response genes regulate B cell development, proliferation, and immune response. THE JOURNAL OF IMMUNOLOGY 2008; 181:4590-602. [PMID: 18802061 DOI: 10.4049/jimmunol.181.7.4590] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Egr-1 (early growth response gene-1) is an immediate early gene encoding a zinc finger motif-containing transcription factor. Upon cross-linking of BCR, mature B cells undergo proliferation with an increase in Egr-1 message. Immature B lymphoma cells that express Egr-1 message and protein constitutively are growth inhibited when Egr-1 is down-regulated by negative signals from BCR or by antisense oligonucleotides. To test the hypothesis that Egr-1 is important for B cell development, we examined B cells from primary and secondary lymphoid organs in Egr-1(-/-) mice. Marginal zone B cell development was arrested in these mice, whereas the B cells in all other compartments were increased. To test the hypothesis that Egr-1 function may be partially compensated by other Egr family members, we developed transgenic mice expressing a dominant negative form of Egr-1, which lacks the trans activation domain but retains the DNA-binding domain, in a B cell-specific manner. There was a decrease in B lymphopoiesis in the bone marrow accompanied by a reduction in splenic immature and mature B cells as well as marginal zone B cells in the transgenic mice. Moreover, transgenic mice respond poorly to BCR cross-linking in vitro and T-independent and T-dependent Ags in vivo.
Collapse
Affiliation(s)
- Murali Gururajan
- Departments of Microbiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
David-Fung ES, Butler R, Buzi G, Yui MA, Diamond RA, Anderson MK, Rowen L, Rothenberg EV. Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Dev Biol 2008; 325:444-67. [PMID: 19013443 DOI: 10.1016/j.ydbio.2008.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 12/15/2022]
Abstract
Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between alphabeta and gammadelta T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification.
Collapse
|
24
|
Zhu X, Schweitzer BL, Romer EJ, Sulentic CEW, DeKoter RP. Transgenic expression of Spi-C impairs B-cell development and function by affecting genes associated with BCR signaling. Eur J Immunol 2008; 38:2587-99. [PMID: 18792411 DOI: 10.1002/eji.200838323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spi-C is an Ets family transcription factor closely related to PU.1 and Spi-B. Expression of Spi-C is developmentally regulated in the B-cell lineage, but its function remains unknown. To determine the function of Spi-C in B-cell development, we generated mice expressing a B-cell-specific Spi-C transgene under the control of the IgH intronic enhancer. Spi-C transgenic mice had 50% fewer B cells than wild-type littermates. Flow cytometric analyses showed that splenic transitional B cells and bone marrow pre-B or immature B cells from transgenic mice were dramatically reduced compared with those of wild type. Both nonspecific and Ag-specific serum IgM levels were significantly increased in transgenic mice, while serum IgG levels were significantly decreased compared with wild type. Spi-C transgenic B cells proliferated poorly after stimulation by anti-IgM or anti-CD40 in vitro, although they responded normally to LPS stimulation. Using real-time RT-PCR, we found that several BCR signaling-related mediators were downregulated at pre-B-cell and mature B-cell stages in transgenic mice, while an inhibitor of BCR signaling was upregulated. Taken together, these data indicate that ectopic expression of Spi-C can impair B-cell development and function by affecting genes associated with BCR signaling.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Vigorito et al. (2007) report (in this issue of Immunity) that B cells require microRNA (miR)-155 for normal production of isotype-switched, high-affinity antibodies and for a memory response. They identify transcriptional regulator Pu.1 as a functionally important target of miR-155 in B cells.
Collapse
Affiliation(s)
- Kathryn Calame
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|