1
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
3
|
Schütz A, Bernhard F, Berrow N, Buyel JF, Ferreira-da-Silva F, Haustraete J, van den Heuvel J, Hoffmann JE, de Marco A, Peleg Y, Suppmann S, Unger T, Vanhoucke M, Witt S, Remans K. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc 2023; 4:102572. [PMID: 37917580 PMCID: PMC10643540 DOI: 10.1016/j.xpro.2023.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.
Collapse
Affiliation(s)
- Anja Schütz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform for Protein Production & Characterization, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe-University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nick Berrow
- Protein Expression Core Facility, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Johannes F Buyel
- Univeristy of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Frederico Ferreira-da-Silva
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Jurgen Haustraete
- VIB, Center for Inflammation Research & Ugent, Department of Biomedical Molecular Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research (HZI), Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jan-Erik Hoffmann
- Protein Chemistry Facility, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabine Suppmann
- Protein Expression and Purification Core Facility, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tamar Unger
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martine Vanhoucke
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Gent, Belgium
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Notkestr. 85, 22607 Hamburg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
4
|
Hong M, Li T, Xue W, Zhang S, Cui L, Wang H, Zhang Y, Zhou L, Gu Y, Xia N, Li S. Genetic engineering of baculovirus-insect cell system to improve protein production. Front Bioeng Biotechnol 2022; 10:994743. [PMID: 36204465 PMCID: PMC9530357 DOI: 10.3389/fbioe.2022.994743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The Baculovirus Expression Vector System (BEVS), a mature foreign protein expression platform, has been available for decades, and has been effectively used in vaccine production, gene therapy, and a host of other applications. To date, eleven BEVS-derived products have been approved for use, including four human vaccines [Cervarix against cervical cancer caused by human papillomavirus (HPV), Flublok and Flublok Quadrivalent against seasonal influenza, Nuvaxovid/Covovax against COVID-19], two human therapeutics [Provenge against prostate cancer and Glybera against hereditary lipoprotein lipase deficiency (LPLD)] and five veterinary vaccines (Porcilis Pesti, BAYOVAC CSF E2, Circumvent PCV, Ingelvac CircoFLEX and Porcilis PCV). The BEVS has many advantages, including high safety, ease of operation and adaptable for serum-free culture. It also produces properly folded proteins with correct post-translational modifications, and can accommodate multi-gene- or large gene insertions. However, there remain some challenges with this system, including unstable expression and reduced levels of protein glycosylation. As the demand for biotechnology increases, there has been a concomitant effort into optimizing yield, stability and protein glycosylation through genetic engineering and the manipulation of baculovirus vector and host cells. In this review, we summarize the strategies and technological advances of BEVS in recent years and explore how this will be used to inform the further development and application of this system.
Collapse
Affiliation(s)
- Minqing Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Sibo Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Lingyan Cui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Hong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Yuyun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| |
Collapse
|
5
|
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022; 13:848054. [PMID: 35432364 PMCID: PMC9008747 DOI: 10.3389/fimmu.2022.848054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
New vaccine design approaches, platforms, and immunization strategies might foster antiviral mucosal effector and memory responses to reduce asymptomatic infection and transmission in vaccinated individuals. Here, we investigated a combined parenteral and mucosal immunization scheme to induce local and serum antibody responses, employing the epitope-based antigens 3BT and NG19m. These antigens target the important emerging and re-emerging viruses PRRSV-2 and SARS-CoV-2, respectively. We assessed two versions of the 3BT protein, which contains conserved epitopes from the GP5 envelope protein of PRRSV-2: soluble and expressed by the recombinant baculovirus BacDual-3BT. On the other hand, NG19m, comprising the receptor-binding motif of the S protein of SARS-CoV-2, was evaluated as a soluble recombinant protein only. Vietnamese mini-pigs were immunized employing different inoculation routes: subcutaneous, intranasal, or a combination of both (s.c.-i.n.). Animals produced antigen-binding and neut1ralizing antibodies in serum and mucosal fluids, with varying patterns of concentration and activity, depending on the antigen and the immunization schedule. Soluble 3BT was a potent immunogen to elicit binding and neutralizing antibodies in serum, nasal mucus, and vaginal swabs. The vectored immunogen BacDual-3BT induced binding antibodies in serum and mucosae, but PRRSV-2 neutralizing activity was found in nasal mucus exclusively when administered intranasally. NG19m promoted serum and mucosal binding antibodies, which showed differing neutralizing activity. Only serum samples from subcutaneously immunized animals inhibited RBD-ACE2 interaction, while mini-pigs inoculated intranasally or via the combined s.c.-i.n. scheme produced subtle neutralizing humoral responses in the upper and lower respiratory mucosae. Our results show that intranasal immunization, alone or combined with subcutaneous delivery of epitope-based antigens, generates local and systemic binding and neutralizing antibodies. Further investigation is needed to evaluate the capability of the induced responses to prevent infection and reduce transmission.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carmen Ramírez-Estudillo
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diana L. Peláez-González
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge O. Ramos-Flores
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gustavo Torres-Franco
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leandro Núñez-Muñoz
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Marcelino-Pérez
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María G. Segura-Covarrubias
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rogelio González-González
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amanda Gayosso-Vázquez
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Silvia Reyes-Maya
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vianey Ramírez-Andoney
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio A. Alonso-Morales
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Wei SC, Hsu WT, Chiu CH, Chang FY, Lo HR, Liao CY, Yang HI, Chou YC, Tsai CH, Chao YC. An Integrated Platform for Serological Detection and Vaccination of COVID-19. Front Immunol 2022; 12:771011. [PMID: 35003088 PMCID: PMC8734241 DOI: 10.3389/fimmu.2021.771011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an ongoing pandemic. Detection and vaccination are essential for disease control, but they are distinct and complex operations that require significant improvements. Here, we developed an integrated detection and vaccination system to greatly simplify these efforts. We constructed recombinant baculoviruses to separately display the nucleocapsid (N) and spike (S) proteins of SARS-CoV-2. Insect cells infected by the recombinant baculoviruses were used to generate a cell-based system to accurately detect patient serum. Notably, although well-recognized by our newly developed detection system in which S-displaying insect cells acted as antigen, anti-S antibodies from many patients were barely detectable by Western blot, evidencing that COVID-19 patients primarily produce conformation-dependent anti-S antibodies. Furthermore, the same baculovirus constructs can display N (N-Bac) or S (S-Bac) on the baculovirus envelope and serve as vector vaccines. Animal experiments show that S-Bac or N-Bac immunization in mice elicited a strong and specific antibody response, and S-Bac in particular stimulated effective neutralizing antibodies without the need for adjuvant. Our integrated system maintains antigen conformation and membrane structure to facilitate serum detection and antibody stimulation. Thus, compared with currently available technologies, our system represents a simplified and efficient platform for better SARS-CoV-2 detection and vaccination.
Collapse
Affiliation(s)
- Sung-Chan Wei
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiang Chiu
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huei-Ru Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan-Yu Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Entomology, College of Agriculture and Nature Resources, National Chung Hsing University, Taichung, Taiwan.,Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.,Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Cox MMJ. Innovations in the Insect Cell Expression System for Industrial Recombinant Vaccine Antigen Production. Vaccines (Basel) 2021; 9:vaccines9121504. [PMID: 34960250 PMCID: PMC8707663 DOI: 10.3390/vaccines9121504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
The insect cell expression system has previously been proposed as the preferred biosecurity strategy for production of any vaccine, particularly for future influenza pandemic vaccines. The development and regulatory risk for new vaccine candidates is shortened as the platform is already in use for the manufacturing of the FDA-licensed seasonal recombinant influenza vaccine Flublok®. Large-scale production capacity is in place and could be used to produce other antigens as well. However, as demonstrated by the 2019 SARS-CoV-2 pandemic the insect cell expression system has limitations that need to be addressed to ensure that recombinant antigens will indeed play a role in combating future pandemics. The greatest challenge may be the ability to produce an adequate quantity of purified antigen in an accelerated manner. This review summarizes recent innovations in technology areas important for enhancing recombinant-protein production levels and shortening development timelines. Opportunities for increasing product concentrations through vector development, cell line engineering, or bioprocessing and for shortening timelines through standardization of manufacturing processes will be presented.
Collapse
|
8
|
Rathore A, Malani H. Need for a risk-based control strategy for managing glycosylation profile for biosimilar products. Expert Opin Biol Ther 2021; 22:123-131. [PMID: 34431439 DOI: 10.1080/14712598.2021.1973425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Monoclonal antibodies, though a popular class of therapeutics, are complex molecules that are manufactured using complex processes, making it nontrivial to maintain high level of batch-to-batch consistency in product quality. Glycosylation is a posttranslation modification that is widely considered a critical quality attribute (CQA) as its variations are known to impact the Fc effector functions of mAbs. With continuing rise of biosimilars, comparability of these products to the reference product with respect to glycosylation is a topic of immense interest. AREAS COVERED In this article, we focus on the various aspects related to this topic including criticality of the various glycosylated forms, as well as comparability of biosimilars with respect to glycosylation. EXPERT OPINION We propose that manufacturers should focus on those glycoforms that are present in larger amounts and are known to be critical with respect to the biotherapeutic's safety and efficacy. Such risk-based evaluation of glycoforms and their control would offer an optimal route to biosimilar manufacturers for a cost-effective approach toward product development without compromising on the safety and efficacy characteristics of the therapeutic. For mAbs lacking Fc effector function, devising stringent glycosylation control strategies can be bypassed, thereby simplifying process and product development.
Collapse
Affiliation(s)
- Anurag Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
9
|
Ruhnau J, Grote V, Juarez-Osorio M, Bruder D, Mahour R, Rapp E, Rexer TFT, Reichl U. Cell-Free Glycoengineering of the Recombinant SARS-CoV-2 Spike Glycoprotein. Front Bioeng Biotechnol 2021; 9:699025. [PMID: 34485255 PMCID: PMC8415157 DOI: 10.3389/fbioe.2021.699025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 01/23/2023] Open
Abstract
The baculovirus-insect cell expression system is readily utilized to produce viral glycoproteins for research as well as for subunit vaccines and vaccine candidates, for instance against SARS-CoV-2 infections. However, the glycoforms of recombinant proteins derived from this expression system are inherently different from mammalian cell-derived glycoforms with mainly complex-type N-glycans attached, and the impact of these differences in protein glycosylation on the immunogenicity is severely under investigated. This applies also to the SARS-CoV-2 spike glycoprotein, which is the antigen target of all licensed vaccines and vaccine candidates including virus like particles and subunit vaccines that are variants of the spike protein. Here, we expressed the transmembrane-deleted human β-1,2 N-acetlyglucosamintransferases I and II (MGAT1ΔTM and MGAT2ΔTM) and the β-1,4-galactosyltransferase (GalTΔTM) in E. coli to in-vitro remodel the N-glycans of a recombinant SARS-CoV-2 spike glycoprotein derived from insect cells. In a cell-free sequential one-pot reaction, fucosylated and afucosylated paucimannose-type N-glycans were converted to complex-type galactosylated N-glycans. In the future, this in-vitro glycoengineering approach can be used to efficiently generate a wide range of N-glycans on antigens considered as vaccine candidates for animal trials and preclinical testing to better characterize the impact of N-glycosylation on immunity and to improve the efficacy of protein subunit vaccines.
Collapse
Affiliation(s)
- Johannes Ruhnau
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Mariana Juarez-Osorio
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology, Infection Prevention and Control, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Reza Mahour
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Thomas F. T. Rexer
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Chair of Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
10
|
Zhang X, Zhao K, Lan L, Shi N, Nan H, Shi Y, Xu X, Chen H. Improvement of protein production by engineering a novel antiapoptotic baculovirus vector to suppress the expression of Sf-caspase-1 and Tn-caspase-1. Biotechnol Bioeng 2021; 118:2977-2989. [PMID: 33990946 DOI: 10.1002/bit.27807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 11/11/2022]
Abstract
The baculovirus expression vector system (BEVS) is an attractive manufacturing platform for recombinant protein production in insect cells. However, baculovirus infection commonly induces host apoptosis in 3-4 days which would subsequently terminate the protein expression. Previous studies have proved that protein production by BEVS can be elevated in apoptosis-suppressed insect cells. We also developed a baculovirus vector in our previous report to inhibit the apoptosis and improve protein production in Sf9 cells. In this study, we designed five short hairpin RNA (shRNA) expression cassettes targeting a conserved region in Spodoptera frugiperda caspase-1 (Sf-caspase-1) and Trichoplusia ni caspase-1 (Tn-caspase-1), and found that introduction of C to T mutations within the stem region of the expression cassette was beneficial for the heterologous protein expression. One of the improved shRNA expression cassettes was knocked into a bacmid with the deletion of several nonessential genes. The novel baculovirus vector demonstrated the ability to suppress cell apoptosis in both Sf9 and High Five cells, and exhibited superior recombinant protein productivity of intracellularly expressed GFP and firefly luciferase and secreted glycoprotein OD-Fc. The antiapoptotic baculovirus vector developed in this study could serve as a useful tool for the protein production in scientific research and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.,R&D Department, Shaanxi Bacmid Biotechnology Co., Ltd, Yangling, Shaanxi, China
| | - Kaixia Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lan Lan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Nan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanan Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Li T, Zheng Q, Yu H, Wu D, Xue W, Xiong H, Huang X, Nie M, Yue M, Rong R, Zhang S, Zhang Y, Wu Y, Wang S, Zha Z, Chen T, Deng T, Wang Y, Zhang T, Chen Y, Yuan Q, Zhao Q, Zhang J, Gu Y, Li S, Xia N. SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates. Emerg Microbes Infect 2020; 9:2076-2090. [PMID: 32897177 PMCID: PMC7534368 DOI: 10.1080/22221751.2020.1821583] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic was the result of the rapid transmission of a highly pathogenic coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is no efficacious vaccine or therapeutic. Toward the development of a vaccine, here we expressed and evaluated as potential candidates four versions of the spike (S) protein using an insect cell expression system: receptor binding domain (RBD), S1 subunit, the wild-type S ectodomain (S-WT), and the prefusion trimer-stabilized form (S-2P). We showed that RBD appears as a monomer in solution, whereas S1, S-WT, and S-2P associate as homotrimers with substantial glycosylation. Cryo-electron microscopy analyses suggested that S-2P assumes an identical trimer conformation as the similarly engineered S protein expressed in 293 mammalian cells but with reduced glycosylation. Overall, the four proteins confer excellent antigenicity with convalescent COVID-19 patient sera in enzyme-linked immunosorbent assay (ELISA), yet show distinct reactivities in immunoblotting. RBD, S-WT and S-2P, but not S1, induce high neutralization titres (>3-log) in mice after a three-round immunization regimen. The high immunogenicity of S-2P could be maintained at the lowest dose (1 μg) with the inclusion of an aluminium adjuvant. Higher doses (20 μg) of S-2P can elicit high neutralization titres in non-human primates that exceed 40-times the mean titres measured in convalescent COVID-19 subjects. Our results suggest that the prefusion trimer-stabilized SARS-CoV-2 S-protein from insect cells may offer a potential candidate strategy for the development of a recombinant COVID-19 vaccine.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Dinghui Wu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Hualong Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Meifeng Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Mingxi Yue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Rui Rong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Sibo Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Yuyun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Shaojuan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Tingting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Tingting Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen, People's Republic of China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| |
Collapse
|
12
|
Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front Immunol 2020; 11:1817. [PMID: 32793245 PMCID: PMC7385234 DOI: 10.3389/fimmu.2020.01817] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for effective countermeasures against the current emergence and accelerating expansion of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Induction of herd immunity by mass vaccination has been a very successful strategy for preventing the spread of many infectious diseases, hence protecting the most vulnerable population groups unable to develop immunity, for example individuals with immunodeficiencies or a weakened immune system due to underlying medical or debilitating conditions. Therefore, vaccination represents one of the most promising counter-pandemic measures to COVID-19. However, to date, no licensed vaccine exists, neither for SARS-CoV-2 nor for the closely related SARS-CoV or Middle East respiratory syndrome-CoV. In addition, a few vaccine candidates have only recently entered human clinical trials, which hampers the progress in tackling COVID-19 infection. Here, we discuss potential prophylactic interventions for SARS-CoV-2 with a focus on the challenges existing for vaccine development, and we review pre-clinical progress and ongoing human clinical trials of COVID-19 vaccine candidates. Although COVID-19 vaccine development is currently accelerated via so-called fast-track programs, vaccines may not be timely available to have an impact on the first wave of the ongoing COVID-19 pandemic. Nevertheless, COVID-19 vaccines will be essential in the future for reducing morbidity and mortality and inducing herd immunity, if SARS-CoV-2 becomes established in the population like for example influenza virus.
Collapse
Affiliation(s)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Qiu Y, Zhao Y, Liu F, Ye B, Zhao Z, Thongpoon S, Roobsoong W, Sattabongkot J, Cui L, Fan Q, Cao Y. Evaluation of Plasmodium vivax HAP2 as a transmission-blocking vaccine candidate. Vaccine 2020; 38:2841-2848. [PMID: 32093983 DOI: 10.1016/j.vaccine.2020.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
Abstract
Transmission-blocking vaccine (TBV) is a promising strategy to interfere with the transmission of malaria. To date, only limited TBV candidate antigens have been identified for Plasmodium vivax. HAP2 is a gamete membrane fusion protein, with homology to the class II viral fusion proteins. Herein we reported the characterization of the PvHAP2 for its potential as a TBV candidate for P. vivax. The HAP2/GCS1 domain of PvHAP2 was expressed in the baculovirus expression system and the recombinant protein was used to raise antibodies in rabbits. Indirect immunofluorescence assays showed that anti-PvHAP2 antibodies reacted only with the male gametocytes on blood smears. Direct membrane feeding assays were conducted using four field P. vivax isolates in Anopheles dirus. At a mean infection intensity of 72.4, 70.7, 51.3, and 15.6 oocysts/midgut with the control antibodies, anti-PvHAP2 antibodies significantly reduced the midgut oocyst intensity by 40.3, 44.4, 61.9, and 89.7%. Whereas the anti-PvHAP2 antibodies were not effective in reducing the infection prevalence at higher parasite exposure (51.3-72.4 oocysts/midgut in the control group), the anti-PvHAP2 antibodies reduced infection prevalence by 50% at a low challenge (15.6 oocysts/midgut). Multiple sequence alignment showed 100% identity among these Thai P. vivax isolates, suggesting that polymorphism may not be an impediment for the utilization of PvHAP2 as a TBV antigen. In conclusion, our results suggest that PvHAP2 could serve as a TBV candidate for P. vivax, and further optimization and evaluation are warranted.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Ye
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
14
|
Engineering of the baculovirus expression system for optimized protein production. Appl Microbiol Biotechnol 2018; 103:113-123. [DOI: 10.1007/s00253-018-9474-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|